Penalties in Granule Size Distribution and Viscosity Parameters of Starch Caused by Lodging in Winter Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Sampling
2.3. Measurements of Yield-Associated Traits
2.4. Statistical Analyses
3. Results
3.1. Crop Development and Lodging
3.2. Grain Quality and Yield
3.3. Granule Volume Distribution
3.4. Granule Surface Area Distribution
3.5. Granule Number Distribution
3.6. Starch Viscosity Parameters
3.7. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shang, J.Y.; Li, L.M.; Liu, C.; Hong, J.; Liu, M.; Zhao, B.; Zheng, X.L. Relationships of flour characteristics with isolated starch properties in different chinese wheat varieties. J. Cereal Sci. 2014, 99, 103210. [Google Scholar] [CrossRef]
- Hurkman, W.J.; Mccue, K.F.; Altenbach, S.B. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci. 2003, 164, 873–881. [Google Scholar] [CrossRef]
- Peng, M.S.; Gao, M. Separation and characterization of A- and B-type starch granules in wheat endosperm. Cereal Chem. 1999, 76, 375–379. [Google Scholar] [CrossRef]
- Yan, H.L.; Lu, Q.Y. Effects of the size distribution of wheat starch on noodles with and without gluten. J. Texture Stud. 2020, 52, 101–109. [Google Scholar] [CrossRef]
- Li, C.; Dhital, S.; Gidley, M.J. High-amylose wheat tortillas with reduced in vitro digestion and enhanced resistant starch content. Food Hydrocoll. 2023, 137, 108321. [Google Scholar] [CrossRef]
- Peterson, D.G.; Fulcher, R.G. Variation in Minnesota HRS wheats: Starch granule size distribution. Food Res. Int. 2001, 34, 357–363. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Z.; Yin, Y.; Cai, R.; Yan, S.; Li, W. Starch content and granule size distribution in grains of wheat in relation to post-anthesis water deficits. J. Agron. Crop Sci. 2010, 196, 1–8. [Google Scholar] [CrossRef]
- Fan, Y.; Qin, B.; Yang, J.; Ma, L.; Cui, G.; He, W.; Tang, Y.; Zhang, W.; Ma, S.; Ma, C.; et al. Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis. J. Integr. Agric. 2024, 23, 536–550. [Google Scholar] [CrossRef]
- Zhao, J.R.; Ma, H.L.; Wu, D.M.; Liu, Q.; Fan, G.Q. Effects of Shading stage on the starch component and starch quality of different wheat cultivar. J. Nucl. Agric. Sin. 2023, 37, 1056–1066. [Google Scholar] [CrossRef]
- Vincent, T.; Farhang, R.; Delennea, J.Y. Wheat endosperm as a cohesive granular material. J. Cereal Sci. 2008, 47, 347–356. [Google Scholar] [CrossRef]
- Yang, Z.X.; Xu, D.; Guo, L.N.; Zhou, H.L.; Wu, F.F.; Xu, X.M. The contribution of particle size distribution to the physiochemical properties of total wheat starch during freezing. Cereal Chem. 2021, 98, 604–615. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, D.; Huang, Q.; Huang, J.; Wen, Q. Physicochemical, structural properties and in vitro digestibility of A- and B- type granules isolated from green wheat and mature wheat starch. Starch/Stärke 2021, 73, 9–10. [Google Scholar] [CrossRef]
- Katyal, M.; Singh, N.; Chopra, N.; Kaur, A. Hard, medium-hard and extraordinarily soft wheat varieties: Comparison and relationship between various starch properties. Int. J. Biol. Macromol. 2019, 123, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Chen, H.; Zhang, Y.Z.; Yan, S.; Chen, X.Y.; Gao, X. Starch granules and their size distribution in wheat: Biosynthesis, physicochemical properties and their effect on flour-based food systems. Comput. Struct. Biotechnol. J. 2023, 21, 4172–4186. [Google Scholar] [CrossRef] [PubMed]
- Soh, H.N.; Sissons, M.J.; Turner, M.A. Effect of starch granule size distribution and elevated amylose content on durum dough rheology and spaghetti cooking quality. Cereal Chem. 2006, 83, 513–519. [Google Scholar] [CrossRef]
- Li, W.; Wu, P.; Yan, S. Effects of phosphorus fertilizer on starch granule size distribution in corn kernels. Braz. J. Bot. 2019, 42, 201–207. [Google Scholar] [CrossRef]
- Bechtel, D.B.; Zayas, I.; Kaleikau, L.; Pomeranz, Y. Size-distribution of wheat starch granules during endosperm development. Cereal Chem. 1990, 67, 59–63. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, N.; Khatkar, B.S. Effects of A- and B- type starch granules on composition, structural, thermal, morphological, and pasting properties of starches from diverse wheat varieties. Food Bioeng. 2023, 2, 373–383. [Google Scholar] [CrossRef]
- Dai, Z.M.; Yin, Y.P.; Wang, Z.L. Starch Granule Size Distribution from Seven Wheat Cultivars Under Different Water Regime. Cereal Chem. 2009, 86, 82–87. [Google Scholar] [CrossRef]
- Liu, X.; Cai, R.; Li, Y.; Zhang, M.; Yang, M.; Zhang, Y. Starch component characteristics and physicochemical properties in wheat grains with different amylose contents in relation to low light after anthesis. Starch-Stärke 2018, 70, 1700050. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Basub, S.; Kumar, S.T.; Kumar, G.; Prakash, V.; Kumar, S.J.; Mishraa, J.S.; Bhat, B.P.; Malviya, N.; Singhe, G.P.; et al. Heat stress induced impairment of starch mobilisation regulates pollen viability and grain yield in wheat: Study in Eastern Indo-Gangetic Plains. Field Crops Res. 2017, 206, 106–114. [Google Scholar] [CrossRef]
- Li, W.Y.; Yin, Y.P.; Yan, S.H.; Wang, Z.L. Starch granule size distribution in wheat grain in relation to shading after anthesis. J. Agric. Sci. 2010, 148, 183–189. [Google Scholar] [CrossRef]
- Li, H.W.; Wang, Z.S.; Zhuo, Q.C.; Zhang, B.; Wang, F.H.; Jiang, D. Starch Granule Size Distribution and Pasting Characteristic Response to Post-Anthesis Combined Stress of Waterlogging and Shading. Agriculture 2020, 10, 384. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Q.; Feng, N.; Wang, J.R.; Wang, S.J.; He, Z.H. Characterization of A- and B-type starch granules in Chinese wheat cultivars. J. Integr. Agric. 2016, 15, 2203–22141. [Google Scholar] [CrossRef]
- Ahmadi, A.; Baker, D.A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul. 2001, 35, 81–91. [Google Scholar] [CrossRef]
- Weibel, R.O.; Pendleton, J.W. Effect of artificial lodging on winter wheat grain yield and quality. Agron. J. 1964, 56, 487–488. [Google Scholar] [CrossRef]
- Peng, D.L.; Chen, X.G.; Yin, Y.P.; Lu, K.L.; Yang, W.B.; Tang, Y.H.; Wang, Z.L. Lodging resistance of winter wheat (Triticum aestivum L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Res. 2014, 157, 1–7. [Google Scholar] [CrossRef]
- Feng, S.; Shi, C.; Wang, P.; Ding, W.; Hu, T.; Ru, Z. Improving stem lodging resistance, yield, and water efficiency of wheat by adjusting supplemental irrigation frequency. Agronomy 2023, 13, 2208. [Google Scholar] [CrossRef]
- Acreche, M.M.; Slafer, G.A. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Res. 2011, 122, 40–48. [Google Scholar] [CrossRef]
- Li, C.H.; Li, W.Q.; Luo, Y.L.; Jin, M.; Chang, Y.L.; Cui, H.X.; Sun, S.F.; Li, Y.; Wang, Z.L. Mixed cropping increases grain yield and lodging resistance by improving the canopy light environment of wheat populations. Eur. J. Agron. 2023, 147, 126849. [Google Scholar] [CrossRef]
- Fischer, R.A.; Stapper, M. Lodging effects on high-yielding crops of irrigated semidwarf wheat. Field Crops Res. 1987, 17, 245–258. [Google Scholar] [CrossRef]
- Shah, A.N.; Tanveer, M.; Rehman, A.U.; Anjum, S.A.; Iqbal, J.; Ahmad, R. Lodging stress in cereal-effects and management: An overview. Environ. Sci. Pollut. Res. 2017, 24, 5222–5237. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jin, M.; Luo, Y.; Chang, Y.; Zhu, J.; Li, Y.; Wang, Z. Effects of irrigation on stem lignin and breaking strength of winter wheat with different planting densities. Field Crops Res. 2022, 282, 108518. [Google Scholar] [CrossRef]
- Wang, X.F.; Zhang, J.W.; Wang, X.Q.; Hu, Y.B.; Ren, X.L.; Jia, Z.K.; Cai, T. Non-uniform wheat population distribution enhances wheat yield and lodging resistance synchronously. Eur. J. Agron. 2024, 152, 127033. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B.; Fan, J.; Sun, M.; Yi, Y.; Guo, W.; Voldeng, H.D. Management of nitrogen fertilization to balance reducing lodging risk and increasing yield and protein content in spring wheat. Field Crops Res. 2019, 241, 107584. [Google Scholar] [CrossRef]
- Cai, T.; Peng, D.; Wang, R.; Jia, X.; Qiao, D.; Liu, T.; Jia, Z.; Wang, Z.; Ren, X. Can intercropping or mixed cropping of two genotypes enhance wheat lodging resistance? Field Crops Res. 2019, 239, 10–18. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- AACC. Approved Method of American Association of Cereal Chemists, 13th ed.; Cereals & Grains Associati: St. Paul, MN, USA, 2002; pp. 14–18. [Google Scholar]
- Zhang, Y.; Dai, X.L.; Jia, D.Y.; Li, H.Y.; Wang, Y.C.; Li, C.X.; Xu, H.C.; He, M.R. Effects of plant density on grain yield, protein size distribution, and breadmaking quality of winter wheat grown under two nitrogen fertilisation rates. Eur. J. Agron. 2016, 73, 1–10. [Google Scholar] [CrossRef]
- Nhan, M.T.; Copeland, L. Effect of variety and growing environment on pasting and thermal properties of wheat starch. Starch/Stärke 2016, 68, 436–445. [Google Scholar] [CrossRef]
- Ramesh, K.S.; Pravin, K.U.; Shiva, D.; Rajanna, G.A.; Vinod, K.S.; Rakesh, K.; Satendra, S. System of wheat intensification (SWI): Effects on lodging resistance, photosynthetic efficiency, soil biomes, and water productivity. PLoS ONE 2024, 19, e299785. [Google Scholar] [CrossRef]
- Peake, A.S.; Bell, K.L.; Fischer, R.A.; Gardner, M.; Das, B.T.; Poole, N.; Mumford, M. Cultivar×management interaction to reduce lodging and improve grain yield of irrigated spring wheat: Optimising plant growth regulator use, N application timing, row spacing and sowing date. Front. Plant Sci. 2020, 11, 401. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Luan, S.; Zhang, L.; Liu, Y.; Zhang, L.; Li, H. Penalties in yield and yield associated traits caused by stem lodging at different developmental stages in summer and spring foxtail millet cultivars. Field Crops Res. 2018, 217, 104–112. [Google Scholar] [CrossRef]
- Lindsey, A.J.; Carter, P.R.; Thomison, P.R. Impact of imposed root lodging on corn growth and yield. Agron. J. 2021, 113, 5054–5062. [Google Scholar] [CrossRef]
- Dreccer, F.M.; Condon, G.A.; Macdonald, B.; Rebetzke, G.E.; Awasi, M.; Borgognone, M.G.; Peake, A.; Francisco, J.P.; Hundt, A.; Jackway, P.; et al. Genotypic variation for lodging tolerance in spring wheat: Wider and deeper root plates, a feature of low lodging, high yielding germplasm. Field Crops Res. 2020, 258, 1079421. [Google Scholar] [CrossRef]
- Laude, H.H.; Pauli, A.W. Influence of lodging on yield and other characteristics in winter wheat. Agron. J. 1956, 48, 452–455. [Google Scholar] [CrossRef]
- Berry, P.M.; Sterling, M.; Spink, J.H.; Baker, C.J.; Sylvester-Bradley, R.; Mooney, S.J.; Tams, A.R.; Ennos, A.R. Understanding and reducing lodging in cereals. Adv. Agron. 2004, 84, 217–271. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, J.; Li, J.; Xian, L.; Chu, J.; Liu, H.; Song, J.; Sun, Y.; Dai, Z. Delayed sowing increased dry matter accumulation during stem elongation in winter wheat by improving photosynthetic yield and nitrogen accumulation. Eur. J. Agron. 2023, 151, 127004. [Google Scholar] [CrossRef]
- Zhang, W.J.; Wang, B.B.; Zhang, A.M.; Zhou, Q.R.; Li, Y.; Li, L.Y.; Ma, S.Y.; Fan, Y.H.; Huang, Z.L. Exogenous 6-benzylaminopurine enhances waterlogging and shading-tolerance after anthesis by improving grain starch accumulation and grain filling. Front. Plant Sci. 2022, 13, 1003920. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Li, Y.; Ni, Y.; Yang, W.; Yang, D.; Cui, Z.; Yin, Y. Differences of starch granule distribution in grains from different spikelet positions in winter wheat. PLoS ONE 2017, 9, e114342. [Google Scholar] [CrossRef]
- Lu, H.; Wang, C.; Gu, T.; Xie, Y.; Feng, W.; Li, S. Starch composition and its granules distribution in wheat grains in relation to post-anthesis high temperature and drought stress treatments. Starch/Stärke 2014, 66, 419–428. [Google Scholar] [CrossRef]
- Rakita, S.; Torbica, A.; Pezo, L.; Nikoli, I. Effect of climatic conditions on wheat starch granule size distribution, gelatinization and flour pasting properties. Agronomy 2023, 13, 1551. [Google Scholar] [CrossRef]
- Zhou, Q.; Huang, M.; Huang, X.; Liu, J.; Wang, X.; Cai, J.; Dai, T.; Cao, W.; Jiang, D. Effect of post-anthesis waterlogging on biosynthesis and granule size distribution of starch in wheat grains. Plant Physiol. Biochem. 2018, 132, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Qi, J.; Li, W.; Cao, L.; Wang, Z. Formation and developmental characteristics of A- and B-type starch granules in wheat endosperm. J. Integr. Agric. 2012, 11, 73–81. [Google Scholar] [CrossRef]
- Guo, Q.; He, Z.; Xia, X.; Qu, Y.; Zhang, Y. Effects of wheat starch granule size distribution on qualities of chinese steamed bread and raw white noodles. Cereal Chem. 2014, 91, 623–630. [Google Scholar] [CrossRef]
- Sun, X.; Bu, Z.; Qiao, B.; Pamela, D.; Fang, Y. The effects of wheat cultivar, flour particle size and bran content on the rheology and microstructure of dough and the texture of whole wheat breads and noodles. Food Chem. 2023, 410, 135447. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Y.; Lu, H.; Zhao, J.; Ma, G.; Ma, D.; Zhu, Y.; Guo, T.; Ma, Y.; Jiang, Y. Effects of post-anthesis waterlogging, high temperature and their combination on starch compositions and pasting properties in pheat grains. Sci. Agric. Sini. 2015, 48, 813–8201. [Google Scholar] [CrossRef]
- Chen, J.; Yang, T.; Yan, S.; Yong, Y.; Zhang, S.; Li, w. Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat. Acta Agron. Sini. 2024, 50, 1877–1884. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, Y.; Ren, H.; Wang, T.; Han, Y.; Li, W.; Li, C. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel. Sci. Agric. Sini. 2023, 56, 1646–1657. [Google Scholar] [CrossRef]
- Li, J.; Liang, Z.; Feng, J.; Hu, H.; Nangia, V.; Mo, F.; Liu, Y. Spermidine regulates wheat grain weight at high planting density by promoting the synthesis of sucrose and starch in inferior grains. Physiol. Plant. 2024, 176, e14321. [Google Scholar] [CrossRef]
- Kreslavski, V.D.; Zorina, A.A.; Los, D.A.; Fomina, I.R.; Allakhverdiev, S.I. Molecular mechanisms of stress resistance of photosynthetic machinery. In Molecular Stress Physiology of Plants; Springer: Berlin/Heidelberg, Germany, 2013; pp. 21–51. [Google Scholar] [CrossRef]
- Dhakal, A. Effect of drought stress and management in wheat—A review. Food Agribus. Manag. 2021, 2, 62–66. [Google Scholar] [CrossRef]
- Panigrahi, R.; Kariali, E.; Panda, B.B.; Lafarge, T.; Mohapatra, P.K. Corrigendum to: Controlling the trade-off between spikelet number and grain filling: The hierarchy of starch synthesis in spikelets of rice panicle in relation to hormone dynamics. Funct. Plant Biol. 2019, 46, 595. [Google Scholar] [CrossRef] [PubMed]
- Vinje, M.A.; Walling, J.G.; Henson, C.A.; Duke, S.H. Temporal expression analysis of barley disproportionating enzyme 1 (DPE1) during grain development and malting. J. Am. Soc. Brew. Chem. 2023, 81, 396–403. [Google Scholar] [CrossRef]
- Zhao, K.; Tao, Y.; Liu, M.; Yang, D.; Zhu, M.; Ding, J.; Zhu, X.; Guo, W.; Zhou, G.; Li, C. Does temporary heat stress or low temperature stress similarly affect yield, starch, and protein of winter wheat grain during grain filling? J. Cereal Sci. 2022, 103, 103408. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, A.; Zhou, Q.; Fang, R.; Zhao, Y.; Li, Z.; Huang, Z. Low-temperature at booting reduces starch content and yield of wheat by affecting dry matter transportation and starch synthesis. Front. Plant Sci. 2023, 14, 1207518. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhang, D.; Liu, J.; Liu, Q.; Liu, H.; Tian, L.; Jiang, L.; Qu, L. Plastidial disproportionating enzyme participates in starch synthesis in rice endosperm by transferring maltooligosyl groups from amylose and amylopectin to amylopectin. Plant Physiol. 2015, 169, 2496–2512. [Google Scholar] [CrossRef] [PubMed]
- Bush, D.R. Identifying the pathways that control resource allocation in higher plants. Proc. Natl. Acad. Sci. USA 2020, 117, 8669–8671. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Raza, A.; Wang, L.; Xu, M.; Lu, J.; Gao, Y.; Qin, S.; Zhang, Y.; Ahmad, I.; Zhou, T.; et al. Effects of multiple planting densities on lignin metabolism and lodging resistance of the strip intercropped soybean stem. Agronomy 2020, 10, 1177. [Google Scholar] [CrossRef]
- Shang, J.; Li, L.; Zhao, B.; Liu, M.; Zheng, X. Comparative studies on physicochemical properties of total, A- and B-type starch from soft and hard wheat varieties. Int. J. Biol. Macromol. 2020, 154, 714–723. [Google Scholar] [CrossRef]
Trait/Source of Variation | AC | SC | PC | GY | HI | SY | PY |
---|---|---|---|---|---|---|---|
Year (Y) | *** | *** | *** | *** | * | *** | ns |
Cultivar (C) | *** | *** | *** | *** | *** | *** | *** |
Lodging (L) | *** | *** | *** | *** | *** | *** | *** |
Y × C | ns | * | ns | *** | ns | ** | ** |
Y × L | ns | ns | ns | ns | ns | ns | ns |
C × L | ns | ns | ns | ** | ns | *** | *** |
Y × C × L | ns | ns | ns | ns | ns | ns | ns |
Seasons | Cultivars | Treatments | Particle Diameter of Starch Granule (μm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
<0.8 | 0.8–2.8 | 2.8–5.6 | 5.6–9.9 | <9.9 | >9.9 | 9.9–22.8 | >22.8 | |||
2019–2020 | JM22 | CK | 1.11 a | 9.22 a | 19.97 a | 13.89 a | 44.19 a | 55.81 c | 29.31 b | 26.50 d |
L1 | 1.03 ab | 6.77 cd | 18.55 b | 14.11 a | 40.47 b | 59.53 b | 29.43 b | 30.10 a | ||
L2 | 1.13 a | 6.46 d | 16.72 c | 14.40 a | 38.70 c | 61.30 a | 32.13 a | 29.17 b | ||
L3 | 1.09 a | 8.20 b | 18.28 b | 14.25 a | 41.82 b | 58.18 b | 29.72 b | 28.47 bc | ||
L4 | 1.10 a | 7.05 c | 18.32 b | 14.32 a | 40.79 b | 59.21 b | 31.37 a | 27.83 c | ||
JN17 | CK | 1.19 a | 10.01 a | 20.90 a | 15.34 a | 47.44 a | 52.56 d | 31.56 b | 21.00 c | |
L1 | 1.18 a | 9.02 b | 17.23 b | 15.30 a | 42.73 c | 57.27 b | 35.07 a | 22.20 ab | ||
L2 | 1.20 a | 8.03 c | 16.93 b | 15.28 a | 41.45 d | 58.55 a | 35.22 a | 23.33 a | ||
L3 | 1.14 a | 9.50 ab | 17.67 b | 15.62 a | 43.92 b | 56.08 c | 35.01 a | 21.06 bc | ||
L4 | 1.15 a | 9.01 b | 17.70 b | 15.40 a | 43.27 bc | 56.73 bc | 34.84 a | 21.89 bc | ||
2020–2021 | JM22 | CK | 1.26 a | 10.40 a | 19.11 a | 15.24 a | 46.01 a | 53.99 d | 25.42 b | 28.57 d |
L1 | 1.18 a | 7.96 c | 17.53 b | 15.36 a | 42.03 c | 57.97 b | 25.70 b | 32.27 a | ||
L2 | 1.27 a | 7.45 c | 15.84 c | 15.05 a | 39.62 d | 60.38 a | 29.01 a | 31.37 b | ||
L3 | 1.23 ab | 9.31 b | 17.25 b | 16.09 a | 43.89 b | 56.11 c | 25.71 b | 30.40 c | ||
L4 | 1.24 ab | 7.94 c | 17.98 ab | 15.41 a | 42.58 bc | 57.42 bc | 27.59 a | 29.83 c | ||
JN17 | CK | 1.38 a | 10.29 a | 20.43 a | 16.37 a | 48.47 a | 51.53 d | 31.70 b | 19.83 c | |
L1 | 1.37 a | 9.05 bc | 17.21 bc | 16.39 a | 44.02 c | 55.98 b | 35.04 a | 20.93 b | ||
L2 | 1.40 a | 8.27 c | 16.83 bc | 15.91 a | 42.01 d | 57.99 a | 35.89 a | 22.10 a | ||
L3 | 1.33 a | 11.04 a | 16.07 c | 16.46 a | 44.90 b | 55.10 c | 35.32 a | 19.78 c | ||
L4 | 1.35 a | 9.22 b | 17.50 b | 16.14 a | 44.20 bc | 55.80 bc | 35.50 a | 20.30 bc | ||
Analysis of variance | ||||||||||
Year (Y) | *** | *** | *** | *** | *** | *** | *** | *** | ||
Cultivar (C) | *** | *** | ns | *** | *** | *** | *** | *** | ||
Lodging (L) | ns | *** | *** | *** | *** | *** | *** | *** | ||
Y × C | ns | ** | ns | ns | ns | ns | ** | *** | ||
Y × L | ns | ns | ns | ns | ns | ns | ns | ns | ||
C × L | ns | *** | ** | ns | ns | ns | *** | *** | ||
Y × C × L | ns | ns | ns | ns | ns | ns | ns | ns |
Seasons | Cultivars | Treatments | Particle Diameter of Starch Granule (μm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
<0.8 | 0.8–2.8 | 2.8–5.6 | 5.6–9.9 | <9.9 | >9.9 | 9.9–22.8 | >22.8 | |||
2019–2020 | JM22 | CK | 11.20 ab | 35.83 a | 22.93 a | 11.47 c | 81.43 a | 18.57 d | 11.67 c | 6.90 c |
L1 | 11.63 ab | 33.57 b | 20.17 c | 13.43 ab | 78.80 c | 21.20 b | 13.47 b | 7.73 ab | ||
L2 | 11.87 a | 31.93 c | 19.60 c | 13.92 a | 77.33 d | 22.67 a | 14.50 c | 8.17 a | ||
L3 | 10.93 b | 35.57 a | 21.83 b | 12.73 b | 81.07 a | 18.93 d | 11.63 c | 7.30 bc | ||
L4 | 11.00 b | 35.13 a | 20.53 c | 13.37 ab | 80.03 b | 19.97 c | 12.10 c | 7.87 a | ||
JN17 | CK | 12.23 a | 35.70 a | 25.00 a | 12.60 c | 85.53 a | 14.47 c | 8.47 b | 6.00 d | |
L1 | 12.00 a | 35.27 a | 23.33 c | 13.70 b | 84.30 b | 15.70 b | 9.13 ab | 6.57 b | ||
L2 | 12.40 a | 33.33 b | 22.03 d | 15.37 a | 83.13 c | 16.87 a | 10.35 a | 6.87 a | ||
L3 | 12.00 a | 35.83 a | 24.07 b | 12.83 bc | 84.73 ab | 15.27 bc | 9.20 ab | 6.07 cd | ||
L4 | 12.53 a | 34.97 a | 23.90 bc | 13.07 bc | 84.47 b | 15.53 b | 9.27 ab | 6.27 c | ||
2020–2021 | JM22 | CK | 12.13 a | 31.81 a | 24.87 a | 10.62 b | 79.40 a | 20.60 d | 13.07 c | 7.53 c |
L1 | 12.57 a | 29.60 b | 22.03 c | 12.57 a | 76.77 c | 23.23 b | 14.83 b | 8.40 b | ||
L2 | 12.87 a | 27.57 c | 21.43 d | 13.00 a | 74.87 d | 25.13 a | 16.13 a | 9.00 a | ||
L3 | 11.97 a | 31.30 a | 22.90 b | 12.67 a | 78.83 ab | 21.17 cd | 12.90 c | 8.27 b | ||
L4 | 11.93 a | 31.17 a | 21.57 cd | 13.43 a | 78.12 b | 21.90 c | 13.33 c | 8.57 ab | ||
JN17 | CK | 13.23 a | 32.57 a | 26.60 a | 11.60 b | 84.00 a | 16.00 c | 9.27 a | 6.73 c | |
L1 | 12.93 a | 32.37 a | 24.20 c | 13.17 b | 82.67 bc | 17.33 ab | 9.93 a | 7.40 b | ||
L2 | 13.50 a | 30.03 b | 23.17 d | 15.07 a | 81.77 c | 18.23 a | 10.23 a | 8.00 a | ||
L3 | 13.20 a | 32.07 a | 25.33 b | 12.67 b | 83.27 ab | 16.73 bc | 9.60 a | 7.13 bc | ||
L4 | 13.70 a | 31.97 a | 24.79 bc | 12.65 b | 83.10 ab | 16.90 bc | 9.60 a | 7.30 b | ||
Analysis of variance | ||||||||||
Year (Y) | *** | *** | *** | ** | *** | *** | *** | *** | ||
Cultivar (C) | *** | *** | *** | ** | *** | *** | *** | *** | ||
Lodging (L) | ns | *** | *** | *** | *** | *** | *** | *** | ||
Y × C | ns | * | ns | ns | * | * | ** | ns | ||
Y × L | ns | ns | ns | ns | ns | ns | ns | ns | ||
C × L | * | *** | ** | *** | *** | *** | *** | ns | ||
Y × C × L | ns | ns | ns | ns | ns | ns | ns | ns |
Seasons | Cultivars | Treatments | Particle Diameter of Starch Granule (μm) | ||||
---|---|---|---|---|---|---|---|
<0.8 | 0.8–2.8 | 2.8–9.9 | <9.9 | >9.9 | |||
2019–2020 | JM22 | CK | 56.38 d | 36.83 a | 6.68 d | 99.88 a | 0.12 a |
L1 | 58.70 b | 33.04 c | 8.15 b | 99.89 a | 0.11 a | ||
L2 | 62.08 a | 29.15 d | 8.65 a | 99.88 a | 0.12 a | ||
L3 | 57.30 cd | 35.05 b | 7.53 c | 99.88 a | 0.12 a | ||
L4 | 58.23 bc | 33.44 c | 8.21 ab | 99.88 a | 0.12 a | ||
JN17 | CK | 54.47 c | 39.85 a | 5.57 c | 99.89 a | 0.11 a | |
L1 | 56.60 ab | 35.83 cd | 7.46 a | 99.89 a | 0.11 a | ||
L2 | 57.34 a | 35.13 d | 7.41 a | 99.88 a | 0.12 a | ||
L3 | 55.30 bc | 37.85 b | 6.74 b | 99.89 a | 0.11 a | ||
L4 | 55.73 bc | 36.96 bc | 7.19 ab | 99.89 a | 0.11 a | ||
2020–2021 | JM22 | CK | 56.35 c | 33.12 a | 10.49 d | 99.89 a | 0.11 a |
L1 | 58.67 b | 28.99 c | 12.23 b | 99.89 a | 0.11 a | ||
L2 | 61.99 a | 24.47 d | 13.43 a | 99.89 a | 0.11 a | ||
L3 | 57.53 b | 30.83 b | 11.54 bc | 99.90 a | 0.10 a | ||
L4 | 58.45 b | 30.46 b | 10.99 cd | 99.90 a | 0.10 a | ||
JN17 | CK | 54.51 c | 37.09 a | 8.31 d | 99.90 a | 0.10 a | |
L1 | 57.17 ab | 32.10 c | 10.63 b | 99.90 a | 0.10 a | ||
L2 | 58.13 a | 30.31 d | 11.46 a | 99.90 a | 0.10 a | ||
L3 | 54.98 c | 35.18 b | 9.74 c | 99.90 a | 0.10 a | ||
L4 | 56.43 b | 34.56 b | 8.91 d | 99.90 a | 0.10 a | ||
Analysis of variance | |||||||
Year (Y) | ns | *** | *** | *** | *** | ||
Cultivar (C) | *** | *** | *** | *** | *** | ||
Lodging (L) | *** | *** | *** | ns | ns | ||
Y × C | ns | * | *** | ns | ns | ||
Y × L | ns | * | *** | ns | ns | ||
C × L | ** | *** | ns | ns | ns | ||
Y × C × L | ns | ns | ns | ns | ns |
Seasons | Cultivars | Treatments | PV | HV | FV | BV | RV |
---|---|---|---|---|---|---|---|
2019–2020 | JM22 | CK | 2588.00 a | 1978.67 a | 3170.33 a | 1107.67 a | 1346.33 a |
L1 | 1921.67 d | 1681.67 c | 2351.67 d | 822.00 d | 1004.33 d | ||
L2 | 1767.67 e | 1396.67 d | 2370.33 d | 748.67 e | 903.33 e | ||
L3 | 2397.67 b | 1803.67 b | 2995.67 b | 969.00 b | 1192.33 b | ||
L4 | 2102.00 c | 1756.33 b | 2825.33 c | 894.67 c | 1099.33 c | ||
JN17 | CK | 2348.33 a | 1765.33 a | 3050.00 a | 912.67 a | 1324.00 a | |
L1 | 1883.33 d | 1590.00 c | 2500.00 c | 612.67 d | 940.33 c | ||
L2 | 1601.67 e | 1497.33 d | 2470.00 c | 468.33 e | 687.33 d | ||
L3 | 2088.33 b | 1696.67 b | 2841.67 b | 771.33 b | 1259.67 a | ||
L4 | 1975.67 c | 1676.00 b | 2819.67 b | 695.67 c | 1033.67 b | ||
2020–2021 | JM22 | CK | 2500.67 a | 1843.67 a | 3041.00 a | 1045.33 a | 1337.00 a |
L1 | 1844.67 d | 1612.00 c | 2158.33 d | 789.67 d | 1065.33 d | ||
L2 | 1764.67 d | 1409.00 d | 2178.33 d | 708.67 e | 843.33 e | ||
L3 | 2317.00 b | 1727.67 b | 2933.67 b | 949.00 b | 1241.67 b | ||
L4 | 2045.33 c | 1665.67 bc | 2717.33 c | 849.67 c | 1165.67 c | ||
JN17 | CK | 2231.00 a | 1739.00 a | 2956.33 a | 876.00 a | 1170.67 a | |
L1 | 1808.33 b | 1518.33 c | 2483.33 c | 664.67 c | 832.67 b | ||
L2 | 1460.67 c | 1440.67 c | 2288.67 d | 426.67 d | 669.33 c | ||
L3 | 2170.33 a | 1643.67 b | 2757.00 b | 765.33 b | 1076.00 a | ||
L4 | 1733.33 b | 1506.33 c | 2223.67 d | 667.33 c | 905.67 b | ||
Analysis of variance | |||||||
Year (Y) | *** | *** | *** | ** | *** | ||
Cultivar (C) | *** | *** | * | *** | *** | ||
Lodging (L) | *** | *** | *** | *** | *** | ||
Y × C | ns | ns | ns | ns | *** | ||
Y × L | ** | * | *** | ns | ns | ||
C × L | *** | *** | *** | *** | ** | ||
Y × C × L | *** | * | *** | ns | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, D.; Zhang, J.; Meng, L.; Liu, M.; Tang, Y.; Wang, X.; Yang, W.; Xu, H.; Yang, D. Penalties in Granule Size Distribution and Viscosity Parameters of Starch Caused by Lodging in Winter Wheat. Agronomy 2024, 14, 1574. https://doi.org/10.3390/agronomy14071574
Peng D, Zhang J, Meng L, Liu M, Tang Y, Wang X, Yang W, Xu H, Yang D. Penalties in Granule Size Distribution and Viscosity Parameters of Starch Caused by Lodging in Winter Wheat. Agronomy. 2024; 14(7):1574. https://doi.org/10.3390/agronomy14071574
Chicago/Turabian StylePeng, Dianliang, Jingmin Zhang, Lingbin Meng, Mei Liu, Yuhai Tang, Xingcui Wang, Wenxia Yang, Haicheng Xu, and Dongqing Yang. 2024. "Penalties in Granule Size Distribution and Viscosity Parameters of Starch Caused by Lodging in Winter Wheat" Agronomy 14, no. 7: 1574. https://doi.org/10.3390/agronomy14071574
APA StylePeng, D., Zhang, J., Meng, L., Liu, M., Tang, Y., Wang, X., Yang, W., Xu, H., & Yang, D. (2024). Penalties in Granule Size Distribution and Viscosity Parameters of Starch Caused by Lodging in Winter Wheat. Agronomy, 14(7), 1574. https://doi.org/10.3390/agronomy14071574