Evaluation of Cold Resistance at Seedling Stage for 70 Peanut Genotypes Based on Photosynthetic Fluorescence Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Measurement of Photosynthetic Parameters
2.3. Measurement of Chlorophyll Fluorescence Parameters
2.4. Evaluation of Cold Tolerance and Data Analysis
- (a)
- To eliminate differences between the basic traits of different varieties, the relative values of traits (cold resistance coefficient) were used to evaluate cold tolerance:
- (b)
- In principal component analysis, the orthogonal rotation method was used to rotate the data and establish a comprehensive index equation, as follows:
- (c)
- According to fuzzy mathematics principles, the membership function method was used to convert various indicators into membership function values (μ):
- (d)
- The comprehensive evaluation value of cold tolerance based on the membership function is as follows:
- (e)
- Utilizing the European distance and WPGMA method, cluster analysis was conducted based on the comprehensive D values of peanut germplasms to categorize cold tolerance levels.
- (f)
- With the D value as the dependent variable and evaluation indicators as the independent variables, stepwise regression analysis was performed to establish a regression model for evaluating cold tolerance during the seedling stage.
3. Results
3.1. Phenotypic Analysis of Traits Associated with Low-Temperature Peanuts
3.2. Correlation Analysis of Individual Index Cold Resistance in Peanut Seedlings
3.3. Principal Component Analysis of Individual Indicators
3.4. Establishment of Regression Equation and Screening of Identification Indicators
4. Discussion
Exploration and Utilization of Cold Tolerance Resources in Peanut Germplasm
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Basuchaudhuri, P. Physiology of the Peanut Plant; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Kasnakoglu, H. FAOSTAT and CountrySTAT: Integrated Global and National Food and Agriculture Statistical Databases. In Proceedings of the XLIII Scientific Meeting, Societa Italiana di Statistica, Universita di Torino, Turin, Italy, 14–16 June 2006. [Google Scholar]
- Upadhyaya, H.D.; Reddy, L.J.; Dwivedi, S.L.; Gowda, C.L.L.; Singh, S. Phenotypic diversity in cold-tolerant peanut (Arachis hypogaea L.) germplasm. Euphytica 2009, 165, 279–291. [Google Scholar] [CrossRef]
- Arya, S.S.; Salve, A.R.; Chauhan, S. Peanuts as functional food: A review. J. Food. Sci. Technol. 2016, 53, 31–41. [Google Scholar] [CrossRef]
- Mingrou, L.; Guo, S.; Ho, C.T.; Bai, N. Review on chemical compositions and biological activities of peanut (Arachis hypogeae L.). J. Food Biochem. 2022, 46, e14119. [Google Scholar] [CrossRef] [PubMed]
- Toomer, O.T. Nutritional chemistry of the peanut (Arachis hypogaea). Crit. Rev. Food Sci. Nutr. 2018, 58, 3042–3053. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.V.V.; Boote, K.J.; Thomas, J.M.G.; Allen, L.H.; Gorbet, D.W. Influence of soil temperature on seedling emergence and early growth of peanut cultivars in field conditions. J. Agron. Crop Sci. 2006, 192, 168–177. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, J.L.; Zhao, X.H.; Zhang, Y.M.; Ren, J.Y.; Xing, L.T.; Jiang, C.J.; Wang, X.G.; Wang, J.; Zhao, S.L.; et al. Research Progress in Membrane Lipid Metabolism and Molecular Mechanism in Peanut Cold Tolerance. Front. Plant Sci. 2019, 10, 838. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, N.; Xu, R.; Chen, X.; Zhang, Y.; Hu, R.; Lan, X.; Tang, Z.; Lin, G. Quantitative proteomics analysis reveals the response mechanism of peanut (Arachis hypogaea L.) to imbibitional chilling stress. Plant Biol. 2021, 23, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhang, H.; Ai, X.; Dong, Q.; Shi, X.; Zhao, X.; Zhong, C.; Yu, H. Improving chilling tolerance of peanut seedlings by enhancing antioxidant-modulated ROS scavenging ability, alleviating photosynthetic inhibition, and mobilizing nutrient absorption. Plant Biol. 2024, 26, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Haerani, H.; Apan, A.; Nguyen-Huy, T.; Basnet, B. Modelling future spatial distribution of peanut crops in Australia under climate change scenarios. Geo-Spat. Inf. Sci. 2023, 1–20. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, C.; Ren, J.; Dong, J.; Shi, X.; Zhao, X.; Wang, X.; Wang, J.; Zhong, C.; Zhao, S.; et al. An Advanced Lipid Metabolism System Revealed by Transcriptomic and Lipidomic Analyses Plays a Central Role in Peanut Cold Tolerance. Front. Plant Sci. 2020, 11, 1110. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Han, Z.; Chen, Y.; Huai, D.; Kang, Y.; Wang, Z.; Yan, L.; Jiang, H.; Lei, Y.; et al. Integrated Transcriptomics and Metabolomics Analysis Reveal Key Metabolism Pathways Contributing to Cold Tolerance in Peanut. Front. Plant Sci. 2021, 12, 752474. [Google Scholar] [CrossRef]
- Tong, B.; Shi, Y.S.; Ntambiyukuri, A.; Li, X.; Zhan, J.; Wang, A.Q.; Xiao, D.; He, L.F. Integration of Small RNA and Degradome Sequencing Reveals the Regulatory Network of Al-Induced Programmed Cell Death in Peanut. Int. J. Mol. Sci. 2022, 23, 246. [Google Scholar] [CrossRef] [PubMed]
- Kalarani, M.; Senthil, A.; Punitha, S.; Sowmyapriya, S.; Umapathi, M.; Geethalakshmi, V. Abiotic Stress Responses in Groundnut (Arachis hypogaea L.): Mechanisms and Adaptations. In Legumes: Physiology and Molecular Biology of Abiotic Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2023; pp. 279–290. [Google Scholar]
- Muncan, J.; Jinendra, B.M.S.; Kuroki, S.; Tsenkova, R. Aquaphotomics Research of Cold Stress in Soybean Cultivars with Different Stress Tolerance Ability: Early Detection of Cold Stress Response. Molecules 2022, 27, 744. [Google Scholar] [CrossRef] [PubMed]
- Peng, O.; Akers, W.; Berezin, M.Y. Detection of Cold Stress in Plants using Fluorescence Lifetime Imaging (FLIM). Curr. Anal. Chem. 2021, 17, 317–327. [Google Scholar] [CrossRef]
- Enders, T.A.; St Dennis, S.; Oakland, J.; Callen, S.T.; Gehan, M.A.; Miller, N.D.; Spalding, E.P.; Springer, N.M.; Hirsch, C.D. Classifying cold-stress responses of inbred maize seedlings using RGB imaging. Plant Direct 2019, 3, e00104. [Google Scholar] [CrossRef] [PubMed]
- Székely, A.; Szalóki, T.; Jancsó, M.; Pauk, J.; Lantos, C. Temporal Changes of Leaf Spectral Properties and Rapid Chlorophyll-A Fluorescence under Natural Cold Stress in Rice Seedlings. Plants 2023, 12, 2415. [Google Scholar] [CrossRef] [PubMed]
- Javornik, T.; Carović-Stanko, K.; Gunjača, J.; Vidak, M.; Lazarević, B. Monitoring drought stress in common bean using chlorophyll fluorescence and multispectral imaging. Plants 2023, 12, 1386. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Dong, Y.; Li, Q.Q.; Zhao, F.Y.; Hou, X.M.; Liu, Y.; Li, Q.C.; Zhao, L.; Fan, G.Q.; Liu, K. Comprehensively evaluation on cold tolerance of foxtail millet varieties at germination stage. Acta Agron. Sin. 2024, 1–13. [Google Scholar]
- Li, T.; Yu, J.; Qiao, Y.F.; Miao, S.J. Effect of Short-Term Low Temperature on Seedling Growth and Nodule Nitrogen Fixation in Soybean. Chin. J. Agrometeorol. 2024, 45, 159–169. [Google Scholar]
- Kodad, O.; Morales, F.; Socias, R. Evaluation of almond flower tolerance to frosts by chlorophyll fluorescence. ITEA-Inf. Tec. Econ. Agrar. 2010, 106, 142–150. [Google Scholar]
- Mishra, A.; Mishra, K.B.; Hoermiller, I.I.; Heyer, A.G.; Nedbal, L. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions. Plant Signal. Behav. 2011, 6, 301–310. [Google Scholar] [CrossRef]
- Bianchi, G.; Lo Scalzo, R.; Testoni, A.; Maestrelli, A. Nondestructive analysis to monitor potato quality during cold storage. J. Food Qual. 2014, 37, 9–17. [Google Scholar] [CrossRef]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, H.; Raj, S.; Soni, V. Chlorophyll a fluorescence kinetics of mung bean (Vigna radiata L.) grown under artificial continuous light. Biochem. Biophys. Rep. 2020, 24, 100813. [Google Scholar] [CrossRef] [PubMed]
- Ibaraki, Y.; Dutta Gupta, S. Nondestructive evaluation of the photosynthetic properties of micropropagated plantlets by imaging photochemical reflectance index under low light intensity. Vitro Cell. Dev. Biol.-Plant 2010, 46, 530–536. [Google Scholar] [CrossRef]
- Rapacz, M.; Woźniczka, A. A selection tool for freezing tolerance in common wheat using the fast chlorophyll a fluorescence transient. Plant Breed. 2009, 128, 227–234. [Google Scholar] [CrossRef]
- Liang, F.; Zheng, C.-S.; Sun, X.-Z.; Wang, W.-L. Effects of low temperature-and weak light stress and its recovery on the photosynthesis and chlorophyll fluorescence parameters of cut flower chrysanthemum. Yingyong Shengtai Xuebao 2010, 21, 29. [Google Scholar] [PubMed]
- Togun, A.O.; Akparobi, S.O.; Ekanayake, I.J. Field studies on chlorophyll a fluorescence for low temperature tolerance testing of cassava (Manihot esculenta Crantz). J. Food Agric. Environ. 2004, 2, 166–170. [Google Scholar]
- Rai, S.; Deeksha Charak, D.C.; Rajeev Bharat, R.B. Scenario of oilseed crops across the globe. Plant Arch. 2016, 16, 125–132. [Google Scholar]
- Fu, D.; Ding, Y. The study of changing characteristics of the winter temperature and extreme cold events in China over the past six decades. Int. J. Climatol. 2021, 41, 2480–2494. [Google Scholar] [CrossRef]
- Song, Q.B.; Liu, Y.F.; Pang, J.Y.; Yong, J.W.H.; Chen, Y.L.; Bai, C.M.; Gille, C.; Shi, Q.W.; Wu, D.; Han, X.R.; et al. Supplementary Calcium Restores Peanut (Arachis hypogaea) Growth and Photosynthetic Capacity under Low Nocturnal Temperature. Front. Plant Sci. 2020, 10, 1637. [Google Scholar] [CrossRef]
- Li, W.; Sui, X.L.; Zhang, Z.X. Effects of temperature regime on low-light tolerance of Cucumis sativus seedling leaves in their photosynthesis. Ying Yong Sheng Tai Xue Bao 2008, 19, 2643–2650. [Google Scholar] [PubMed]
- Huang, Y.L.; Li, Y.Y.; Zhou, J.; Lao, C.Y.; Zhou, L.Z.; Wei, B.H.; Li, S.P.; Sheng, Z.Y. Analysis and Evaluation of Agronomic Traits of 266 Cassava Germplasm Resources. Chin. J. Trop. Crops 2024, 45, 712–721. [Google Scholar]
- Liu, L.Y.; Huang, Y.C.; Yang, N.; Liu, W.X.; Zhao, Y.M.; Long, C.F.; Dang, X.M. Genetic Diversity of Phenotypic Traits in 81 Capsicum annuum Germplasms. Chin. J. Trop. Crops 2023, 44, 706–715. [Google Scholar]
- Ch, O. Photoinhibition of Photosynthesis at Low Temperature in Barley and Scots Pine. Bachelor’s Thesis, Department of Plant Physiology, Umea University, Umea, Sweden, 1995. [Google Scholar]
- Xu, Z.; Zhang, J.X.; Wang, X.; Essemine, J.; Jin, J.; Qu, M.N.; Xiang, Y.; Chen, W.X. Cold-induced inhibition of photosynthesis-related genes integrated by a TOP6 complex in rice mesophyll cells. Nucleic Acids Res. 2023, 51, 1823–1842. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Yuan, K.K.; Li, B.; Gao, P.; Wu, H.R.; Hu, J. Assessing chilling injury in cucumber seedlings using chlorophyll fluorescence based on a quantum genetic algorithm and support vector regression model. J. Asabe 2022, 65, 313–325. [Google Scholar] [CrossRef]
- Hannan, M.A.; Saha, N.R.; Roy, S.K.; Sun-hee, W.; Haque, M.S. Genetic Diversity Analysis and Molecular Screening for Salinity Tolerance in Wheat Germplasm. Plant Breed. Biotechnol. 2021, 9, 185–198. [Google Scholar] [CrossRef]
- Yadava, Y.K.; Singh, R.K.; Kumar, P.; Kumar, P.; Yadav, M.K.; Barh, A.; Upadhayay, H.D.; Kumar, R. Assay of Genetic Architecture for Identification of Waterlogging Tolerant Pigeonpea Germplasm. Natl. Acad. Sci. Lett.-India 2018, 41, 11–14. [Google Scholar] [CrossRef]
- Tian, H.L.; Wu, C.J.; Zhang, L.J.; Guo, S.H.; Wang, Y.Q.; Pei, S.S.; Zuo, X.Q.; Wang, Q.B.; Zhang, Q. Phenotypic diversity analysis of Polygala tenuifolia Willd germplasm resources in China. Genet. Resour. Crop Evol. 2024, 1–12. [Google Scholar] [CrossRef]
- Upadhyaya, H.D.; Wang, Y.H.; Gowda, C.L.L.; Sharma, S. Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theor. Appl. Genet. 2013, 126, 2003–2015. [Google Scholar] [CrossRef]
Number | Variety | Number | Variety | Number | Variety | Number | Variety |
---|---|---|---|---|---|---|---|
1 | JJZLQ | 19 | JH8H | 37 | FH3H | 55 | FH8H |
2 | ZPGB | 20 | HH9006 | 38 | PJ1H | 56 | MH11H |
3 | ZAGM | 21 | SY162 | 39 | YY93 | 57 | MH12H |
4 | ZPGHS | 22 | JH21 | 40 | PJ16H | 58 | PH25 |
5 | TADJR | 23 | MH4H | 41 | LH243 | 59 | PH45 |
6 | JY13 | 24 | MH5H | 42 | LH7H | 60 | MH11 |
7 | LY9H | 25 | QH538 | 43 | QH7H | 61 | FH13 |
8 | J7116 | 26 | JH37 | 44 | PH23 | 62 | LH138 |
9 | JY2H | 27 | QH627 | 45 | PH21 | 63 | LH250 |
10 | HY5H | 28 | QH726 | 46 | FH8H | 64 | QH27 |
11 | HA | 29 | QH829 | 47 | PH31 | 65 | H557 |
12 | HY7418 | 30 | PJ2H | 48 | LH13 | 66 | QGH1H |
13 | PTKZ | 31 | MH11H | 49 | KH1H | 67 | QH551 |
14 | PY3H | 32 | LH243 | 50 | PJ1H | 68 | QH10H |
15 | YY2H | 33 | PJ16H | 51 | QH2197 | 69 | QH646 |
16 | SY5H | 34 | FH4H | 52 | MH13H | 70 | QH24H |
17 | HH1H | 35 | YY93 | 53 | QH7H | ||
18 | JH10H | 36 | QH2197 | 54 | PH6H |
Variable | Temperature | Minimum | Maximum | Mean | SD | CV% |
---|---|---|---|---|---|---|
Fo | 25 °C | 1249.463 | 2206.307 | 1590.929 | 218.473 | 13.73% |
5 °C | 801.350 | 2846.093 | 2042.223 | 528.654 | 25.89% | |
Fm | 25 °C | 8045.873 | 12,274.147 | 10,269.390 | 961.162 | 9.36% |
5 °C | 1183.123 | 7731.283 | 4677.340 | 1715.342 | 36.67% | |
Fv | 25 °C | 6659.653 | 10,567.807 | 8678.461 | 903.364 | 10.41% |
5 °C | 381.777 | 5518.060 | 2635.117 | 1299.857 | 49.33% | |
Fv/Fm | 25 °C | 0.780 | 0.870 | 0.844 | 0.022 | 2.56% |
5 °C | 0.287 | 0.733 | 0.513 | 0.099 | 19.26% | |
Fv’/Fm’ | 25 °C | 0.527 | 0.797 | 0.701 | 0.076 | 10.91% |
5 °C | 0.230 | 0.550 | 0.390 | 0.071 | 18.17% | |
ΦPSII | 25 °C | 0.167 | 0.550 | 0.380 | 0.096 | 25.31% |
5 °C | 0.080 | 0.303 | 0.168 | 0.050 | 29.57% | |
NPQ | 25 °C | 0.617 | 2.957 | 1.349 | 0.562 | 41.63% |
5 °C | 0.183 | 1.220 | 0.736 | 0.249 | 33.87% | |
qP | 25 °C | 0.303 | 0.700 | 0.534 | 0.097 | 18.21% |
5 °C | 0.290 | 0.677 | 0.421 | 0.080 | 19.08% | |
Rfd | 25 °C | 1.440 | 3.660 | 2.392 | 0.397 | 16.59% |
5 °C | 0.407 | 1.883 | 1.107 | 0.368 | 33.25% | |
Pn | 25 °C | 1.963 | 24.681 | 12.246 | 5.212 | 42.56% |
5 °C | 0.274 | 4.429 | 2.072 | 1.104 | 53.26% | |
Gs | 25 °C | 0.039 | 0.768 | 0.319 | 0.160 | 50.18% |
5 °C | 0.009 | 0.234 | 0.070 | 0.044 | 62.47% | |
Ci | 25 °C | 235.342 | 372.906 | 310.201 | 29.978 | 9.66% |
5 °C | 273.030 | 547.263 | 364.288 | 49.071 | 13.47% | |
Tr | 25 °C | 0.733 | 7.259 | 3.627 | 1.691 | 46.61% |
5 °C | 0.094 | 2.158 | 0.858 | 0.482 | 56.15% |
Indicator | Principal Component 1 | Principal Component 2 | Principal Component 3 | Comprehensive Evaluation Value | Weight |
---|---|---|---|---|---|
Fo | 0.2062 | −0.1211 | 0.3542 | 0.1603 | 7.29% |
Fm | 0.3721 | −0.1177 | 0.1223 | 0.2120 | 9.64% |
Fv | 0.3817 | −0.1113 | 0.0803 | 0.2108 | 9.59% |
Fv/Fm | 0.3878 | −0.0453 | 0.0284 | 0.2193 | 9.98% |
Fv’/Fm’ | 0.3577 | −0.0712 | −0.2132 | 0.1491 | 6.78% |
ΦPSII | 0.3330 | −0.0804 | −0.3168 | 0.1126 | 5.12% |
NPQ | 0.1375 | 0.0173 | 0.5632 | 0.1928 | 8.77% |
qP | 0.2822 | −0.0570 | −0.3103 | 0.0899 | 4.09% |
Rfd | 0.3123 | −0.0563 | 0.2905 | 0.2241 | 10.19% |
Pn | 0.2446 | 0.4303 | −0.0540 | 0.2290 | 10.42% |
Gs | 0.0738 | 0.6098 | 0.0701 | 0.1952 | 8.88% |
Ci | −0.1212 | −0.0551 | 0.4469 | 0.0042 | 0.19% |
Tr | 0.0901 | 0.6154 | 0.0340 | 0.1989 | 9.05% |
Eigenvalue | 6.140 | 2.421 | 2.063 | ||
Variance Explained Ratio | 47.23% | 18.63% | 15.87% | ||
Cumulative Contribution % | 47.230 | 65.856 | 81.722 |
PZ | D | Y | Y-D | EA | PZ | D | Y | Y-D | EA |
---|---|---|---|---|---|---|---|---|---|
PH21 | 0.350 | 0.372 | 0.022 | 0.938 | SY5H | 0.425 | 0.430 | 0.005 | 0.987 |
QH24H | 0.502 | 0.527 | 0.025 | 0.950 | TADJR | 0.569 | 0.571 | 0.002 | 0.997 |
FH8H | 0.460 | 0.466 | 0.006 | 0.988 | MH12H | 0.531 | 0.519 | 0.012 | 0.978 |
YY93 | 0.441 | 0.446 | 0.005 | 0.989 | PX16H | 0.444 | 0.403 | 0.041 | 0.908 |
SY162 | 0.498 | 0.504 | 0.006 | 0.988 | QH627 | 0.498 | 0.495 | 0.003 | 0.993 |
PTKZ | 0.384 | 0.390 | 0.006 | 0.985 | MH11H | 0.446 | 0.435 | 0.010 | 0.977 |
JH8H | 0.373 | 0.391 | 0.018 | 0.952 | JH10H | 0.408 | 0.407 | 0.000 | 0.999 |
PH31 | 0.473 | 0.478 | 0.005 | 0.989 | LH7H | 0.619 | 0.613 | 0.006 | 0.990 |
FH4H | 0.410 | 0.421 | 0.011 | 0.974 | QH2197 | 0.593 | 0.583 | 0.010 | 0.983 |
YY2H | 0.357 | 0.369 | 0.012 | 0.968 | JY2H | 0.571 | 0.557 | 0.014 | 0.976 |
PH23 | 0.474 | 0.489 | 0.015 | 0.969 | JH37 | 0.512 | 0.504 | 0.008 | 0.985 |
FH3H | 0.432 | 0.435 | 0.004 | 0.992 | JJZLQ | 0.269 | 0.253 | 0.016 | 0.941 |
HH1H | 0.571 | 0.566 | 0.004 | 0.992 | PH45 | 0.171 | 0.161 | 0.010 | 0.940 |
PY3H | 0.522 | 0.528 | 0.006 | 0.988 | JY13 | 0.115 | 0.103 | 0.012 | 0.892 |
LH243 | 0.491 | 0.476 | 0.015 | 0.970 | LY9H | 0.181 | 0.180 | 0.000 | 0.998 |
PX16H | 0.409 | 0.411 | 0.002 | 0.994 | HY5H | 0.349 | 0.355 | 0.007 | 0.981 |
PX1H | 0.583 | 0.598 | 0.015 | 0.974 | QH27 | 0.202 | 0.199 | 0.003 | 0.985 |
QH646 | 0.466 | 0.469 | 0.003 | 0.993 | MH5H | 0.335 | 0.353 | 0.018 | 0.945 |
PX2H | 0.687 | 0.676 | 0.011 | 0.984 | MH11H | 0.556 | 0.558 | 0.002 | 0.996 |
HH9006 | 0.503 | 0.487 | 0.015 | 0.969 | LH250 | 0.419 | 0.434 | 0.015 | 0.964 |
QH726 | 0.710 | 0.690 | 0.020 | 0.971 | FH8H | 0.339 | 0.345 | 0.005 | 0.985 |
LH243 | 0.427 | 0.425 | 0.002 | 0.995 | QH2197 | 0.517 | 0.526 | 0.009 | 0.982 |
ZAHM | 0.274 | 0.270 | 0.005 | 0.983 | MH4H | 0.564 | 0.567 | 0.002 | 0.996 |
QH829 | 0.277 | 0.279 | 0.003 | 0.991 | PX1H | 0.437 | 0.439 | 0.002 | 0.996 |
ZPHHS | 0.247 | 0.243 | 0.004 | 0.983 | QH538 | 0.382 | 0.394 | 0.012 | 0.969 |
PH25 | 0.298 | 0.296 | 0.002 | 0.994 | LH138 | 0.304 | 0.308 | 0.004 | 0.988 |
YY93 | 0.334 | 0.337 | 0.003 | 0.992 | QH7H | 0.332 | 0.333 | 0.001 | 0.998 |
QH7H | 0.477 | 0.502 | 0.025 | 0.948 | H557 | 0.356 | 0.375 | 0.019 | 0.948 |
ZPGB | 0.398 | 0.397 | 0.001 | 0.997 | MH11 | 0.351 | 0.353 | 0.002 | 0.995 |
PH6H | 0.495 | 0.513 | 0.019 | 0.962 | QH10H | 0.308 | 0.324 | 0.015 | 0.951 |
HY7418 | 0.369 | 0.378 | 0.009 | 0.975 | FH13 | 0.200 | 0.206 | 0.006 | 0.971 |
QH551 | 0.399 | 0.390 | 0.009 | 0.977 | MH13H | 0.469 | 0.492 | 0.022 | 0.952 |
J7116 | 0.363 | 0.363 | 0.000 | 0.999 | LH13 | 0.287 | 0.258 | 0.029 | 0.899 |
JH21 | 0.556 | 0.560 | 0.004 | 0.993 | QHH1H | 0.506 | 0.510 | 0.004 | 0.991 |
HA | 0.629 | 0.654 | 0.025 | 0.960 | KH1H | 0.773 | 0.734 | 0.039 | 0.950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, L.; Wang, T.; Wu, R.; Zheng, C.; Zhan, L.; Chen, J.; Guo, S.; Chen, Y. Evaluation of Cold Resistance at Seedling Stage for 70 Peanut Genotypes Based on Photosynthetic Fluorescence Characteristics. Agronomy 2024, 14, 1699. https://doi.org/10.3390/agronomy14081699
Ye L, Wang T, Wu R, Zheng C, Zhan L, Chen J, Guo S, Chen Y. Evaluation of Cold Resistance at Seedling Stage for 70 Peanut Genotypes Based on Photosynthetic Fluorescence Characteristics. Agronomy. 2024; 14(8):1699. https://doi.org/10.3390/agronomy14081699
Chicago/Turabian StyleYe, Linmei, Tao Wang, Renye Wu, Conghui Zheng, Liuqi Zhan, Jianhong Chen, Shengyao Guo, and Yongkuai Chen. 2024. "Evaluation of Cold Resistance at Seedling Stage for 70 Peanut Genotypes Based on Photosynthetic Fluorescence Characteristics" Agronomy 14, no. 8: 1699. https://doi.org/10.3390/agronomy14081699
APA StyleYe, L., Wang, T., Wu, R., Zheng, C., Zhan, L., Chen, J., Guo, S., & Chen, Y. (2024). Evaluation of Cold Resistance at Seedling Stage for 70 Peanut Genotypes Based on Photosynthetic Fluorescence Characteristics. Agronomy, 14(8), 1699. https://doi.org/10.3390/agronomy14081699