Physiological and Biochemical Analysis of Selenium-Enriched Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.2.1. Soil Pre-Treatment
2.2.2. Rice Cultivation
2.2.3. Fertilisation and Water Management
2.2.4. Sample Collection
2.3. Methods
2.3.1. Determination of Plant Height and Biomass
2.3.2. Determination of Physiological and Biochemical Indices
2.3.3. Determination of Selenium Content
2.3.4. Calculation of the Bioconcentration Factor (BCF) and Translocation Factor (TF)
2.4. Data Analysis
3. Results
3.1. Plants Biomass
3.2. Selenium Accumulation in Rice
3.2.1. Changes in the Selenium Levels of Different Parts of Rice
3.2.2. Changes in Selenium Enrichment and Transport of Rice
3.3. Determination of Chlorophyll Content
3.4. Levels of Osmotic Adjustment in Rice
3.5. Antioxidant Enzyme Activity
3.6. Correlations between the Selenium Content and Physiological Characteristics of Rice Growth
4. Discussion
4.1. Effects of Se Fertilization on Plant Biomass
4.2. Se Accumulation in Rice
4.3. Effects of Se Fertilization on Chlorophyll Content
4.4. Effects of Se Fertilization on Osmotic Adjustment
4.5. Effects of Se Fertilization on Antioxidant Enzyme Activity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological activity of selenium and its impact on human health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef] [PubMed]
- Sherlock, L.G.; McCarthy, W.C.; Grayck, M.R.; Solar, M.; Hernandez, A.; Zheng, L.; Delaney, C.; Tipple, T.E.; Wright, C.J.; Nozik, E.S. Neonatal selenium deficiency decreases selenoproteins in the lung and impairs pulmonary alveolar development. Antioxidants 2022, 11, 2417. [Google Scholar] [CrossRef] [PubMed]
- Pecoraro, B.M.; Leal, D.F.; Frias-De-Diego, A.; Browning, M.; Odle, J.; Crisci, E. The health benefits of selenium in food animals: A review. J. Anim. Sci. Biotechnol. 2022, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.C.; Lidon, F.C.; Coelho, A.R.F.; Pessoa, C.C.; Luis, I.C.; Campos, P.S.; Simoes, M.; Almeida, A.S.; Pessoa, M.F.; Galhano, C.; et al. Effect of rice grain (Oryza sativa L.) enrichment with selenium on foliar leaf gas exchanges and accumulation of nutrients. Plants 2021, 10, 288. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yue, L.; Cheng, B.; Chen, F.; Zhao, X.; Wang, Z.; Xing, B. Mechanisms of growth-promotion and Se-enrichment in Brassica chinensis L. by selenium nanomaterials: Beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environ. Sci. Nano 2022, 9, 302–312. [Google Scholar] [CrossRef]
- Liu, H.; Xiao, C.; Qiu, T.; Deng, J.; Cheng, H.; Cong, X.; Cheng, S.; Rao, S.; Zhang, Y. Selenium regulates antioxidant, photosynthesis, and cell permeability in plants under various abiotic stresses: A review. Plants 2023, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Yang, X.; Rao, S.; Zhu, Z.; Cong, X.; Ye, J.; Zhang, W.; Liao, Y.; Cheng, S.; Xu, F. Advances in physiological mechanisms of selenium to improve heavy metal stress tolerance in plants. Plant Biol. 2022, 24, 913–919. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Raza, A.; Hawrylak-Nowak, B.; Matraszek-Gawron, R.; Al Mahmud, J.; Nahar, K.; Fujita, M. Selenium in plants: Boon or bane? Environ. Exp. Bot. 2020, 178, 104170. [Google Scholar] [CrossRef]
- Han, M.; Liu, K. Selenium and selenoproteins: Their function and development of selenium-rich foods. Int. J. Food Sci. Technol. 2022, 57, 7026–7037. [Google Scholar] [CrossRef]
- Groth, S.; Budke, C.; Neugart, S.; Ackermann, S.; Kappenstein, F.S.; Daum, D.; Rohn, S. Influence of a selenium biofortification on antioxidant properties and phenolic compounds of apples (Malus domestica). Antioxidants 2020, 9, 187. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, S.; Li, Y.; Xu, S.; Shi, G.; Ding, Z. Effect of selenium on mushroom growth and metabolism: A review. Trends Food Sci. Technol. 2021, 118, 328–340. [Google Scholar] [CrossRef]
- Shen, J.; Jiang, C.; Yan, Y.; Zu, C. Selenium distribution and translocation in rice (Oryza sativa L.) under different naturally seleniferous soils. Sustainability 2019, 11, 520. [Google Scholar] [CrossRef]
- Ye, Y.; Yan, W.; Peng, L.; Zhou, J.; He, J.; Zhang, N.; Cheng, S.; Cai, J. Insights into the key quality components in Se-Enriched green tea and their relationship with Selenium. Food Res. Int. 2023, 165, 112460. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.A.; Wick, J.E.; Famuyide, I.M.; McGaw, L.J.; Mühling, K.H. Selenium enrichment of green and red lettuce and the induction of radical scavenging potential. Horticulturae 2021, 7, 488. [Google Scholar] [CrossRef]
- Borbély, P.; Molnár, Á.; Valyon, E.; Ördög, A.; Horváth-Boros, K.; Csupor, D.; Fehér, A.; Kolbert, Z. The effect of foliar selenium (Se) treatment on growth, photosynthesis, and oxidative-nitrosative signalling of Stevia rebaudiana leaves. Antioxidants 2021, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Galić, L.; Vinković, T.; Ravnjak, B.; Lončarić, Z. Agronomic biofortification of significant cereal crops with selenium—A review. Agronomy 2021, 11, 1015. [Google Scholar] [CrossRef]
- Ferri, T.; Coccioli, F.; De Luca, C.; Callegari, C.V.; Morabito, R. Distribution and speciation of selenium in Lecythis ollaria plant. Microchem. J. 2004, 78, 195–203. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Stoddard, F.L.; Hartikainen, H.; Seppänen, M.M. Plant species and growing season weather influence the efficiency of selenium biofortification. Nutr. Cycl. Agroecosystems 2019, 114, 111–124. [Google Scholar] [CrossRef]
- Meucci, A.; Shiriaev, A.; Rosellini, I.; Malorgio, F.; Pezzarossa, B. Se-enrichment pattern, composition, and aroma profile of ripe tomatoes after sodium selenate foliar spraying performed at different plant developmental stages. Plants 2021, 10, 1050. [Google Scholar] [CrossRef]
- White, P.J. Selenium accumulation by plants. Ann. Bot. 2016, 117, 217–235. [Google Scholar] [CrossRef]
- Zhang, J.; Ge, W.; Xing, C.; Liu, Y.; Shen, X.; Zhao, B.; Chen, X.; Xu, Y.; Zhou, S. Ecological risk assessment of potentially toxic elements in selenium-rich soil with different land-use types. Environ. Geochem. Health 2023, 45, 5323–5341. [Google Scholar] [CrossRef] [PubMed]
- Cvitković, D.; Lisica, P.; Zorić, Z.; Repajić, M.; Pedisić, S.; Dragović-Uzelac, V.; Balbino, S. Composition and antioxidant properties of pigments of mediterranean herbs and spices as affected by different extraction methods. Foods 2021, 10, 2477. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Du, B.; Wu, Q.; Zhang, H.; Deng, Y.; Tang, X.; Zhu, J. Selenium decreases the cadmium content in brown rice: Foliar Se application to plants grown in Cd-contaminated soil. J. Soil Sci. Plant Nutr. 2022, 22, 1033–1043. [Google Scholar] [CrossRef]
- Chen, P.; Shaghaleh, H.; Hamoud, Y.A.; Wang, J.; Pei, W.; Yuan, X.; Liu, J.; Qiao, C.; Xia, W.; Wang, J. Selenium-containing organic fertilizer application affects yield, quality, and distribution of selenium in wheat. Life 2023, 13, 1849. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Tao, W.; Yu, F.; Xiong, Q.; Nong, C.; Zhang, W.; Fan, J. Physiological and Biochemical Analysis Revealing the Key Factors Influencing 2-Phenylethanol and Benzyl Alcohol Production in Crabapple Flowers. Plants 2024, 13, 631. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Nawaz, S.; Iqbal, K.; Rehman, S.; Ullah, R.; Nawaz, G.; Almeer, R.; Sayed, A.A.; Peluso, I. Plant-derived smoke solution alleviates cellular oxidative stress caused by arsenic and mercury by modulating the cellular antioxidative defense system in wheat. Plants 2022, 11, 1379. [Google Scholar] [CrossRef] [PubMed]
- Seregina, I.; Anka, M.; Trukhachev, V.; Belopukhov, S.; Dmitrevskaya, I. Effect of bioregulators on the activity of catalase isoforms in spring wheat. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1206, p. 012042. [Google Scholar] [CrossRef]
- Qian, W.; Jiang, Q.; Wang, R.H.; Gong, H.; Han, Y. Determination of trace selenium in plants by hydride generation atomic fluorescence spectrometry with program temperature-controlled graphite digestion. Spectrosc. Spectr. Anal. 2014, 34, 235–240. [Google Scholar] [CrossRef]
- Ahmad, M.; Usman, A.R.A.; Al-Faraj, A.S.; Ahmad, M.; Sallam, A.; Al-Wabel, M.I. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere 2018, 194, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Lanza, M.G.D.B.; Dos Reis, A.R. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiol. Biochem. 2021, 164, 27–43. [Google Scholar] [CrossRef]
- Liang, Y.; Su, Y.; Li, L.; Huang, X.; Panhwar, F.H.; Zheng, T.; Tang, Z.C.; Ei, H.H.; Farooq, M.U.; Zeng, R.; et al. Quick selenium accumulation in the selenium-rich rice and its physiological responses in changing selenium environments. BMC Plant Biol. 2019, 19, 559. [Google Scholar] [CrossRef]
- Deng, X.; Zhao, Z.; Lv, C.; Zhang, Z.; Yuan, L.; Liu, X. Effects of sulfur application on selenium uptake and seed selenium speciation in soybean (Glycine max L.) grown in different soil types. Ecotoxicol. Environ. Saf. 2021, 209, 111790. [Google Scholar] [CrossRef]
- Zayed, A.; Lytle, C.M.; Terry, N. Accumulation and volatilization of different chemical species of selenium by plants. Planta 1998, 206, 284–292. [Google Scholar] [CrossRef]
- Di, X.; Qin, X.; Zhao, L.; Liang, X.; Xu, Y.; Sun, Y.; Huang, Q. Selenium distribution, translocation and speciation in wheat (Triticum aestivum L.) after foliar spraying selenite and selenate. Food Chem. 2023, 400, 134077. [Google Scholar] [CrossRef] [PubMed]
- GB/T 22499-2008. National Standard for Rich Selenium Paddy. China. 2008. Available online: https://www.chinesestandard.net/PDF/English.aspx/GBT22499-2008 (accessed on 1 August 2024).
- Sharma, S.; Goyal, R.; Sadana, U.S. Selenium accumulation and antioxidant status of rice plants grown on seleniferous soil from Northwestern India. Rice Sci. 2014, 21, 327–334. [Google Scholar] [CrossRef]
- Sharma, S.; Dhillon, K.S.; Dhillon, S.K.; Munshi, S.K. Changes in biochemical components of wheat and rapeseed grown on selenium-contaminated soil. Arch. Agron. Soil Sci. 2008, 54, 33–40. [Google Scholar] [CrossRef]
- Iqbal, M.; Hussain, I.; Liaqat, H.; Ashraf, M.A.; Rasheed, R.; Rehman, A.U. Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol. Biochem. 2015, 94, 95–103. [Google Scholar] [CrossRef]
- Li, L.; Wu, S.; Wang, S.; Shi, X.; Cheng, S.; Cheng, H. Molecular Mechanism of Exogenous Selenium Affecting the Nutritional Quality, Species and Content of Organic Selenium in Mustard. Agronomy 2023, 13, 1425. [Google Scholar] [CrossRef]
- Abdel, L.A.A.; Tran, L.S.P. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front. Plant Sci. 2016, 7, 243. [Google Scholar] [CrossRef] [PubMed]
- Khalofah, A.; Migdadi, H.; El-Harty, E. Antioxidant enzymatic activities and growth response of quinoa (Chenopodium quinoa Willd.) to exogenous selenium application. Plants 2021, 10, 719. [Google Scholar] [CrossRef]
- Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Prado, F.E. Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signal. Behav. 2009, 4, 388–393. [Google Scholar] [CrossRef]
- Yu, L.; Chen, Q.; Liao, X.; Yang, X.; Chao, W.; Cong, X.; Zhang, W.; Liao, Y.; Ye, J.; Qian, H.; et al. Exploring effects of exogenous selenium on the growth and nutritional quality of cabbage (Brassica oleracea var. capitata L.). Horticulturae 2023, 9, 330. [Google Scholar] [CrossRef]
- Ren, G.; Ran, X.; Zeng, R.; Chen, J.; Wang, Y.; Mao, C.; Wang, X.; Feng, Y.; Yang, G. Effects of sodium selenite spray on apple production, quality, and sucrose metabolism-related enzyme activity. Food Chem. 2021, 339, 127883. [Google Scholar] [CrossRef] [PubMed]
- Kulsum, P.G.P.S.; Khanam, R.; Das, S.; Nayak, A.K.; Tack, F.M.; Meers, E.; Vithanage, M.; Shahid, M.; Kumar, A.; Chakraborty, S.; et al. A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. Environ. Res. 2022, 220, 115098. [Google Scholar] [CrossRef] [PubMed]
- Mostofa, M.G.; Hossain, M.A.; Siddiqui, M.N.; Fujita, M.; Tran, L.S.P. Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere 2017, 178, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.A.; Mühling, K.H. Selenium exerts an intriguing alteration of primary and secondary plant metabolites: Advances, challenges, and prospects. Crit. Rev. Plant Sci. 2023, 42, 34–52. [Google Scholar] [CrossRef]
- Feng, R.W.; Wei, C.Y. Antioxidative mechanisms on selenium accumulation in Pteris vittata L., a potential selenium phytoremediation plant. Plant Soil Environ. 2012, 58, 105–110. [Google Scholar] [CrossRef]
- Hartikainen, H.; Xue, T.; Piironen, V. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 2000, 225, 193–200. [Google Scholar] [CrossRef]
- Zhou, J.; Cheng, K.; Song, L.; Li, W.; Jiang, H.; Huang, G. Exogenous indoleacetic acid induces cadmium accumulation and growth in Cinnamomum camphora. Sci. Hortic. 2024, 323, 112518. [Google Scholar] [CrossRef]
- Duan, M.Y.; Cheng, S.R.; Lu, R.H.; Lai, R.F.; Zheng, A.X.; Ashraf, U.; Fan, P.S.; Du, B.; Luo, H.W.; Tang, X.R. Effect of foliar sodium selenate on leaf senescence of fragrant rice in South China. Appl. Ecol. Environ. Res. 2019, 17, 3343–3351. [Google Scholar] [CrossRef]
- Dai, Z.; Imtiaz, M.; Rizwan, M.; Yuan, Y.; Huang, H.; Tu, S. Dynamics of selenium uptake, speciation, and antioxidant response in rice at different panicle initiation stages. Sci. Total Environ. 2019, 691, 827–834. [Google Scholar] [CrossRef]
Material | pH | Nutrient Content (g·kg−1) | Se Content (mg·kg−1) | |||
---|---|---|---|---|---|---|
Organic Carbon | Total Nitrogen | Total Phosphorus | Total Potassium | |||
Soil | 5.51 | 7.15 | 0.18 | 0.53 | 1.63 | 0.22 |
Variables | DF | F Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Height | TChl | SOD | POD | CAT | Pro | MDA | SS | ||
Stage | 2 | 107.92 *** | 0.47 | 193.5 *** | 12.66 *** | 11.9 *** | 18.77 *** | 164.59 *** | 13.29 *** |
Treatment | 3 | 2.14 | 1.49 | 5.58 ** | 6.07 ** | 6.15 ** | 1.96 | 9.18 *** | 8.28 *** |
Stage × treatment | 6 | 0.18 | 1.53 | 7.51 *** | 1.10 | 6.83 *** | 1.79 | 10.27 *** | 19.94 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.; Ai, Y.; Na, M.; Xu, S.; Li, X.; Zheng, X.; Zhou, J. Physiological and Biochemical Analysis of Selenium-Enriched Rice. Agronomy 2024, 14, 1715. https://doi.org/10.3390/agronomy14081715
Lu T, Ai Y, Na M, Xu S, Li X, Zheng X, Zhou J. Physiological and Biochemical Analysis of Selenium-Enriched Rice. Agronomy. 2024; 14(8):1715. https://doi.org/10.3390/agronomy14081715
Chicago/Turabian StyleLu, Tianyi, Yanmei Ai, Meng Na, Shangqi Xu, Xiaoping Li, Xianqing Zheng, and Jihai Zhou. 2024. "Physiological and Biochemical Analysis of Selenium-Enriched Rice" Agronomy 14, no. 8: 1715. https://doi.org/10.3390/agronomy14081715
APA StyleLu, T., Ai, Y., Na, M., Xu, S., Li, X., Zheng, X., & Zhou, J. (2024). Physiological and Biochemical Analysis of Selenium-Enriched Rice. Agronomy, 14(8), 1715. https://doi.org/10.3390/agronomy14081715