Effect of Water Tank Size and Supply on Greenhouse-Grown Kidney Beans Irrigated by Rainwater in Cold and Arid Regions of North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Rainwater Storage System
2.3. Data and Methods
2.3.1. Calculation of Rainwater Harvesting
2.3.2. Rainwater Tank Size
2.3.3. Crop Irrigation Stage
2.3.4. Statistical Analysis of Rainfall
2.3.5. Evaluation of Rainwater Tank Size and Production Effects under Different Water Supply Scenarios
2.3.6. Simulation Method
3. Results
3.1. Impact of Rainwater Tank Size on Water Demand Satisfaction for Kidney Bean Fields
3.2. Impact of Irrigation Frequency on The Water Demand Satisfaction Rate of Kidney Bean Fields
3.3. Effect of Rainwater Tank Size and Water Supply under Partial Annual Rainfall
3.4. Influence of An Expanding Water Source on Rainwater Tank Size and Water Supply
4. Discussion
4.1. Minimum Rainwater Tank Size of Water Storage Facilities
4.2. Enhanced Utilization of Multi-Year Precipitation Data
4.3. Selected Crop Irrigation Scheme
4.4. Supplementary Water Source to Ensure Stable Agricultural Production
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karimidastenaei, Z.; Avellán, T.; Sadegh, M.; Kløve, B.; Haghighi, A.T. Unconventional water resources: Global opportunities and challenges. Sci. Total Environ. 2022, 827, 154429. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Wang, X.; Wang, C.; Lu, M.; Chen, L.; Kong, L.; Lei, X.; Wang, H. Analysis of Agricultural Water Use Efficiency Based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation in Xinjiang, China. Water 2020, 12, 3266. [Google Scholar] [CrossRef]
- Wu, B.; Tian, F.; Zhang, M.; Piao, S.; Zeng, H.; Zhu, W.; Liu, J.; Elnashar, A.; Lu, Y. Quantifying global agricultural water appropriation with data derived from earth observations. J. Clean. Prod. 2022, 358, 131891. [Google Scholar] [CrossRef]
- Xinchun, C.; Mengyang, W.; Xiangping, G.; Yalian, Z.; Yan, G.; Nan, W.; Weiguang, W. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci. Total Environ. 2017, 609, 587–597. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Qiao, L.; An, N. Development status, problems and suggestions of organic vegetable industry in Bashang area of Hebei Province. China Veg. 2022, 5, 5–10. (In Chinese) [Google Scholar]
- Guo, F.-X.; Wang, Y.-P.; Hou, T.-T.; Zhang, L.-S.; Mu, Y.; Wu, F.-y. Variation of soil moisture and fine roots distribution adopts rainwater collection, infiltration promoting and soil anti-seepage system (RCIP-SA) in hilly apple orchard on the Loess Plateau of China. Agr. Water Manag. 2021, 244, 106573. [Google Scholar] [CrossRef]
- Xu, Y.; Mo, X.; Cai, Y.; Li, X. Analysis on groundwater table drawdown by land use and the quest for sustainable water use in the Hebei Plain in China. Agr. Water Manag. 2005, 75, 38–53. [Google Scholar] [CrossRef]
- Rahman, A.; Snook, C.; Haque, M.M.; Hajani, E. Use of design curves in the implementation of a rainwater harvesting system. J. Clean. Prod. 2020, 261, 121292. [Google Scholar] [CrossRef]
- Zhong, Q.; Tong, D.; Crosson, C.; Zhang, Y. A GIS-based approach to assessing the capacity of rainwater harvesting for addressing outdoor irrigation. Landsc. Urban Plan. 2022, 223, 104416. [Google Scholar] [CrossRef]
- Gu, X.-b.; Li, Y.-n.; Du, Y.-d.; Yin, M.-h. Ridge-furrow rainwater harvesting with supple-mental irrigation to improve seed yield and water use efficiency of winter oilseed rape (Brassica napus L.). J. Integr. Agr. 2017, 16, 1162–1172. [Google Scholar] [CrossRef]
- Jiang, Z.-y.; Li, X.-y.; Ma, Y.-j. Water and Energy Conservation of Rainwater Harvesting System in the Loess Plateau of China. J. Integr. Agr. 2013, 12, 1389–1395. [Google Scholar] [CrossRef]
- Islam, S.; Lefsrud, M.; Adamowski, J.; Bissonnette, B.; Busgang, A. Design, Construction, and Operation of a Demonstration Rainwater Harvesting System for Greenhouse Irrigation at McGill University, Canada. HortTechnology 2013, 23, 220–226. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Wu, P.; Deng, H. A new small-scale system of rainwater harvesting combined with irrigation for afforestation in mine area: Optimizing design and application. J. Environ. Manag. 2022, 322, 116129. [Google Scholar] [CrossRef] [PubMed]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Chen, M.; Kang, Y.; Li, W.; Li, D.; Cui, Y.; Khan, S.; Luo, Y. Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall. Agric. Water Manag. 2022, 260, 107285. [Google Scholar] [CrossRef]
- Demuzere, M.; Coutts, A.M.; Göhler, M.; Broadbent, A.M.; Wouters, H.; van Lipzig, N.P.M.; Gebert, L. The implementation of biofiltration systems, rainwater tanks and urban irrigation in a single-layer urban canopy model. Urban Clim. 2014, 10, 148–170. [Google Scholar] [CrossRef]
- Petit-Boix, A.; Devkota, J.; Phillips, R.; Vargas-Parra, M.V.; Josa, A.; Gabarrell, X.; Rieradevall, J.; Apul, D. Life cycle and hydrologic modeling of rainwater harvesting in urban neighborhoods: Implications of urban form and water demand patterns in the US and Spain. Sci. Total Environ. 2018, 621, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Li, F.; Feng, P.; Liu, C.; Wang, X. Rainwater harvesting and utilization in facility 657 agriculture and optimization of tomato irrigation stage. Trans. Chin. Soc. Agric. Eng. 2021, 37, 153–162. (In Chinese) [Google Scholar]
- Marco, Z.; Elena, A.; Anna, S.; Silvia, T.; Andrea, C. Spatio-temporal cross-validation to predict pluvial flood events in the Metro-politan City of Venice. J. Hydrol. 2022, 612, 128150. [Google Scholar] [CrossRef]
- Shadmehri Toosi, A.; Danesh, S.; Tousi, E.G.; Doulabian, S. Annual and seasonal reliability of urban rainwater harvesting system under climate change. Sustain. Cities Soc. 2020, 63, 102427. [Google Scholar] [CrossRef]
- Rashid, A.R.M.; Bhuiyan, M.A.; Pramanik, B.; Jayasuriya, N. Life cycle assessment of rain-water harvesting system components—To determine environmentally sustainable design. J. Clean. Prod. 2021, 326, 129286. [Google Scholar] [CrossRef]
- Qu, F.; Zhang, Q.; Jiang, Z.; Zhang, C.; Zhang, Z.; Hu, X. Optimizing irrigation and fertilization frequency for greenhouse cucumber grown at different air temperatures using a comprehensive evaluation model. Agr. Water Manag. 2022, 273, 107876. [Google Scholar] [CrossRef]
- Feng, Z.; Miao, Q.; Shi, H.; Feng, W.; Li, X.; Yan, J.; Liu, M.; Sun, W.; Dai, L.; Liu, J. Simulation of water balance and irrigation strategy of typical sand-layered farmland in the Hetao Irrigation District, China. Agr. Water Manag. 2023, 280, 108236. [Google Scholar] [CrossRef]
- Wan, S.; Kang, Y. Effect of drip irrigation frequency on radish (Raphanus sativus L.) growth and water use. Irrig. Sci. 2006, 24, 161–174. [Google Scholar] [CrossRef]
- Schuster-Wallace, C.; Dickson-Anderson, S.; Papalexiou, S.; Ganzouri, A.E. Design and Application of the Tank Simulation Model (TSM): Assessing the Ability of Rainwater Harvesting to Meet Domestic Water Demand. J. Environ. Inform. 2022, 40, 16–29. [Google Scholar] [CrossRef]
- Campisano, A.; Modica, C. Appropriate resolution timescale to evaluate water saving and retention potential of rainwater harvesting for toilet flushing in single houses. J. Hydroinform. 2015, 17, 331–346. [Google Scholar] [CrossRef]
- Feng, X.-y.; Pu, J.-x.; Liu, H.-j.; Wang, D.; Liu, Y.-h.; Qiao, S.-t.; Lei, T.; Liu, R.-h. Effect of fertigation frequency on soil nitrogen distribution and tomato yield under alternate partial root-zone drip irrigation. J. Integr. Agr. 2023, 22, 897–907. [Google Scholar] [CrossRef]
- Guang, J.; Shao, X.; Miao, Q.; Yang, X.; Gao, C.; Ding, F.; Yuan, Y. Effects of Irrigation Amount and Irrigation Frequency on Flue-Cured Tobacco Evapotranspiration and Water Use Efficiency Based on Three-Year Field Drip-Irrigated Experiments. Agronomy 2019, 9, 624. [Google Scholar] [CrossRef]
- Valcárcel, M.; Lahoz, I.; Campillo, C.; Martí, R.; Leiva-Brondo, M.; Roselló, S.; Cebol-la-Cornejo, J. Controlled deficit irrigation as a water-saving strategy for processing tomato. Sci. Hortic. 2020, 261, 108972. [Google Scholar] [CrossRef]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—A review. Agr. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, Y. Stormwater Capture Efficiency of Bioretention Systems. Water Resour. Manag. 2014, 28, 149–168. [Google Scholar] [CrossRef]
- GB/T50596; Rainwater Harvesting, Storage, and Utilization Project 2010. National Standard of the People’s Republic of China: Beijing, China, 2010. (In Chinese)
- Khaledi-Alamdari, M.; Majnooni-Heris, A.; Fakheri-Fard, A.; Russo, A. Probabilistic climate risk assessment in rainfed wheat yield: Copula approach using water requirement satisfaction index. Agr. Water Manag. 2023, 289, 108542. [Google Scholar] [CrossRef]
- Peel, M.C.; McMahon, T.A.; Finlayson, B.L. Variability of annual precipitation and its relationship to the El Niño–Southern Oscillation. J. Clim. 2002, 15, 545–551. [Google Scholar] [CrossRef]
- Qi, P.; Tang, X.; Xu, Y.J.; Cui, Z.; Sun, J.; Zhang, G.; Wu, Y.; Jiang, M. Optimizing environmental flow based on a new optimization model in balancing objectives among river ecology, water supply and power generation in a high-latitude river. J. Environ. Manag. 2023, 342, 118261. [Google Scholar] [CrossRef] [PubMed]
- Christina, M.; Jones, M.R.; Versini, A.; Mézino, M.; Le Mézo, L.; Auzoux, S.; Soulié, J.C.; Pos-er, C.; Gérardeaux, E. Impact of climate variability and extreme rainfall events on sugarcane yield gap in a tropical Island. Field Crop. Res. 2021, 274, 108326. [Google Scholar] [CrossRef]
- Masupha, T.E.; Moeletsi, M.E. The use of Water Requirement Satisfaction Index for assessing agricultural drought on rain-fed maize, in the Luvuvhu River catchment, South Africa. Agr. Water Manag. 2020, 237, 106142. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D. Crop evapotranspiration. In FAO Irrigation and Drainage Paper; Springer: Berlin/Heidelberg, Germany, 1998; p. 56. [Google Scholar]
- Sample, D.J.; Liu, J. Optimizing rainwater harvesting systems for the dual purposes of water supply and runoff capture. J. Clean. Prod. 2014, 75, 174–194. [Google Scholar] [CrossRef]
- Guizani, M. Storm Water Harvesting in Saudi Arabia: A Multipurpose Water Management Alternative. Water Resour. Manag. 2016, 30, 1819–1833. [Google Scholar] [CrossRef]
- Devkota, J.; Schlachter, H.; Apul, D. Life cycle based evaluation of harvested rainwater use in toilets and for irrigation. J. Clean. Prod. 2015, 95, 311–321. [Google Scholar] [CrossRef]
- Mermoud, A.; Tamini, T.D.; Yacouba, H. Impacts of different irrigation schedules on the water balance components of an onion crop in a semi-arid zone. Agr. Water Manag. 2005, 77, 282–295. [Google Scholar] [CrossRef]
- Abdulla, F.A.; Al-Shareef, A.W. Roof rainwater harvesting systems for household water supply in Jordan. Desalination 2009, 243, 195–207. [Google Scholar] [CrossRef]
- Nachshon, U.; Netzer, L.; Livshitz, Y. Land cover properties and rain water harvesting in urban environments. Sustain. Cities Soc. 2016, 27, 398–406. [Google Scholar] [CrossRef]
- Salem, H.M.; Valero, C.; Muñoz, M.Á.; Gil-Rodríguez, M.; Barreiro, P. Effect of reservoir tillage on rainwater harvesting and soil erosion control under a developed rainfall simulator. Catena 2014, 113, 353–362. [Google Scholar] [CrossRef]
- Li, X.-Y.; Gong, J.-D.; Wei, X.-H. In-situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China. J. Arid Environ. 2000, 46, 371–382. [Google Scholar] [CrossRef]
- Di Chiano, M.G.; Marchioni, M.; Raimondi, A.; Sanfilippo, U.; Becciu, G. Probabilistic Approach to Tank Design in Rainwater Harvesting Systems. Hydrology 2023, 10, 59. [Google Scholar] [CrossRef]
- Jing, X.; Zhang, S. Volume calculation and analysis of rainwater collection and utilization reservoir in Beijing. Water Resour. Prot. 2017, 33, 91–97. (In Chinese) [Google Scholar]
- Guan, X.; Jiang, P.; Meng, Y.; Qin, H.; Lv, H. Study on Production, Domestic and Ecological Benefits of Reservoir Water Supply Based on Emergy Analysis. Processes 2020, 8, 1435. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Shadeed, S. Superiority of water balance modelling for rainwater harvesting analysis and its application in deriving generalised equation for optimum tank size. J. Clean. Prod. 2022, 342, 130991. [Google Scholar] [CrossRef]
- Okoye, C.O.; Solyalı, O.; Akıntuğ, B. Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach. Resour. Conserv. Recy. 2015, 104, 131–140. [Google Scholar] [CrossRef]
- van der Wiel, K.; Bintanja, R. Contribution of climatic changes in mean and variability to monthly temperature and precipitation extremes. Commun. Earth Environ. 2021, 2, 1. [Google Scholar] [CrossRef]
- Ekwueme, B.; Agunwamba, J. Trend Analysis and Variability of Air Temperature and Rain-fall in Regional River Basins. Civil Eng. J. 2021, 7, 816–826. [Google Scholar] [CrossRef]
- Haque, M.M.; Rahman, A.; Samali, B. Evaluation of climate change impacts on rainwater harvesting. J. Clean. Prod. 2016, 137, 60–69. [Google Scholar] [CrossRef]
- Gidey, E.; Dikinya, O.; Sebego, R.; Segosebe, E.; Zenebe, A. Analysis of the long-term agricultural drought onset, cessation, duration, frequency, severity and spatial extent using Vegetation Health Index (VHI) in Raya and its environs, Northern Ethiopia. Environ. Syst. Res. 2018, 7, 13. [Google Scholar] [CrossRef]
- Ribeiro, A.F.S.; Russo, A.; Gouveia, C.M.; Páscoa, P. Modelling drought-related yield losses in Iberia using remote sensing and multiscalar indices. Theor. Appl. Climatol. 2019, 136, 203–220. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Y.; Zhang, M.; Zhang, T.; Wang, Y. Effect of agroclimatic resources change on 675 dry crops in Longdong Yuan. Chin. Agric. Sci. Bull. 2023, 39, 55–60. (In Chinese) [Google Scholar]
- Chang, J.; Kan, Y.; Wang, Y.; Huang, Q.; Chen, L. Conjunctive Operation of Reservoirs and Ponds Using a Simulation-Optimization Model of Irrigation Systems. Water Resour. Manag. 2017, 31, 995–1012. [Google Scholar] [CrossRef]
- Du, L.; Zheng, Z.; Li, T.; Zhang, X. Effects of irrigation frequency on transportation and accumulation regularity of greenhouse soil salt during different growth stages of pepper. Sci. Hortic. 2019, 256, 108568. [Google Scholar] [CrossRef]
- Puértolas, J.; Albacete, A.; Dodd, I.C. Irrigation frequency transiently alters whole plant gas exchange, water and hormone status, but irrigation volume determines cumulative growth in two herbaceous crops. Environ. Exp. Bot. 2020, 176, 104101. [Google Scholar] [CrossRef]
- Wang, F.-X.; Kang, Y.; Liu, S.-P. Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain. Agr. Water Manag. 2006, 79, 248–264. [Google Scholar] [CrossRef]
- Li, Y.-H.; Tung, C.-P.; Chen, P.-Y. Stormwater Management toward Water Supply at the Community Scale—A Case Study in Northern Taiwan. Sustainability 2017, 9, 1206. [Google Scholar] [CrossRef]
- Sadok, W.; Lopez, J.R.; Smith, K.P. Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant Cell Environ. 2021, 44, 2102–2116. [Google Scholar] [CrossRef] [PubMed]
- Kool, D.; Tong, B.; Tian, Z.; Heitman, J.L.; Sauer, T.J.; Horton, R. Soil water retention and hydraulic conductivity dynamics following tillage. Soil Till. Res. 2019, 193, 95–100. [Google Scholar] [CrossRef]
- Stahn, H.; Tomini, A. On conjunctive management of groundwater and rainwater. Resour. Energy Econ. 2017, 49, 186–200. [Google Scholar] [CrossRef]
- Yan, J.; Wu, Q.; Qi, D.; Zhu, J. Rice yield, water productivity, and nitrogen use efficiency responses to nitrogen management strategies under supplementary irrigation for rain-fed rice cultivation. Agr. Water Manag. 2022, 263, 107486. [Google Scholar] [CrossRef]
Stage | Start Date–End Date | Duration (d) | Irrigation Depth (1) (cm) | Irrigation Quota (2) (mm) | Unit Water Consumption (mm·d−1) |
---|---|---|---|---|---|
I | 6.08–6.26 | 19 | 20 | 11.4 | 0.6 |
II | 6.27–7.03 | 7 | 40 | 13.8 | 2.0 |
III | 7.04–7.12 | 9 | 40 | 18.8 | 2.1 |
IV | 7.13–7.22 | 10 | 40 | 31.0 | 3.1 |
V | 7.23–7.30 | 8 | 40 | 26.0 | 3.3 |
VI | 7.31–8.07 | 8 | 40 | 27.4 | 3.4 |
VII | 8.08–8.16 | 9 | 40 | 34.0 | 3.8 |
VIII | 8.17–8.25 | 9 | 40 | 31.9 | 3.5 |
IX | 8.26–9.03 | 9 | 40 | 31.3 | 3.5 |
Irrigation stage | 6.08–9.03 | 88 | 40 | 225.6 | 2.6 |
Growth Stage | Start Date–End Date | Day (d) | Ky(1) |
---|---|---|---|
Seeding stage | 6.08–7.03 | 26 | 0.2 |
Flowering—fruit stage | 7.04–7.22 | 19 | 1.1 |
Fruiting stage | 7.23–8.16 | 25 | 0.75 |
Picking stage | 8.17–9.03 | 18 | 0.6 |
Total time | 6.08–9.03 | 88 | 1.15 |
Item | Irrigation Stage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Stage | I | II | III | IV | V | VI | VII | VIII | IX | I–IX | |
Start date–End date (m.dd–m.dd) | 6.08–6.26 | 6.27–7.03 | 7.04–7.12 | 7.13–7.22 | 7.23–7.30 | 7.31–8.07 | 8.08–8.16 | 8.17–8.25 | 8.26–9.04 | 6.08–9.03 | |
Water demand (m3) | 2.7 | 3.3 | 4.5 | 7.4 | 6.2 | 6.6 | 8.2 | 7.7 | 7.5 | 54.1 | |
RWH volume (m3) | 7.7 | 3.8 | 5.4 | 6.8 | 6.1 | 4.5 | 4.9 | 5.1 | 2.7 | 47.0 | |
Supply rate (2) (%) | V1 | 292.1 | 241.3 | 177.1 | 107.4 | 118.6 | 109.8 | 63.0 | 63.9 | 67.9 | 89.8 |
V2 | 343.0 | 434.1 | 330.2 | 211.5 | 242.7 | 227.6 | 157.9 | 125.6 | 94.0 | 104.1 | |
Demand rate (3) (%) | V1 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 63.0 | 63.9 | 67.9 | 84.9 |
V2 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 94.0 | 99.2 | |
Water scarcity (m3) | V1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 2.8 | 2.4 | 8.2 |
V2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 | |
Water discharge (m3) | V1 | 5.0 | 0.5 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.4 |
V2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Yield reduction rate (%) | V1 | 0.0 | 0.0 | 10.8 | 20.5 | 29.1 | |||||
V2 | 0.0 | 0.0 | 0.0 | 1.8 | 1.8 |
Tank Size (m3) | Irrigation Times (Time) | Supply Rate (%) | Demand Rate (%) | Water Discharge (m3) | Water Scarcity (m3) | Yield Reduction Rate (%) |
---|---|---|---|---|---|---|
8.0 | 9.0 | 89.8 | 84.9 | 7.8 | 8.2 | 29.1 |
14.0 | 89.8 | 86.5 | 7.8 | 7.3 | 27.2 | |
20.0 | 89.8 | 87.3 | 7.8 | 6.9 | 27.1 | |
35.0 | 89.8 | 88.2 | 7.8 | 6.4 | 25.1 | |
88.0 | 89.8 | 89.4 | 7.8 | 5.7 | 22.7 | |
12.0 | 9.0 | 97.2 | 92.3 | 3.7 | 4.2 | 16.6 |
14.0 | 97.2 | 93.3 | 3.7 | 3.3 | 12.9 | |
20.0 | 97.2 | 94.7 | 3.7 | 2.9 | 11.3 | |
35.0 | 97.2 | 95.6 | 3.7 | 2.4 | 9.3 | |
88.0 | 97.2 | 96.8 | 3.7 | 1.7 | 6.8 | |
15.7 | 9.0 | 104.1 | 99.2 | 0.0 | 0.5 | 1.8 |
14.0 | 104.1 | 100.0 | 0.0 | 0.0 | 0.0 | |
20.0 | 104.1 | 100.0 | 0.0 | 0.0 | 0.0 | |
35.0 | 104.1 | 100.0 | 0.0 | 0.0 | 0.0 | |
88.0 | 104.1 | 100.0 | 0.0 | 0.0 | 0.0 |
Scenarios | Typical Year | Growth Rainfall (m3) | Water Storage (1) (m3) | Minimum Size (2) (m3) | Water Scarcity (m3) | Supply Rate (%) | Yield Reduction Rate (%) |
---|---|---|---|---|---|---|---|
Dry year | 1997 | 18.0 | 6.7 | 6.1 | 32.9 | 40.6 | 88.0 |
2002 | 30.1 | 11.0 | 17.2 | 14.4 | 67.7 | 48.5 | |
2022 | 33.6 | 3.2 | 8.4 | 22.7 | 58.7 | 74.9 | |
Normal year | 2000 | 43.2 | 15.9 | 20.4 | 3.8 | 97.2 | 14.8 |
2005 | 52.6 | 12.5 | 20.0 | 1.3 | 105.8 | 4.5 | |
2012 | 56.6 | 11.9 | 18.6 | 5.9 | 110.9 | 23.2 | |
Wet year | 1994 | 102.1 | 10.5 | 53.2 | 0.0 | 179.8 | 0.0 |
1995 | 87.9 | 4.6 | 33.5 | 0.0 | 146.6 | 0.0 | |
1998 | 60.8 | 19.4 | 41.4 | 0.0 | 131.3 | 0.0 |
Precipitation Statistical Method | Rainwater Tank Size (m3) | Supply Rate (%) | Demand Rate (%) | Water Scarcity (m3) | Water Discharge (m3) | Water (2) Inventory (m3) | Yield Reduction Rate (%) |
---|---|---|---|---|---|---|---|
25 years of mean daily precipitation | 15.7 | 104.1 | 100.0 | 0.0 | 0.0 | 2.2 | 0.0 |
20-year precipitation at 80% probability (3) | 8.0 | 80.8 | 78.7 | 11.5 | 17.7 | 1.8 | 41.1 |
9.0 | 83.2 | 80.9 | 10.4 | 16.4 | 1.9 | 36.7 | |
10.0 | 85.5 | 83.0 | 9.2 | 15.1 | 2.0 | 32.8 | |
12.0 | 89.7 | 86.6 | 7.3 | 12.8 | 2.4 | 29.0 | |
29.5 | 109.4 | 95.4 | 2.5 | 2.2 | 8.2 | 9.4 | |
53.2 | 113.4 | 95.4 | 2.5 | 0.0 | 10.4 | 9.4 | |
25 years of annual precipitation (4) | 8.0 | 75.5 | 73.8 | 14.2 | 15.5 | 1.6 | 48.3 |
9.0 | 77.8 | 75.9 | 13.1 | 14.3 | 1.7 | 44.5 | |
10.0 | 79.9 | 77.9 | 12.0 | 13.1 | 1.8 | 40.9 | |
12.0 | 83.9 | 81.4 | 10.1 | 10.9 | 2.0 | 39.9 | |
29.5 | 100.9 | 89.7 | 5.6 | 1.8 | 6.7 | 18.6 | |
53.2 | 104.1 | 89.7 | 5.6 | 0.0 | 8.5 | 18.6 |
Area (3) | Area (4) Ratio | Harvesting rate (%) | Stacking Water Collection in Sequence | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
10% Yield Reduction Rate | 15% Yield Reduction Rate | ||||||||||
Size (5) | Tank Size | Water Scarcity | Water Discharge | Inventory | Tank Size | Water Scarcity | Water Discharge | Inventory | |||
(m3) | (m3) | (m3) | (m3) | (m3) | (m3) | (m3) | (m3) | (m3) | |||
Shed | 1.0 | 85.0 | - | 20.3 | 2.8 | 5.9 | 4.9 | 17.0 | 3.8 | 8.0 | 3.8 |
Shed space | 0.2 | 75.0 | - | 15.4 | 2.8 | 16.4 | 4.6 | 13.5 | 3.9 | 18.4 | 3.7 |
Road | 0.1 | 75.0 | 22.0 | 14.5 | 2.7 | 20.7 | 4.7 | 13.0 | 3.6 | 22.5 | 4.0 |
Rooftop | 0.1 | 90.0 | 20.0 | 13.5 | 2.8 | 26.4 | 4.7 | 12.0 | 3.7 | 28.1 | 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Zhang, J.; Wang, Z.; Ran, J.; Han, Y.; Zhang, J.; Li, H.; Zhang, L. Effect of Water Tank Size and Supply on Greenhouse-Grown Kidney Beans Irrigated by Rainwater in Cold and Arid Regions of North China. Agronomy 2024, 14, 1767. https://doi.org/10.3390/agronomy14081767
Sun M, Zhang J, Wang Z, Ran J, Han Y, Zhang J, Li H, Zhang L. Effect of Water Tank Size and Supply on Greenhouse-Grown Kidney Beans Irrigated by Rainwater in Cold and Arid Regions of North China. Agronomy. 2024; 14(8):1767. https://doi.org/10.3390/agronomy14081767
Chicago/Turabian StyleSun, Mengmeng, Jizong Zhang, Zhihui Wang, Jingxin Ran, Yunjie Han, Jianheng Zhang, Huibin Li, and Lifeng Zhang. 2024. "Effect of Water Tank Size and Supply on Greenhouse-Grown Kidney Beans Irrigated by Rainwater in Cold and Arid Regions of North China" Agronomy 14, no. 8: 1767. https://doi.org/10.3390/agronomy14081767
APA StyleSun, M., Zhang, J., Wang, Z., Ran, J., Han, Y., Zhang, J., Li, H., & Zhang, L. (2024). Effect of Water Tank Size and Supply on Greenhouse-Grown Kidney Beans Irrigated by Rainwater in Cold and Arid Regions of North China. Agronomy, 14(8), 1767. https://doi.org/10.3390/agronomy14081767