Instance Segmentation of Lentinus edodes Images Based on YOLOv5seg-BotNet
Abstract
:1. Introduction
- (1)
- Innovative integration method: BoTNet, PANet, and VFL were integrated into YOLOv5seg for the first time, and a novel case segmentation technique was proposed, which improved the accuracy and speed of case segmentation of Lentinus edodes;
- (2)
- Specific domain optimization: Special optimization was carried out for the common complex situations in the cultivation process of Lentinus edodes (such as morphological changes, overlapping occlusion, etc.) so that the model showed higher robustness and stability when dealing with these problems;
- (3)
- Practical application verification: The effectiveness of the improved model in practical application is verified through experiments, which shows that the model not only improves the segmentation accuracy but also has significant advantages in real-time detection and decision support.
- (4)
- Data diversity: The samples were selected to cover Lentinus edodes of different shapes, sizes, and maturity, and multiple measurements and data enhancement were carried out to ensure the diversity and representativeness of the data and improve the generalization ability of the model in various environments;
- (5)
- Performance comparison: In a detailed comparison with existing methods (such as Mask RCNN, YOLCAT, YOLOv8, etc.), our method performs well in comprehensive performance and provides a more effective solution for Lentinus edodes instance segmentation.
2. Materials and Methods
2.1. Data Collection and Preprocessing
2.2. Network Design and Improvement
2.2.1. YOLOv5s Instance Segmentation
2.2.2. BoTNet
2.2.3. PANet
2.2.4. VFL
2.2.5. YOLOv5seg-BotNet
2.3. Experimental Environment and Parameter Settings
2.4. Evaluation Metrics
3. Results
3.1. Ablation Study
3.2. YOLOv5seg-BotNet Compared with Other Segmentation Models
3.3. YOLOv5seg-BotNet Compared with Results from Other Segmentation Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.E. Application value and prospect of mushroom. Mod. Food 2023, 29, 26–28. [Google Scholar]
- Yao, F.; Gao, H.; Wang, Z.H.; Yin, C.M.; Shi, D.F.; Zhang, J.; Fan, X.Z. Comparative analysis of active substances and in vitro activities of alcohol extracts from mushrooms with different textures. Food Res. Dev. 2023, 44, 28–33. [Google Scholar]
- Liu, F.; Zhang, M.Z.; Cao, B.; Ling, Y.Y.; Zhao, R.Y. Application and prospect analysis of MNP molecular markers in accurate identification of edible mushroom varieties. Fungal Res. 2024, 1–9. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Guo, L.L.; Chen, L.Y. Preliminary exploration of cultivating high-quality mushrooms using solid selenium-rich additives. Spec. Econ. Anim. Plants 2023, 26, 16–18. [Google Scholar]
- Shajin, F.H.; Aruna Devi, B.; Prakash, N.B.; Sreekanth, G.R.; Rajesh, P. Sailfish optimizer with Levy flight, chaotic and opposition-based multi-level thresholding for medical image segmentation. Soft Comput. 2023, 27, 12457–12482. [Google Scholar] [CrossRef]
- Elharrouss, O.; Hmamouche, Y.; Idrissi, A.K.; El Khamlichi, B.; El Fallah-Seghrouchni, A. Refined edge detection with cascaded and high-resolution convolutional network. Pattern Recognit. 2023, 138, 109361. [Google Scholar] [CrossRef]
- Sahu, K.; Minz, S. Adaptive fusion of K-means region growing with optimized deep features for enhanced LSTM-based multi-disease classification of plant leaves. Geocarto Int. 2023, 38, 2178520. [Google Scholar] [CrossRef]
- Chen, R.J.; Tang, W.Y.; Lv, W.G.; Li, D.Y. Multi-threshold segmentation of fruit depth images based on IMFO-Otsu. Mod. Agric. Equip. 2023, 44, 30–35. [Google Scholar]
- Sun, J.T.; Sun, Y.F.; Zhao, R.; Ji, Y.H.; Zhang, M.; Li, H. Tomato recognition method based on geometric morphology and iterative random circle. J. Agric. Mach. 2019, 50, 22–26+61. [Google Scholar]
- Ji, W.; Zhao, D.; Cheng, F.; Xu, B.; Zhang, Y.; Wang, J. Automatic recognition vision system guided for apple harvesting robot. Comput. Electr. Eng. 2012, 38, 1186–1195. [Google Scholar] [CrossRef]
- Zhang, J.; Trautman, D.; Liu, Y.; Bi, C.; Chen, W.; Ou, L.; Goebel, R. Achieving the Rewards of Smart Agriculture. Agronomy 2024, 14, 452. [Google Scholar] [CrossRef]
- Li, K.; Huang, J.; Song, W.; Wang, J.; Lv, S.; Wang, X. Automatic segmentation and measurement methods of living stomata of plants based on the CV model. Plant Methods 2019, 15, 67. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Shi, Y.; Ahmad, I. Design of smart citrus picking model based on Mask RCNN and adaptive threshold segmentation. PeerJ Comput. Sci. 2024, 10, e1865. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Yang, R.; Yu, C.; Lin, J.; Chen, W.; Wu, H.; Chen, X.; Lan, Y.; Wang, W. Citrus green fruit detection via improved feature network extraction. Front. Plant Sci. 2022, 13, 946154. [Google Scholar] [CrossRef]
- Shen, R.; Zhen, T.; Li, Z. Segmentation of Unsound Wheat Kernels Based on Improved Mask RCNN. Sensors 2023, 23, 3379. [Google Scholar] [CrossRef]
- Wang, D.; He, D. Apple detection and instance segmentation in natural environments using an improved Mask Scoring R-CNN Model. Front. Plant Sci. 2022, 13, 1016470. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, K.; Yang, L.; Zhang, D. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN. Comput. Electron. Agric. 2019, 163, 104846. [Google Scholar] [CrossRef]
- Wang, F.K.; Huang, Y.Q.; Huang, Z.C.; Shen, H.; Huang, C.; Qiao, X.; Qian, W.Q. MRUNet: A two-stage segmentation model for small insect targets in complex environments. J. Integr. Agric. 2023, 22, 1117–1130. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Zhu, D.L.; Yu, M.S.; Liang, M.F. Real-time instance segmentation of corn ears based on SwinT-YOLACT. Trans. Chin. Soc. Agric. Eng. 2023, 39, 164–172. [Google Scholar]
- Lawal, O.M. YOLOv5-LiNet: A lightweight network for fruits instance segmentation. PLoS ONE 2023, 18, e0282297. [Google Scholar] [CrossRef]
- Russell, B.C.; Torralba, A.; Murphy, K.P.; Freeman, W.T. LabelMe: A database and web-based tool for image annotation. Int. J. Comput. Vis. 2008, 77, 157–173. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, S.; Feng, K.; Qian, K.; Wang, Y.; Qin, S. Strawberry maturity recognition algorithm combining dark channel enhancement and YOLOv5. Sensors 2022, 22, 419. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.Q.; Qiao, J.F.; Wang, R.; Yu, H.L.; Wang, C.; Kerry, T.; Pan, H.Y. Intelligent diagnosis of northern corn leaf blight with deep learning model. J. Integr. Agric. 2022, 21, 1094–1105. [Google Scholar] [CrossRef]
- Patel, S.C.; Salot, P. Survey on Different Object Detection and Segmentation Methods. Int. J. Innov. Sci. Res. Technol. 2021, 6, 608–611. [Google Scholar]
- Kwon, D.J.; Lee, S. Car detection area segmentation using deep learning system. Int. J. Adv. Smart Converg. 2023, 12, 182–189. [Google Scholar]
- Vasanthi, P.; Mohan, L. Multi-Head-Self-Attention based YOLOv5X-transformer for multi-scale object detection. Multimed. Tools Appl. 2024, 83, 36491–36517. [Google Scholar] [CrossRef]
- Wang, K.; Liew, J.H.; Zou, Y.; Zhou, D.; Feng, J. Panet: Few-shot image semantic segmentation with prototype alignment. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9197–9206. [Google Scholar]
- Luo, Y.; Cao, X.; Zhang, J.; Guo, J.; Shen, H.; Wang, T.; Feng, Q. CE-FPN: Enhancing channel information for object detection. Multimed. Tools Appl. 2022, 81, 30685–30704. [Google Scholar] [CrossRef]
- Zarbakhsh, P.; Demirel, H. Low-rank sparse coding and region of interest pooling for dynamic 3D facial expression recognition. Signal Image Video Process. 2018, 12, 1611–1618. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Dayoub, F.; Sunderhauf, N. Varifocalnet: An iou-aware dense object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 8514–8523. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9157–9166. [Google Scholar]
- Sohan, M.; Sai Ram, T.; Reddy, R.; Venkata, C. A review on yolov8 and its advancements. In Algorithms for Intelligent Systems, Proceedings of the International Conference on Data Intelligence and Cognitive Informatics, Tirunelveli, India, 18–20 November 2024; Springer: Singapore, 2024; pp. 529–545. [Google Scholar]
- Fan, Z.; Sun, N.; Qiu, Q.; Li, T.; Feng, Q.; Zhao, C. In situ measuring stem diameters of maize crops with a high-throughput phenotyping robot. Remote Sens. 2022, 14, 1030. [Google Scholar] [CrossRef]
- Song, C.Y.; Zhang, F.; Li, J.S.; Xie, J.Y.; Yang, C.; Zhou, H.; Zhang, J.X. Detection of maize tassels for UAV remote sensing image with an improved YOLOX Model. J. Integr. Agric. 2023, 22, 1671–1683. [Google Scholar] [CrossRef]
- Li, P.; Zheng, J.; Li, P.; Long, H.; Li, M.; Gao, L. Tomato maturity detection and counting model based on MHSA-YOLOv8. Sensors 2023, 23, 6701. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhao, L.; Wang, Z.; Zhang, J.; Chen, G. Detection and Counting of Small Target Apples under Complicated Environments by Using Improved YOLOv7-tiny. Agronomy 2023, 13, 1419. [Google Scholar] [CrossRef]
- Liu, H.; Sun, F.; Gu, J.; Deng, L. SF-YOLOv5: A lightweight small object detection algorithm based on improved feature fusion mode. Sensors 2022, 22, 5817. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Zhao, Y.; Zheng, Z. Novel Recursive BiFPN Combining with Swin Transformer for Wildland Fire Smoke Detection. Forests 2022, 13, 2032. [Google Scholar] [CrossRef]
- Liu, X.; Li, G.; Chen, W.; Liu, B.; Chen, M.; Lu, S. Detection of dense Citrus fruits by combining coordinated attention and cross-scale connection with weighted feature fusion. Appl. Sci. 2022, 12, 6600. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Zhou, Y.; Sun, S.; Zhang, H.; Wang, Y. Automatic detection of indoor occupancy based on improved YOLOv5 model. Neural Comput. Appl. 2023, 35, 2575–2599. [Google Scholar] [CrossRef]
- Cao, X.; Su, Y.; Geng, X.; Wang, Y. YOLO-SF: YOLO for Fire Segmentation Detection; IEEE Access: New York, NY, USA, 2023. [Google Scholar]
Parameter Category | Parameter Setting |
---|---|
Image-size | 640 × 640 |
Epochs | 100 |
Batch-size | 8 |
lr | 0.01 |
Momentum | 0.937 |
Optimizer | SGD |
Early stop | 10 |
Models | P (%) | R (%) | Mask_AP (%) | F1-Score (%) | FPS |
---|---|---|---|---|---|
YOLOv5seg | 95.21 | 91.19 | 91.34 | 93.15 | 30.25 |
YOLOv5seg-MHSA | 96.47 | 91.03 | 92.79 | 93.67 | 32.59 |
YOLOv5seg-PANet | 96.82 | 92.81 | 93.65 | 94.77 | 27.42 |
YOLOv5seg-VFL | 97.10 | 94.58 | 93.73 | 95.82 | 31.63 |
YOLOv5seg-BotNet | 97.58 | 95.74 | 95.90 | 96.65 | 32.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Su, X.; Zhou, L.; Yu, H.; Zhang, J. Instance Segmentation of Lentinus edodes Images Based on YOLOv5seg-BotNet. Agronomy 2024, 14, 1808. https://doi.org/10.3390/agronomy14081808
Xu X, Su X, Zhou L, Yu H, Zhang J. Instance Segmentation of Lentinus edodes Images Based on YOLOv5seg-BotNet. Agronomy. 2024; 14(8):1808. https://doi.org/10.3390/agronomy14081808
Chicago/Turabian StyleXu, Xingmei, Xiangyu Su, Lei Zhou, Helong Yu, and Jian Zhang. 2024. "Instance Segmentation of Lentinus edodes Images Based on YOLOv5seg-BotNet" Agronomy 14, no. 8: 1808. https://doi.org/10.3390/agronomy14081808
APA StyleXu, X., Su, X., Zhou, L., Yu, H., & Zhang, J. (2024). Instance Segmentation of Lentinus edodes Images Based on YOLOv5seg-BotNet. Agronomy, 14(8), 1808. https://doi.org/10.3390/agronomy14081808