A Meta-Analysis of 67 Studies on the Control of Grape Sour Rot Revealed Interesting Perspectives for Biocontrol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database of Studies
2.2. Meta-Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hewstone, N.; Valenzuela, J.; Muñoz, C. Nueva variedad de uva de mesa. Agric.-Cult. Tec. 2007, 67, 201–204. [Google Scholar]
- Steel, C.C.; Blackman, J.W.; Schmidtke, L.M. Grapevine bunch rots: Impacts on wine composition, quality, and potential procedures for the removal of wine faults. J. Agric. Food Chem. 2013, 61, 5189–5206. [Google Scholar]
- Nally, M.C.; Pesce, V.M.; Maturano, Y.P.; Toro, M.E.; Combina, M.; Castellanos de Figueroa, L.I.; Vazquez, F. Biocontrol of fungi isolated from sour rot infected table grapes by Saccharomyces and other yeast species. Postharvest Biol. Technol. 2013, 86, 456–462. [Google Scholar]
- Barata, A.; Campo, E.; Malfeito-Ferreira, M.; Loureiro, V.; Cacho, J.; Ferreira, V. Analytical and sensorial characterization of the aroma of wines produced with sour rotten grapes using GC-O and GC-MS: Identification of key aroma compounds. J. Agric. Food Chem. 2011, 59, 2543–2553. [Google Scholar]
- Nigro, F.; Schena, L.; Ligorio, A.; Pentimone, I.; Ippolito, A.; Salerno, M.G. Control of table grape storage rots by pre-harvest applications of salts. Postharvest Biol. Technol. 2006, 42, 142–149. [Google Scholar]
- Oriolani, E.J.A.; Rodríguez, M.C.; Combina, M. Complejo parasitario de la podredumbre ácida de los racimos de la vid, en Mendoza y San Juan Argentina. Congr. Latinoam. Vitic. Enol. 2007, 11, 26–30. [Google Scholar]
- Wei, Y.; Wang, C.; Zhao, X.; Shang, Q.; Liu, Z. Identification and biological characteristics of the pathogenic sf-19 strain of grape sour rot from Beijing. Phytopathology 2015, 105, 147. [Google Scholar]
- Gravot, E.; Blancard, D.; Fermaud, M.; Lonvaud, A.; Joyeux, A. Sour rot. I: Etiology. Research into the causes of this form of rot of grapes in Bordeaux vineyards. Phytoma 2001, 543, 36–39. [Google Scholar]
- Hall, M.E.; Loeb, G.M.; Wilcox, W.F. Control of sour rot using chemical and canopy management techniques. Am. J. Enol. Vitic. 2018, 69, 342–350. [Google Scholar]
- Bisiach, M.; Minervini, G.; Zerbetto, F. Possible integrated control of grapevine sour rot. Vitis 1986, 25, 118–128. [Google Scholar]
- Guerzoni, E.; Marchetti, R. Analysis of yeast flora associated with grape sour rot and of the chemical disease markers. Appl. Environ. Microbiol. 1987, 53, 571–576. [Google Scholar] [PubMed]
- Barata, A.; González, S.; Malfeito-Ferreira, M.; Querol, A.; Loureiro, V. Sour rot damaged grapes are sources of wine spoilage yeasts. FEMS Yeast Res. 2008, 8, 1008–1017. [Google Scholar]
- Hall, M.E.; Loeb, G.M.; Cadle-Davidson, L.; Evans, K.J.; Wilcox, W.F. Grape sour rot: A four-way interaction involving the host, yeast, acetic acid bacteria, and insects. Phytopathology 2018, 108, 1429–1442. [Google Scholar]
- Marchetti, R.; Guerzoni, M.E.; Gentile, M. Research on the etiology of a new disease of grapes: Sour rot. Vitis 1984, 23, 55–65. [Google Scholar]
- Gadoury, D.M.; Seem, R.C.; Wilcox, W.F.; Henick-Kling, T.; Conterno, L.; Day, A.; Ficke, A. Effects of diffuse colonization of grape berries by Uncinula necator on bunch rots, berry microflora, and juice and wine quality. Phytopathology 2007, 97, 1356–1365. [Google Scholar]
- Moschos, T. Yield loss quantification and assessment of economic injury level for the anthophagous generation of the European grapevine moth Lobesia botrana Den. Et Schiff. (Lepidoptera: Tortricidae). Int. J. Pest Manag. 2005, 51, 81–89. [Google Scholar]
- Matsuura, M.; Yamane, S. Biology of the Vespine Wasps; Springer: Berlin, Germany, 1990. [Google Scholar]
- Ioriatti, C.; Guzzon, R.; Anfora, G.; Ghidoni, F.; Mazzoni, V.; Villegas, T.R.; Dalton, D.T.; Walton, V.M. Drosophila suzukii (Diptera: Drosophilidae) contributes to the development of sour rot in grape. J. Econ. Entomol. 2018, 111, 283–292. [Google Scholar]
- Pinto, L.; Malfeito-Ferreira, M.; Quintieri, L.; Silva, A.C.; Baruzzi, F. Growth and metabolite production of a grape sour rot yeast-bacterium consortium on different carbon sources. Int. J. Food Microbiol. 2019, 296, 65–74. [Google Scholar]
- Barata, A.; Santos, S.C.; Malfeito-Ferreira, M.; Loureiro, V. New insights into the ecological interaction between grape berry microorganisms and Drosophila flies during the development of sour rot. Microb. Ecol. 2012, 64, 416–430. [Google Scholar] [PubMed]
- Crandall, S.G.; Spychalla, J.; Crouch, U.T.; Acevedo, F.E.; Naegele, R.P.; Miles, T.D. Rotting grapes don’t improve with age: Cluster rot disease complexes, management, and future prospects. Plant Dis. 2022, 106, 2013–2025. [Google Scholar]
- Brischetto, C.; Rossi, V.; Fedele, G. Knowledge gaps on grape sour rot inferred from a systematic literature review. Front. Plant Sci. 2024, 15, 1415379. [Google Scholar] [CrossRef]
- Stapleton, J.J.; Grant, R.S. Leaf removal for nonchemical control of the summer bunch rot complex of wine grapes in the San Joaquin valley. Plant Dis. 1992, 76, 205–208. [Google Scholar]
- Tjamos, S.E.; Antoniou, P.P.; Kazantzidou, A.; Antonopoulos, D.F.; Papageorgiou, I.; Tjamos, E.C. Aspergillus niger and Aspergillus carbonarius in Corinth raisin and wine-producing vineyards in Greece: Population composition, ochratoxin A production and chemical control. J. Phytopathol. 2004, 152, 250–255. [Google Scholar]
- Duncan, R.A.; Stapleton, J.J.; Leavitt, G.M. Population dynamics of epiphytic mycoflora and occurrence of bunch rots of wine grapes as influenced by leaf removal. Plant Pathol. 1995, 44, 956–965. [Google Scholar]
- Sholberg, P.L.; O’gorman, D.T.; Haag, P.D. Identification and control of grape sour rot causal agents in British Columbia. Can. J. Plant Pathol. 2009, 31, 498–499. [Google Scholar]
- Vogel, A.; Breeden, S.; Brannen, P.; Blaauw, B.; Hickey, C. Grape Sour Rot. In UGA Cooperative Extension Circular 1212; University of Georgia Cooperative Extension Service: Athens, GA, USA, 2020. [Google Scholar]
- Madden, L.V.; Piepho, H.P.; Paul, P.A. Statistical models and methods for network meta-analysis. Phytopathology 2016, 106, 792–806. [Google Scholar]
- Madden, L.V.; Paul, P.A. Meta-Analysis for evidence synthesis in plant pathology: An overview. Phytopathology 2011, 101, 16–30. [Google Scholar]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Cooper, H.; Hedges, L.V. Research synthesis as a scientific process. In The Handbook of Research Rynthesis and Meta-Analysis, 2nd ed.; Cooper, H., Hedges, L.V., Valentine, J.C., Eds.; SAGE: Thousand Oaks, CA, USA, 2009; pp. 3–16. [Google Scholar]
- Hunter, J.E.; Schmidt, F.L. Methods of Meta-Analysis: Correcting Error and Bias in Research Findings, 2nd ed.; SAGE Inc.: Thousand Oaks, CA, USA, 2004. [Google Scholar]
- Battilani, P.; Pietri, A. Ochratoxin A in Grapes and Wine. Mycotoxins in Plant Disease: Under the Aegis of COST Action 835 ‘Agriculturally Important Toxigenic Fungi 1998–2003’, EU Project (QLK 1-CT-1998-01380), and ISPP ‘Fusarium Committee’; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002; pp. 639–643. [Google Scholar]
- Ojiambo, P.S.; Scherm, H. Biological and application-oriented factors influencing plant disease suppression by biological control: A meta-analytical review. Phytopathology 2006, 96, 1168–1174. [Google Scholar]
- Schena, L.; Nigro, F.; Soleti Ligorio, V.; Yaseen, T.; Ippolito, A.; El Ghaouth, A. Biocontrol activity of bio-coat and biocure against postharvest rots of table grapes and sweet cherries. Acta Hortic. 2005, 682, 2115–2120. [Google Scholar]
- Dimakopoulou, M.; Tjamos, S.E.; Antoniou, P.P.; Pietri, A.; Battilani, P.; Avramidis, N.; Markakis, E.A.; Tjamos, E.C. Phyllosphere grapevine yeast Aureobasidium pullulans reduces Aspergillus carbonarius (sour rot) incidence in wine-producing vineyards in Greece. Biol. Control 2008, 46, 158–165. [Google Scholar]
- Calvo-Garrido, C.; Viñas, I.; Elmer, P.A.G.; Usall, J.; Teixidó, N. Candida sake CPA-1 and other biologically based products as potential control strategies to reduce sour rot of grapes. Lett. Appl. Microbiol. 2013, 57, 356–361. [Google Scholar] [PubMed]
- Calzarano, F.; Valentini, G.; Arfelli, G.; Seghetti, L.; Manetta, A.C.; Metruccio, E.G.; Di Marco, S. Activity of Italian natural chabasite-rich zeolitites against grey mould, sour rot and grapevine moth, and effects on grape and wine composition. Phytopathol. Mediterr. 2019, 58, 307–322. [Google Scholar]
- Carbó, A.; Torres, R.; Usall, J.; Marín, A.; Chiralt, A.; Teixidó, N. Novel film-forming formulations of the biocontrol agent Candida sake CPA-1: Biocontrol efficacy and performance at field conditions in organic wine grapes. Pest Manag. Sci. 2019, 75, 959–968. [Google Scholar]
- Calderone, F.; Vitale, A.; Panebianco, S.; Lombardo, M.F.; Cirvilleri, G. COS-OGA applications in Organic Vineyard manage major airborne diseases and maintain postharvest quality of wine grapes. Plants 2022, 11, 1763. [Google Scholar] [CrossRef] [PubMed]
- Calzarano, F.; Seghetti, L.; Pagnani, G.; Di Marco, S. Italian zeolitites in the control of grey mould and sour rot and their effect on leaf reflectance, grape and wine. Agriculture 2020, 10, 580. [Google Scholar] [CrossRef]
- McLaughlin, R.J.; Wilson, C.L.; Droby, S.; Ben-Arie, R.; Chalutz, E. Biological Control of Postharvest Diseases of Grape, Peach, and Apple with the Yeasts Kloeckera apiculata and Candida guilliermondii. Plant Dis. 1992, 76, 470–473. [Google Scholar]
- Fiori, S.; Urgeghe, P.P.; Hammami, W.; Razzu, S.; Jaoua, S.; Migheli, Q. Biocontrol activity of four non- and low-fermenting yeast strains against Aspergillus carbonarius and their ability to remove ochratoxin A from grape juice. Int. J. Food Microbiol. 2014, 189, 45–50. [Google Scholar]
- Paul, P.A.; Lipps, P.E.; Hershman, D.E.; McMullen, M.P.; Draper, M.A.; Madden, L.V. Efficacy of triazole-based fungicides for Fusarium head blight and deoxynivalenol control in wheat: A multivariate meta-analysis. Phytopathology 2008, 98, 999–1011. [Google Scholar]
- González-Domínguez, E.; Fedele, G.; Caffi, T.; Delière, L.; Sauris, P.; Gramaje, D.; Ramos-Saez de Ojer, J.L.; Díaz-Losada, E.; Díez-Navajas, A.M.; Bengoa, P.; et al. A network meta-analysis provides new insight into fungicide scheduling for the control of Botrytis cinerea in vineyards. Pest Manag. Sci. 2019, 75, 324–332. [Google Scholar]
- Paul, P.A.; Lipps, P.E.; Hershman, D.E.; McMullen, M.P.; Draper, M.A.; Madden, L.V. A quantitative review of tebuconazole effect on Fusarium head blight and deoxynivalenol content in wheat. Phytopathology 2007, 97, 211–220. [Google Scholar]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar]
- CoreTeam, R. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar]
- Jackson, D.; White, I.R.; Riley, R.D. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. Stat. Med. 2012, 31, 3805–3820. [Google Scholar]
- Ngugi, H.K.; Esker, P.D.; Scherm, H. Meta-analysis to determine the effects of plant disease management measures: Review and case studies on soybean and apple. Phytopathology 2011, 101, 31–41. [Google Scholar]
- Zouhair, S.; Qjidaa, S.Q.; Selouane, A.; Bouya, D.; Decock, C.; Bouseta, A. Effect of five fungicides on growth and ochratoxin A production by two Aspergillus carbonarius and Aspergillus niger isolated from Moroccan grapes. SAJEB 2014, 4, 118–126. [Google Scholar]
- Laaziz, A.; Qjidaa, S.; El Hammoudi, Y.E.; Hajjaji, A.; Bouseta, A. Chemical control of fungal growth and ochratoxin A production by Aspergillus isolated from Moroccan grapes. S. Asian J. Exp. Biol. 2017, 7, 84–91. [Google Scholar]
- Gao, F.; Chen, J.; Xiao, J.; Cheng, W.; Zheng, X.; Wang, B.; Shi, X. Microbial community composition on grape surface controlled by geographical factors of different wine regions in Xinjiang, China. Food Res. Int. 2019, 122, 348–360. [Google Scholar]
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Anfora, G. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot. 2017, 97, 70–84. [Google Scholar]
- Rossi, V.; Sperandio, G.; Caffi, T.; Simonetto, A.; Gilioli, G. Critical success factors for the adoption of decision tools in IPM. Agronomy 2019, 9, 710. [Google Scholar] [CrossRef]
- Pertot, I.; Giovannini, O.; Benanchi, M.; Caffi, T.; Rossi, V.; Mugnai, L. Combining biocontrol agents with different mechanisms of action in a strategy to control Botrytis cinerea on grapevine. Crop Prot. 2017, 97, 85–93. [Google Scholar]
- Zoecklein, B.W.; Wolf, T.K.; Duncan, N.W.; Judge, J.M.; Cook, M.K. Effects of fruit zone leaf removal on yield, fruit composition, and fruit rot incidence of Chardonnay and White Riesling (Vitis vinifera L.) grapes. Am. J. Enol. Vitic. 1992, 43, 139–148. [Google Scholar]
- McFadden-Smith, W.; Gubler, W.D. Sour Rot. In Compendium of Grape Diseases, Disorders, and Pests, 2nd ed; Wilcox, W.F., Gubler, W.D., Uyemoto, J.K., Eds.; APS Press: St. Paul, MN, USA, 2015; pp. 87–90. [Google Scholar]
- Wurms, K.; Chee, A.; Elmer, P.; Agnew, R.; Wood, P.; Chee, A.A. Developing new biologically based products for control of botrytis bunch rot. Part 1: Developing a new natural product for mid-season botrytis control–NP2 moves closer to the market. Wine Vitic. J. 2011, 26, 64–72. [Google Scholar]
- Jackson, A.M.; Whipps, J.M.; Lynch, J.M. Effects of temperature, pH and water potential on growth of four fungi with disease biocontrol potential. World J. Microbiol. Biotechnol. 1991, 7, 494–501. [Google Scholar]
- Fedele, G.; González-Domínguez, E.; Rossi, V. Influence of environment on the biocontrol of Botrytis cinerea: A systematic literature review. In How Research Can Stimulate the Development of Commercial Biological Control Against Plant Diseases; De Cal, A., Melgarejo, P., Magan, N., Eds.; Springer Nature: Switzerland, 2020; pp. 61–82. [Google Scholar]
- Calvo-Garrido, C.; Viñas, I.; Usall, J.; Rodríguez-Romera, M.; Ramos, M.C.; Teixidó, N. Survival of the biological control agent Candida sake CPA-1 on grapes under the influence of abiotic factors. J. Appl. Microbiol. 2014, 117, 800–811. [Google Scholar]
- Altieri, V.; Battilani, P.; Camardo Leggieri, M.; Fedele, G.; Ji, T.; Rossi, V.; Salotti, I. Current situation and prospective for effective biocontrol of main grape diseases. In Advances in Bioprotection of Plants Against Diseases; Sharma, S., Minshad, A., Eds.; BDS Publishing: Cambridge, UK, 2023; in press. [Google Scholar]
- Bish, D.; Ming, D. Natural Zeolites: Occurrence, Prop- Erties, Applications, 45; Walter de Gruyter GmbH & Co. KG: Berlin, Germany, 2018; p. 69. [Google Scholar]
- Ferreira, L.; Fonseca, A.M.; Botelho, G.; Aguiar, C.A.; Neves, I.C. Antimicrobial activity of faujasite zeolites doped with silver. Micropor. Mesopor. Mater. 2012, 160, 126–132. [Google Scholar]
- Septommy, C.; Sa’adah, N.; Mu’arofah, B. The effect of natural zeolite (Ag-zeolite) modified with silver against the inhibition of Candida albicans. JDS Dent. Soc. 2020, 5, 56–60. [Google Scholar]
- Alswat, A.A.; Ahmad, M.B.; Hussein, M.Z.; Ibrahim, N.A.; Saleh, T.A. Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. J. Mater. Sci. Technol. 2017, 33, 889–896. [Google Scholar]
- Savi, G.D.; Cardoso, W.A.; Furtado, B.G.; Bortolotto, T.; Da Agostin, L.O.V.; Nones, J.; Zanoni, E.T.; Montedo, O.R.K.; Angioletto, E. New ion-exchanged zeolite derivatives: Antifungal and antimycotoxin properties against Aspergillus flavus and aflatoxin b1. Mater. Res. Express 2017, 4, 085401. [Google Scholar]
- Nikolov, A.; Dobreva, L.; Danova, S.; Miteva-Staleva, J.; Krumova, E.; Rashev, V.; Vilhelmova-Ilieva, N. Natural and modified zeolite clinoptilolite with antimicrobial properties: A review. Acta Microbiol. Bulgarica 2023, 39, 147–161. [Google Scholar]
- Dutta, P.; Wang, B. Zeolite-supported silver as antimi- crobial agents. Coord. Chem. Rev. 2019, 383, 1–29. [Google Scholar]
- Panayotova, M.; Mintcheva, N.; Gemishev, O.; Tyuliev, G.; Gicheva, G.; Djerahov, L. Preparation and antimicrobial properties of silver nanoparticles supported by natural zeolite clinoptilolite. Bulg. Chem. Commun. 2018, 50, 211–218. [Google Scholar]
- Nikolov, A.; Doneva, L.; Danova, S.; Miteva-Staleva, J.; Kru-Mova, E.; Rashev, V.; Vilhelmova-Ilieva, N. Modified natural zeolite clinoptilolite with antibacterial, antifungal and antiviral properties. In Proceedings of the EUROCLAY 2023. International Conference of European Clay Groups Association, Bari, Italy, 24–27 July 2023. [Google Scholar]
- De Smedt, C.; Someus, E.; Spanoghe, P. Potential and actual uses of zeolites in crop protection. Pest Manag. Sci. 2015, 71, 1355–1367. [Google Scholar]
- Polat, İ.; Ünlü, A.; Keçeci, M.; Özdemir, M.; Öztop, A.; Çalışkan, S. Efficiency of zeolite as alternative product for controlling downy mildew (Plasmopara viticola) in table grape. J. Turk. Phytopathol. 2018, 47, 93–103. [Google Scholar]
- Calzarano, F.; Seghetti, L.; Pagnani, G.; Metruccio, E.G.; Di Marco, S. Control of grapevine downy mildew by an Italian copper chabasite-rich Zeolitite. Agronomy 2022, 12, 1528. [Google Scholar] [CrossRef]
- La Torre, A.; Righi, L.; Iovino, V.; Battaglia, V. Evaluation of copper alternative products to control grape downy mildew in organic farming. J. Plant Pathol. 2019, 101, 1005–1012. [Google Scholar]
- Bortolotti, P.P.; Nannini, R. Trials Against Botrytis cinerea Through the Use of Different Active Substances, with Particular Attention to Natural Products. In Atti, Giornate Fitopatologiche, Chianciano Terme (Siena), 8–11 Marzo 2016, Volume Secondo; Alma Mater Studiorum, Universitá di Bologna: Bologna, Italy, 2016; pp. 489–495. [Google Scholar]
- Porter, L.L. Bicarbonate Inhibition of Select Phytopathogenic Fungi: Mechanistic Studies and Disease Control Implications; Cornell University: Ithaca, NY, USA, 1993. [Google Scholar]
- Deliopoulos, T.; Kettlewell, P.S.; Hare, M.C. Fungal disease suppression by inorganic salts: A review. Crop Prot. 2010, 29, 1059–1075. [Google Scholar]
- Smilanick, J.L.; Mansour, M.F.; Margosan, D.A.; Gabler, F.M.; Goodwine, W.R. Influence of pH and NaHCO3 on effectiveness of imazalil to inhibit germination of Penicillium digitatum and to control postharvest green mold on citrus fruit. Plant Dis. 2005, 89, 640–648. [Google Scholar]
- Venditti, T.; Molinu, M.G.; Dore, A.; Agabbio, M.; D’hallewin, G. Sodium carbonate treatment induces scoparone accumulation, structural changes, and alkalinization in the albedo of wounded citrus fruits. J. Agric. Food Chem. 2005, 53, 3510–3518. [Google Scholar]
- Türkkan, M.; Özcan, M.; Erper, İ. Antifungal effect of carbonate and bicarbonate salts against Botrytis cinerea, the casual agent of grey mould of kiwifruit. Akad. Ziraat Derg. 2017, 6, 107–114. [Google Scholar]
- Youssef, K.; Sanzani, S.M.; Ligorio, A.; Ippolito, A.; Terry, L.A. Sodium carbonate and bicarbonate treatments induce resistance to postharvest green mould on citrus fruit. Postharvest Biol. Technol. 2014, 87, 61–69. [Google Scholar]
- Qin, X.; Xiao, H.; Xue, C.; Yu, Z.; Yang, R.; Cai, Z.; Si, L. Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biol. Technol. 2015, 100, 160–167. [Google Scholar]
- Corral, L.G.; Post, L.S.; Montville, T.J. Antimicrobial activity of sodium bicarbonate: A research note. J. Food Sci. 1988, 53, 981–982. [Google Scholar]
- Pretorius, I.S. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 2000, 16, 675–729. [Google Scholar] [PubMed]
- Varela, C.; Borneman, A.R. Yeast found in vineyards and wineries. Yeast 2017, 34, 111–128. [Google Scholar]
- Chavan, P.; Mane, S.; Kulkarni, G.; Shaikh, S.; Ghormade, V.; Nerkar, D.P.; Shouche, Y.; Deshpande, M.V. Natural yeast flora of different varieties of grapes used for wine making in India. Food Microbiol. 2009, 26, 801–808. [Google Scholar]
- Elad, Y.; Köhl, J.; Fokkema, N.J. Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic yeasts. Phytopathology 1994, 84, 1193–1200. [Google Scholar]
- Köhl, J.; Molhoek, W.M.L.; Van der Plas, C.H.; Fokkema, N.J. Effect of Ulocladium atrum and other antagonists on sporulation of Botrytis cinerea on dead lily leaves exposed to field conditions. Phytopathology 1995, 85, 393–400. [Google Scholar]
- Fokkema, N.J. The role of saprophytic fungi in antagonism against Drechslera sorokiniana (Helminthosporium sativum) on agar plates and on rye leaves with pollen. Physiol. Plant Pathol. 1973, 3, 195–205. [Google Scholar]
- Lima, G.; Ippolito, A.; Nigro, F.; Salerno, M. Effectiveness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots. Postharvest Biol. Technol. 1997, 10, 169–178. [Google Scholar]
- Raspor, P.; Miklic-Milek, D.; Avbelj, M.; Cadez, N. Biocontrol of grey mould disease on grape caused by Botrytis cinerea with autochthonous yeasts. Food Technol. Biotechnol. 2010, 48, 336–343. [Google Scholar]
- Castoria, R.; De Curtis, F.; Lima, G.; Caputo, L.; Pacifico, S.; De Cicco, V. Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: Study on its modes of action. Postharvest Biol. Technol. 2001, 22, 7–17. [Google Scholar]
- Filonow, A.B.; Vishniac, H.S.; Anderson, J.A.; Janisiewicz, W.J. Biological control of Botrytis cinerea in apple by yeasts from various habitats and their putative mechanisms of antagonism. Biol. Control 1996, 7, 212–220. [Google Scholar]
- Ippolito, A.; El Ghaouth, A.; Wilson, C.L.; Wisniewski, M. Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biol. Technol. 2000, 19, 265–272. [Google Scholar]
- Kalogiannis, S.; Tjamos, S.E.; Stergiou, A.; Antoniou, P.P.; Ziogas, B.N.; Tjamos, E.C. Selection and evaluation of phyllosphere yeasts as biocontrol agents against grey mould of tomato. Eur. J. Plant Pathol. 2006, 116, 69–76. [Google Scholar]
- Di Canito, A.; Mateo-Vargas, M.A.; Mazzieri, M.; Cantoral, J.; Foschino, R.; Cordero-Bueso, G.; Vigentini, I. The role of yeasts as biocontrol agents for pathogenic fungi on postharvest grapes: A review. Foods 2021, 10, 1650. [Google Scholar] [CrossRef]
- Bozoudi, D.; Tsaltas, D. The multiple and versatile roles of Aureobasidium pullulans in the vitivinicultural sector. Fermentation 2018, 4, 85. [Google Scholar] [CrossRef]
- Rathnayake, R.M.S.P.; Savocchia, S.; Schmidtke, L.M.; Steel, C.C. Characterisation of Aureobasidium pullulans isolates from Vitis vinifera and potential biocontrol activity for the management of bitter rot of grapes. Eur. J. Plant Pathol. 2018, 151, 593–611. [Google Scholar]
- Lima, G.; Ippolito, A.; Nigro, F.; Romanazzi, G.; Schena, L.; Gatto, M.A.; Salerno, M. Lotta biologica contro marciumi postraccolta di uva da tavola, fragola e actinidia con Aureobasidium pullulans e Candida oleophila. Inf. Agrar. 1996, 45, 79–84. [Google Scholar]
- Benuzzi, M.; Ladurner, E.; Fiorentini, F. Efficacy of Serenade, New Bacillus subtilis-Based Biofungicide, in Controlling the Pathogenic Microorganisms of Crops. In Giornate Fitopatologiche 2006, Riccione (RN), Atti, Volume Secondo; Università di Bologna: Bologna, Italy, 2006; pp. 429–436. [Google Scholar]
- Bugiani, R.; Cavazza, F.; Franceschelli, F.; Landi, M.; Preti, M. Contenimento Del Marciume Acido Del Grappolo in Pre-Vendemmia con Diversi Prodotti Naturali. In Giornate Fitopatologiche 2020, Bologna (BO), Atti, Volume Secondo; Università di Bologna: Bologna, Italy, 2020; pp. 419–428. [Google Scholar]
- Mari, M.; Guizzardi, M.; Brunelli, M.; Folchi, A. Postharvest biological control of grey mould (Botrytis cinerea Pers.: Fr.) on fresh-market tomatoes with Bacillus amyloliquefaciens. Crop Prot. 1996, 15, 699–705. [Google Scholar]
- Leifert, C.; Li, H.; Chidburee, S.; Hampson, S.; Workman, S.; Sigee, D.; Epton, H.A.; Harbour, A. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J. Appl. Bacteriol. 1995, 78, 97–108. [Google Scholar]
- Choudhary, D.K.; Johri, B.N. Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol. Res. 2009, 164, 493–513. [Google Scholar] [CrossRef] [PubMed]
- Emmert, E.A.; Handelsman, J. Biocontrol of plant disease: A (Gram-) positive perspective. FEMS Microbiol. Lett. 1999, 171, 1–9. [Google Scholar]
- Altieri, V.; Rossi, V.; Fedele, G. Integration of mathematical modeling and target-based application of biocontrol agents for the control of Botrytis cinerea in vineyards. Pest Manag. Sci. 2024, 80, 4352–4360. [Google Scholar] [PubMed]
- Altieri, V.; Rossi, V.; Fedele, G. Efficacy of preharvest application of biocontrol agents against gray mold in grapevine. Front. Plant Sci. 2023, 14, 1154370. [Google Scholar]
- Klick, J.; Yang, W.Q.; Lee, J.C.; Bruck, D.J. Reduced spray programs for Drosophila suzukii management in berry crops. Int. J. Pest Manag. 2016, 62, 368–377. [Google Scholar]
- Haye, T.; Girod, P.; Cuthbertson, A.G.S.; Wang, X.G.; Daane, K.M.; Hoelmer, K.A.; Baroffio, C.; Zhang, J.P.; Desneux, N. Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J. Pest Sci. 2016, 89, 643–651. [Google Scholar]
- Hutchison, W.D.; Wold-Burkness, S. Spotted wing Drosophila. FruitEdge, 2018; University of Minnesota: Extension, St. Paul, MN, USA. Available online: https://www.fruitedge.umn.edu/swdpestprofile (accessed on 6 August 2024).
- Walton, V.M.; Burrack, H.J.; Dalton, D.T.; Isaacs, R.; Wiman, N.; Ioriatti, C. Past, present and future of Drosophila suzukii: Distribution, impact and management in United States berry fruits. Acta Hortic. 2016, 1117, 87–94. [Google Scholar]
- Wiman, N.G.; Dalton, D.T.; Anfora, G.; Biondi, A.; Chiu, J.C.; Daane, K.M.; Gerdeman, B.; Gottardello, A.; Hamby, K.A.; Isaacs, R.; et al. Drosophila suzukii population response to environment and management strategies. J. Pest Sci. 2016, 89, 653–665. [Google Scholar]
- Leach, H.; Moses, J.; Hanson, E.; Fanning, P.; Isaacs, R. Rapid harvest schedules and fruit removal as non-chemical approaches for managing spotted wing Drosophila. J. Pest Sci. 2018, 91, 219–226. [Google Scholar]
Treatment Category | Type of Intervention | Grape Variety | Location, Years | Paper Source |
---|---|---|---|---|
AGRO | Leaf removal | Barbera (1) 1, Chenin blanc (3), Sauvignon (1) | USA, 1988, 1990 | [23] |
Leaf removal | Barbera (1), Thompson Seedless (1), Chardonnay (1), Zinfandel (1), Carignane (1) | USA, 1989–1992 | [25] | |
Leaf removal | Chardonnay (1) | Canada, 2004 | [26] | |
Leaf removal | Chardonnay (2) | USA, 2017–2018 | [27] | |
BIO | Candida saitoana + chitosan, antifungal lytic enzyme | Italia (1) | Italy, 2004 | [35] |
Calcium chloride, sodium bicarbonate, sodium carbonate, potassium carbonate | Italia (2) | Italy, 2006 | [5] | |
Aureobasidium pullulans | Agiorgitiko (9), Grenache Rouge (6) | Greece, 2003–2006 | [36] 2 | |
Candida sake, fatty acids, chitosan, Ulocladium oudemansii | Macabeu (2) | Spain, 2009–2010 | [37] | |
Zeolitites | Montepulciano (2), Cococciola (2) | Italy, 2015–2016 | [38] | |
C. sake, fatty acids, maltodextrin, potato starch | Macabeu (2) | Spain, 2015–2016 | [39] | |
Oligochitosans, oligopectates, mycorrhizal fungi, copper, sulfur | Nero d’Avola (1), Inzolia (1) | Italy, 2002 | [40] | |
Zeolite | Trebbiano d’Abruzzo (2) | Italy, 2018–2019 | [41] | |
CHEM | Mepanypirim | Italia (1) | Italy, 2004 | [35] |
Procymidone, fludioxonil, cyprodinil | Italia (2) | Italy, 2006 | [5] | |
Fludioxonil, cyprodinil | Agiorgitiko (9), Grenache Rouge (6) | Greece, 2003–2006 | [36] 2 | |
Cyprodinil, fludioxonil | Montepulciano (2), Cococciola (2) | Italy, 2015–2016 | [38] | |
Fludioxonil, cyprodinil, carbendazim | Not available (6), Grenache Rouge (3), Cabernet Sauvignon (3) | Greece, 2003–2004 | [24] 2 | |
IPM | Leaf removal, fenarimol, sulfur, cryolite, propargite | Barbera (1), Thompson Seedless (1), Chardonnay (1), Zinfandel (1), Carignane (1) | USA, 1989–1992 | [25] |
Cyprodinil, fludioxonil, zeolite | Montepulciano (2), Cococciola (2) | Italy, 2015–2016 | [38] |
Biocontrol Agent | Target Fungus | Country; Grape Variety | Paper Source |
---|---|---|---|
Candida guilliermondii, Kloeckera apiculata | Aspergillus niger (1) 1, Rizhopus stolonifer (1) | Israel; Thompson Seedless | [42] |
Saccharomyces cerevisiae, S. chevalieri, S. kluyveri, Candida catenulata, C. famata, C. rugosa, C. sake, C. versatilis, Debaryomyces vanrijiae, Dekkera anomala, Issatchenkia orientalis, Kluyveromyces marxianus, Pichia mebranifaciens, Sporobolomyces roseus, Torulaspora delbrueckii | A. caelatus (1), A. carbonarius (1), A. terreus (1), A. versicolor (1), Fusarium oxysporum (1), Penicillium comune (1), R. stolonifer (1), Ulocladium sp. (1) | Argentina; Redglobe | [3] |
Candida intermedia, C. friedrichii, Cyberlindnera jadinii, Lachancea thermotolerans | A. carbonarius (2) | Italy; Italia | [43] |
Treatment Category | Estimated Effect in Disease Reduction | ||||||
---|---|---|---|---|---|---|---|
K ꝉ | I2 § | L¥ | Se of L | 95% Confidence Interval of L | p | ||
AGRO | 24 | 93.7 | −0.53 | 0.136 | −0.80 | −0.26 | <0.001 |
BIO | 54 | 93.7 | −0.78 | 0.138 | −1.05 | −0.51 | <0.001 |
CHEM | 21 | 95.6 | −0.66 | 0.126 | −0.91 | −0.41 | <0.001 |
IPM | 6 | 71.4 | −1.15 | 0.169 | −1.49 | −0.83 | <0.001 |
BIO | CHEM | IPM | |
---|---|---|---|
AGRO | 0.25 (0.196) | 0.13 (0.447) | 0.63 (0.007) |
BIO | −0.12 (0.406) | 0.38 (0.025) | |
CHEM | 0.50 (0.002) |
Fungicide Treatment Strategy | Estimated Effect in Disease Reduction | ||||||
---|---|---|---|---|---|---|---|
K ꝉ | I2 § | L¥ | Se of L | 95% Confidence Interval of L | p | ||
BIO | 10 | 62.8 | −0.24 | 0.092 | −0.417 | −0.058 | 0.009 |
CHEM | 38 | 95.6 | −0.12 | 0.142 | −0.395 | −0.163 | 0.414 |
Biocontrol Microorganism | Estimated Effect in Berry Rot Reduction | ||||||
---|---|---|---|---|---|---|---|
K ꝉ | I2 § | L¥ | Se of L | 95% Confidence Interval of L | p | ||
Candida | 41 | 97.1 | −0.43 | 0.22 | −0.86 | −0.01 | 0.044 |
Cyberlindnera | 2 | 80.7 | 0.07 | 0.26 | −0.43 | 0.58 | 0.772 |
Debaryomyces | 8 | 90.6 | −0.76 | 0.22 | −1.19 | −0.32 | 0.001 |
Dekkera | 8 | 94.9 | −0.45 | 0.22 | −0.87 | −0.02 | 0.041 |
Issatchenkia | 4 | 81.6 | −0.45 | 0.24 | −0.91 | 0.01 | 0.055 |
Kloeckera | 1 | 39.4 | −2.86 | 1.21 | −5.23 | −0.50 | 0.018 |
Kluyveromyces | 8 | 90.1 | −0.68 | 0.22 | −1.12 | −0.24 | 0.002 |
Lachancea | 2 | 48.9 | −0.62 | 0.34 | −1.28 | 0.04 | 0.065 |
Pichia | 8 | 95.2 | −0.47 | 0.22 | −0.90 | −0.05 | 0.029 |
Saccharomyces | 64 | 97.3 | −0.45 | 0.22 | −0.87 | −0.02 | 0.038 |
Sporobolomyces | 4 | 94.7 | −0.38 | 0.22 | −0.81 | 0.04 | 0.078 |
Torulaspora | 32 | 97.2 | −0.40 | 0.22 | −0.82 | 0.03 | 0.066 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brischetto, C.; Rossi, V.; Fedele, G. A Meta-Analysis of 67 Studies on the Control of Grape Sour Rot Revealed Interesting Perspectives for Biocontrol. Agronomy 2024, 14, 1859. https://doi.org/10.3390/agronomy14081859
Brischetto C, Rossi V, Fedele G. A Meta-Analysis of 67 Studies on the Control of Grape Sour Rot Revealed Interesting Perspectives for Biocontrol. Agronomy. 2024; 14(8):1859. https://doi.org/10.3390/agronomy14081859
Chicago/Turabian StyleBrischetto, Chiara, Vittorio Rossi, and Giorgia Fedele. 2024. "A Meta-Analysis of 67 Studies on the Control of Grape Sour Rot Revealed Interesting Perspectives for Biocontrol" Agronomy 14, no. 8: 1859. https://doi.org/10.3390/agronomy14081859
APA StyleBrischetto, C., Rossi, V., & Fedele, G. (2024). A Meta-Analysis of 67 Studies on the Control of Grape Sour Rot Revealed Interesting Perspectives for Biocontrol. Agronomy, 14(8), 1859. https://doi.org/10.3390/agronomy14081859