Effect of Co-Application of Chinese Milk Vetch and Iron-Modified Biochar on Rice in Antimony-Polluted Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Collection and Material Preparations
2.2. Experimental Treatments
2.3. Chlorophyll Contents and Leaf Water Contents
2.4. Determination of Oxidative Stress Markers, Potential Osmolyte, and Antioxidant Activities
2.5. Determination of Growth and Yield Traits
2.6. Determination of Plant and Soil Sb Concentration
2.7. Statistical Analysis
3. Results
3.1. Growth and Yield Traits
3.2. Photosynthetic Pigments and Leaf Relative Water Contents
3.3. Oxidative Stress Markers and Osmolytes
3.4. Antioxidant Activities
3.5. Antimony Concentration in Soil and Plant
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolan, N.; Kumar, M.; Singh, E.; Kumar, A.; Singh, L.; Kumar, S.; Keerthanan, S.; Hoang, S.A.; El-Naggar, A.; Vithanage, M. Antimony contamination and its risk management in complex environmental settings: A review. Environ. Int. 2022, 158, 106908. [Google Scholar] [CrossRef]
- Vidya, C.S.-N.; Shetty, R.; Vaculíková, M.; Vaculík, M. Antimony toxicity in soils and plants, and mechanisms of its alleviation. Environ. Exp. Bot. 2022, 202, 104996. [Google Scholar] [CrossRef]
- Pierart, A.; Shahid, M.; Séjalon-Delmas, N.; Dumat, C. Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. J. Hazard. Mater. 2015, 289, 219–234. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, J.; Li, J. The alleviating effects and underlying mechanisms of exogenous selenium on both Sb (III) and Sb (V) toxicity in rice seedlings (Oryza sativa L.). Environ. Sci. Pollut. Res. 2023, 30, 89927–89941. [Google Scholar] [CrossRef]
- Okkenhaug, G.; Zhu, Y.-G.; Luo, L.; Lei, M.; Li, X.; Mulder, J. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Environ. Pollut. 2011, 159, 2427–2434. [Google Scholar] [CrossRef]
- Shahid, M.; Khalid, S.; Dumat, C.; Pierart, A.; Niazi, N.K. Biogeochemistry of antimony in soil-plant system: Ecotoxicology and human health. Appl. Geochem. 2019, 106, 45–59. [Google Scholar]
- Chang, A.C.; Pan, G.; Page, A.L.; Asano, T. Developing Human Health-Related Chemical Guidelines for Reclaimed Waster and Sewage Sludge Applications in Agriculture; World Health Organization European Environmental Bureau: Bruxelles, Brussels, 2001; Volume 13. [Google Scholar]
- Warnken, J.; Ohlsson, R.; Welsh, D.T.; Teasdale, P.R.; Chelsky, A.; Bennett, W.W. Antimony and arsenic exhibit contrasting spatial distributions in the sediment and vegetation of a contaminated wetland. Chemosphere 2017, 180, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Murciego, A.M.; Sánchez, A.G.; González, M.R.; Gil, E.P.; Gordillo, C.T.; Fernández, J.C.; Triguero, T.B. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas inextremadura (Spain). Environ. Pollut. 2007, 145, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Meng, G.; Xiang, J.; Mahmood, A.; Xiang, G.; SanaUllah; Liu, Y.; Huang, G. Toxic effects of antimony in plants: Reasons and remediation possibilities—A review and future prospects. Front. Plant Sci. 2022, 13, 1011945. [Google Scholar] [CrossRef]
- Zeng, D.; Zhou, S.; Ren, B.; Chen, T. Bioaccumulation of antimony and arsenic in vegetables and health risk assessment in the superlarge antimony-mining area, China. J. Anal. Chem. 2015, 2015, 909724. [Google Scholar] [CrossRef]
- Wu, T.-L.; Cui, X.-D.; Cui, P.-X.; Ata-Ul-Karim, S.T.; Sun, Q.; Liu, C.; Fan, T.-T.; Gong, H.; Zhou, D.-M.; Wang, Y.-J. Speciation and location of arsenic and antimony in rice samples around antimony mining area. Environ. Pollut. 2019, 252, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Okkenhaug, G.; Amstätter, K.; Lassen Bue, H.; Cornelissen, G.; Breedveld, G.D.; Henriksen, T.; Mulder, J. Antimony (Sb) contaminated shooting range soil: Sb mobility and immobilization by soil amendments. Environ. Sci. Technol. 2013, 47, 6431–6439. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.C.; Lockwood, P.V.; Ashley, P.M.; Tighe, M. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environ. Pollut. 2010, 158, 1169–1181. [Google Scholar] [CrossRef]
- Feng, R.; Lei, L.; Su, J.; Zhang, R.; Zhu, Y.; Chen, W.; Wang, L.; Wang, R.; Dai, J.; Lin, Z. Toxicity of different forms of antimony to rice plant: Effects on root exudates, cell wall components, endogenous hormones and antioxidant system. Sci. Total Environ. 2020, 711, 134589. [Google Scholar] [CrossRef]
- Lu, Y.; Ran, M.; Jiao, Y.; Wu, J.; Li, J. Synergistic interplay of selenium (Se) and antimony (Sb)-oxidizing bacteria Bacillus sp. S3 alleviates the Sb toxicity in pak choi (Brassica chinensis L.) by limiting Sb uptake, enhancing antioxidant systems and regulating key metabolic pathways. Environ. Exp. Bot. 2024, 218, 105601. [Google Scholar] [CrossRef]
- Bhattacharjee, H.; Mukhopadhyay, R.; Thiyagarajan, S.; Rosen, B.P. Aquaglyceroporins: Ancient channels for metalloids. J. Biol. 2008, 7, 33. [Google Scholar] [CrossRef]
- Feng, R.; Wei, C.; Tu, S. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 2013, 87, 58–68. [Google Scholar] [CrossRef]
- Cai, F.; Ren, J.; Tao, S.; Wang, X. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings. Environ. Pollut. 2016, 209, 169–176. [Google Scholar] [CrossRef]
- Pu, S.; Duan, W.; Zhu, Z.; Wang, W.; Zhang, C.; Li, N.; Jiang, P.; Wu, Z. Environmental behavior and engineering performance of self-developed silico-aluminophosphate geopolymer binder stabilized lead contaminated soil. J. Clean. Prod. 2022, 379, 134808. [Google Scholar] [CrossRef]
- Chen, H.; Gao, Y.; Dong, H.; Sarkar, B.; Song, H.; Li, J.; Bolan, N.; Quin, B.F.; Yang, X.; Li, F. Chitin and crawfish shell biochar composite decreased heavy metal bioavailability and shifted rhizosphere bacterial community in an arsenic/lead co-contaminated soil. Environ. Int. 2023, 176, 107989. [Google Scholar] [CrossRef]
- Fang, Z.; Gao, Y.; Bolan, N.; Shaheen, S.M.; Xu, S.; Wu, X.; Xu, X.; Hu, H.; Lin, J.; Zhang, F. Conversion of biological solid waste to graphene-containing biochar for water remediation: A critical review. Chem. Eng. J. 2020, 390, 124611. [Google Scholar] [CrossRef]
- Qu, J.; Yuan, Y.; Zhang, X.; Wang, L.; Tao, Y.; Jiang, Z.; Yu, H.; Dong, M.; Zhang, Y. Stabilization of lead and cadmium in soil by sulfur-iron functionalized biochar: Performance, mechanisms and microbial community evolution. J. Hazard. Mater. 2022, 425, 127876. [Google Scholar] [CrossRef]
- Jiao, S.; Chen, Z.; Yu, A.; Chen, H. Evaluation of the heavy metal pollution ecological risk in topsoil: A case study from Nanjing, China. Environ. Earth Sci. 2022, 81, 532. [Google Scholar] [CrossRef]
- Hua, L.; Zhang, H.; Wei, T.; Yang, C.; Guo, J. Effect of biochar on fraction and species of antimony in contaminated soil. J. Soils Sediments 2019, 19, 2836–2849. [Google Scholar] [CrossRef]
- Hua, L.; Wu, C.; Zhang, H.; Cao, L.; Wei, T.; Guo, J. Biochar-induced changes in soil microbial affect species of antimony in contaminated soils. Chemosphere 2021, 263, 127795. [Google Scholar] [CrossRef]
- Chen, H.; Gao, Y.; Li, J.; Fang, Z.; Bolan, N.; Bhatnagar, A.; Gao, B.; Hou, D.; Wang, S.; Song, H. Engineered biochar for environmental decontamination in aquatic and soil systems: A review. Carbon Res. 2022, 1, 4. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, R.; Guo, C.; Lv, J.; Wu, L.; Xu, J. Occurrence, sources and risk of heavy metals in soil from a typical antimony mining area in Guizhou Province, China. Environ. Geochem. Health 2023, 45, 3637–3651. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Li, C.; Parikh, S.J. Simultaneous removal of arsenic, cadmium, and lead from soil by iron-modified magnetic biochar. Environ. Pollut. 2020, 261, 114157. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.A.; Ahmad, M.; Iqbal, S.; Ullah, F.; Bolan, N.; Solaiman, Z.M.; Shafique, M.A.; Siddique, K.H. Adsorption and immobilization performance of pine-cone pristine and engineered biochars for antimony in aqueous solution and military shooting range soil: An integrated novel approach. Environ. Pollut. 2023, 317, 120723. [Google Scholar] [CrossRef]
- Khan, S.; Dilawar, S.; Hassan, S.; Ullah, A.; Yasmin, H.; Ayaz, T.; Akhtar, F.; Gaafar, A.-R.Z.; Sekar, S.; Butt, S. Phytoremediation of Cu and Mn from industrially polluted soil: An eco-friendly and sustainable approach. Water 2023, 15, 3439. [Google Scholar] [CrossRef]
- Chang, D.; Gao, S.; Zhou, G.; Deng, S.; Jia, J.; Wang, E.; Cao, W. The chromosome-level genome assembly of Astragalus sinicus and comparative genomic analyses provide new resources and insights for understanding legume-rhizobial interactions. Plant Commun. 2022, 3, 100263. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Long, J.; Peng, P.; Huang, J.; Tang, S.; Hou, H. Regrow Napier grass–Chinese milk vetch relay intercropping system: A cleaner production strategy in Cd-contaminated farmland. J. Clean. Prod. 2022, 339, 130724. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, Y.; Fu, S.; Xu, M.; Zhu, P.; Liang, Y.; Yin, H.; Jiang, L.; Bai, L.; Liu, X. Reduction mechanism of Cd accumulation in rice grain by Chinese milk vetch residue: Insight into microbial community. Ecotoxicol. Environ. Saf. 2020, 202, 110908. [Google Scholar] [CrossRef]
- Liang, T.; Zhou, G.; Chang, D.; Wang, Y.; Gao, S.; Nie, J.; Liao, Y.; Lu, Y.; Zou, C.; Cao, W. Co-incorporation of Chinese milk vetch (Astragalus sinicus L.), rice straw, and biochar strengthens the mitigation of Cd uptake by rice (Oryza sativa L.). Sci. Total Environ. 2022, 850, 158060. [Google Scholar] [CrossRef]
- Li, P.; Wang, X.-x.; Zhang, T.-l.; Zhou, D.-m.; He, Y.-q. Distribution and accumulation of copper and cadmium in soil–rice system as affected by soil amendments. Water Air Soil Pollut. 2009, 196, 29–40. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Rao, K.M.; Sresty, T. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 2000, 157, 113–128. [Google Scholar]
- Ashraf, M.A.; Rasheed, R.; Hussain, I.; Hafeez, A.; Adrees, M.; Ur Rehman, M.Z.; Rizwan, M.; Ali, S. Effect of different seed priming agents on chromium accumulation, oxidative defense, glyoxalase system and mineral nutrition in canola (Brassica napus L.) cultivars. Environ. Poll. 2022, 309, 119769. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [PubMed]
- Zhang, X. The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. Res. Methodol. Crop Physiol. 1992, 208–211. [Google Scholar]
- Ortega, A.; Garrido, I.; Casimiro, I.; Espinosa, F. Effects of antimony on redox activities and antioxidant defence systems in sunflower (Helianthus annuus L.) plants. PLoS ONE 2017, 12, e0183991. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.-Y.; Guo, Z.-H.; Luo, Y.-P.; Bi, J.-P.; Yang, M.; Huang, D.-Q. Effect of antimony on physiological responses of green Chinese cabbage and enzyme activities of Allitic Udic Ferrisols. Pedosphere 2015, 25, 124–129. [Google Scholar] [CrossRef]
- Tschan, M.; Robinson, B.H.; Schulin, R. Antimony in the soil–plant system–a review. Environ. Chem. 2009, 6, 106–115. [Google Scholar] [CrossRef]
- Feng, R.; Liao, G.; Guo, J.; Wang, R.; Xu, Y.; Ding, Y.; Mo, L.; Fan, Z.; Li, N. Responses of root growth and antioxidative systems of paddy rice exposed to antimony and selenium. Environ. Exp. Bot. 2016, 122, 29–38. [Google Scholar] [CrossRef]
- Puga, A.; Abreu, C.; Melo, L.; Beesley, L. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J. Environ. Manag. 2015, 159, 86–93. [Google Scholar] [CrossRef]
- Herath, I.; Kumarathilaka, P.; Navaratne, A.; Rajakaruna, N.; Vithanage, M. Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. J. Soils Sediments 2015, 15, 126–138. [Google Scholar] [CrossRef]
- Vaculíková, M.; Vaculík, M.; Šimková, L.; Fialová, I.; Kochanová, Z.; Sedláková, B.; Luxová, M. Influence of silicon on maize roots exposed to antimony–Growth and antioxidative response. Plant Physiol. Biochem. 2014, 83, 279–284. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, C.; Zhu, P.; Liu, F. Effects of antimony stress on photosynthesis and growth of Acorus calamus. Front. Plant Sci. 2018, 9, 579. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Qi, M.; Huang, Z.; Xu, X.; Begum, N.; Qin, C.; Zhang, C.; Ahmad, N.; Mustafa, N.S.; Ashraf, M. Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicol. Environ. Saf. 2021, 216, 112195. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Gupta, S.M.; Sane, A.P.; Kumar, N. Chlorophyllase in Piper betle L. has a role in chlorophyll homeostasis and senescence dependent chlorophyll breakdown. Mol. Biol. Rep. Mol. Biol. Rep. 2012, 39, 7133–7142. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi-Golezani, K.; Farhangi-Abriz, S. Improving plant available water holding capacity of soil by solid and chemically modified biochars. Rhizosphere 2022, 21, 100469. [Google Scholar] [CrossRef]
- Haider, F.U.; Virk, A.L.; Rehmani, M.I.A.; Skalicky, M.; Ata-ul-Karim, S.T.; Ahmad, N.; Soufan, W.; Brestic, M.; Sabagh, A.E.; Liqun, C. Integrated application of thiourea and biochar improves maize growth, antioxidant activity and reduces cadmium bioavailability in cadmium-contaminated soil. Front. Plant Sci. 2022, 12, 809322. [Google Scholar] [CrossRef]
- Gu, T.; Yu, H.; Li, F.; Zeng, W.; Wu, X.; Shen, L.; Yu, R.; Liu, Y.; Li, J. Antimony-oxidizing bacteria alleviate Sb stress in Arabidopsis by attenuating Sb toxicity and reducing Sb uptake. Plant Soil 2020, 452, 397–412. [Google Scholar] [CrossRef]
- Xu, Z.; Rothstein, S.J. ROS-Induced anthocyanin production provides feedback protection by scavenging ROS and maintaining photosynthetic capacity in Arabidopsis. Plant Signal. Behav. 2018, 13, 1364–1377. [Google Scholar] [CrossRef]
- Qi, W.-Y.; Li, Q.; Chen, H.; Liu, J.; Xing, S.-F.; Xu, M.; Yan, Z.; Song, C.; Wang, S.-G. Selenium nanoparticles ameliorate Brassica napus L. cadmium toxicity by inhibiting the respiratory burst and scavenging reactive oxygen species. J. Hazard. Mater. 2021, 417, 125900. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Espinosa-Vellarino, F.L.; Garrido, I.; Ortega, A.; Casimiro, I.; Espinosa, F. Effects of antimony on reactive oxygen and nitrogen species (ROS and RNS) and antioxidant mechanisms in tomato plants. Front. Plant Sci. 2020, 11, 674. [Google Scholar] [CrossRef]
- Luo, W.-T.; He, L.; Li, F.; Li, J.-K. Exogenous salicylic acid alleviates the antimony (Sb) toxicity in rice (Oryza sativa L.) seedlings. J. Plant Growth Regul. 2021, 40, 1327–1340. [Google Scholar] [CrossRef]
- Hussain, S.; Irfan, M.; Sattar, A.; Hussain, S.; Ullah, S.; Abbas, T.; Ur-Rehman, H.; Nawaz, F.; Al-Hashimi, A.; Elshikh, M.S.; et al. Alleviation of cadmium stress in wheat through the combined application of boron and biochar via regulating morpho-physiological and antioxidant defense mechanisms. Agronomy 2022, 12, 434. [Google Scholar] [CrossRef]
- Das, K. Ascorbate and tocopherols in mitigating oxidative stress. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 102–121. [Google Scholar]
- Kapoor, D.; Singh, M.P.; Kaur, S.; Bhardwaj, R.; Zheng, B.; Sharma, A. Modulation of the functional components of growth, photosynthesis, and anti-oxidant stress markers in cadmium exposed Brassica juncea L. Plants 2019, 8, 260. [Google Scholar] [CrossRef]
- Cheng, J.; Qiu, H.; Chang, Z.; Jiang, Z.; Yin, W. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris. SpringerPlus 2016, 5, 1290. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, Y.; Kuşvuran, A.; Alharby, H.F.; Kuşvuran, S.; Rady, M.M. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol. Environ. Saf. 2018, 154, 187–196. [Google Scholar] [CrossRef]
- Gu, T.; Lu, Y.; Li, F.; Zeng, W.; Shen, L.; Yu, R.; Li, J. Microbial extracellular polymeric substances alleviate cadmium toxicity in rice (Oryza sativa L.) by regulating cadmium uptake, subcellular distribution and triggering the expression of stress-related genes. Ecotoxicol. Environ. Saf. 2023, 257, 114958. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, H.; Li, S.; Zhang, Z.; Liao, Y.; Lu, Y.; Zhou, G.; Gao, S.; Nie, J.; Cao, W. Co-utilizing milk vetch, rice straw, and lime reduces the Cd accumulation of rice grain in two paddy soils in south China. Sci. Total Environ. 2022, 806, 150622. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, H.; Gu, J.; Liao, B.; Zhang, J.; Wu, P. Application of rapeseed residue increases soil organic matter, microbial biomass, and enzyme activity and mitigates cadmium pollution risk in paddy fields. Environ. Pollut. 2020, 264, 114681. [Google Scholar] [CrossRef]
Properties | Rapeseed Biochar | Iron-Modified Biochar | Chinese Milk Vetch |
---|---|---|---|
pH | 9.56 | 9.76 | 6.5 |
Carbon contents | 612 g·kg−1 | 622 g·kg−1 | 46.31 g·kg−1 |
Nitrogen contents | 4.33 g·kg−1 | 4.61 g·kg−1 | 22.3 g·kg−1 |
Treatments | Root Length (cm) | Plant Height (cm) | Tillers/Pot | Biological Yield/Pot (g) | Grain Yield/Pot (g) |
---|---|---|---|---|---|
Control | 21.43 ± 5.16 b | 61.00 ± 6.61 c | 46.00 ± 5.79 d | 145.01 ± 7.36 bc | 92.62 ± 2.12 d |
CMV | 28.33 ± 2.46 ab | 79.50 ± 2.21 ab | 60.67 ± 5.12 c | 146.73 ± 1.07 a | 105.92 ± 4.15 c |
RBC | 27.77 ± 4.97 ab | 78.40 ± 3.37 ab | 64.00 ± 5.66 c | 174.66 ± 7.13 ab | 125.50 ± 4.96 b |
FMB | 29.63 ± 1.15 a | 74.90 ± 4.44 ab | 74.00 ± 0.71 ab | 179.53 ± 3.47 bc | 132.58 ± 4.66 ab |
CMV + RBC | 27.60 ± 1.39 ab | 73.70 ± 8.26 b | 65.67 ± 4.55 bc | 139.66 ± 3.14 c | 103.35 ± 5.41 c |
CMV+ FMB | 31.43 ± 4.18 a | 84.10 ± 4.15 a | 77.00 ± 3.94 a | 187.79 ± 6.73 a | 139.93 ± 2.80 a |
Treatments | Chl-a mg/g FW | Chl-b mg/g FW | Cart. mg/g FW | Anth. mg/g FW | RWC (%) |
---|---|---|---|---|---|
Control | 0.44 ± 0.017 c | 0.25 ± 0.013 d | 3.52 ± 0.11 e | 6.96 ± 0.44 e | 59.00 ± 0.77 e |
CMV | 0.48 ± 0.028 c | 0.28 ± 0.019 d | 3.71 ± 0.21 d | 7.81 ± 0.33 d | 65.36 ± 0.57 d |
RBC | 0.58 ± 0.020 ab | 0.37 ± 0.033 bc | 4.14 ± 0.33 c | 9.13 ± 0.16 c | 77.69 ± 2.05 b |
FMB | 0.61 ± 0.031 ab | 0.40 ± 0.041 ab | 4.34 ± 0.11 b | 9.74 ± 0.46 b | 82.32 ± 1.99 ab |
CMV + RBC | 0.55 ± 0.029 b | 0.34 ± 0.012 c | 4.02 ± 0.22 c | 8.93 ± 0.52 c | 72.33 ± 2.04 c |
CMV + FMB | 0.64 ± 0.026 a | 0.46 ± 0.017 a | 4.61 ± 0.44 a | 10.37 ± 0.39 a | 85.88 ± 3.51 a |
Treatments | Root Sb Concentration (mg·kg−1) | Shoot Sb Concentration (mg·kg−1) | Soil Sb Concentration (mg·kg−1) |
---|---|---|---|
Control | 56.23 + 5.99 a | 16.83 + 1.42 a | 227.67 + 15.50 a |
CMV | 51.43 + 9.08 ab | 15.83 + 6.08 ab | 142.33 + 11.03 d |
RBC | 45.43 + 4.39 ab | 13.27 + 3.26 abc | 184.00 + 13.43 b |
FMB | 37.17 + 9.33 bc | 9.35 + 3.58 bc | 138.43 + 11.41 d |
CMV + RBC | 38.17 + 6.00 bc | 14.57 + 0.55 abc | 158.07 + 12.10 c |
CMV+ FMB | 29.53 + 5.16 c | 8.57 + 4.04 c | 129.67 + 14.50 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Xiang, X.; Jiang, W.; Meng, G.; Zhou, J.; Guo, Z.; Zhou, J.; Tang, H.; Miao, J.; Morsy, K. Effect of Co-Application of Chinese Milk Vetch and Iron-Modified Biochar on Rice in Antimony-Polluted Soil. Agronomy 2024, 14, 1887. https://doi.org/10.3390/agronomy14091887
Hu Y, Xiang X, Jiang W, Meng G, Zhou J, Guo Z, Zhou J, Tang H, Miao J, Morsy K. Effect of Co-Application of Chinese Milk Vetch and Iron-Modified Biochar on Rice in Antimony-Polluted Soil. Agronomy. 2024; 14(9):1887. https://doi.org/10.3390/agronomy14091887
Chicago/Turabian StyleHu, Yejie, Xinglong Xiang, Wenjie Jiang, Guiyuan Meng, Jing Zhou, Zhenzhen Guo, Jinxiu Zhou, Haiying Tang, Jianqun Miao, and Kareem Morsy. 2024. "Effect of Co-Application of Chinese Milk Vetch and Iron-Modified Biochar on Rice in Antimony-Polluted Soil" Agronomy 14, no. 9: 1887. https://doi.org/10.3390/agronomy14091887
APA StyleHu, Y., Xiang, X., Jiang, W., Meng, G., Zhou, J., Guo, Z., Zhou, J., Tang, H., Miao, J., & Morsy, K. (2024). Effect of Co-Application of Chinese Milk Vetch and Iron-Modified Biochar on Rice in Antimony-Polluted Soil. Agronomy, 14(9), 1887. https://doi.org/10.3390/agronomy14091887