The Effects of Bio-Fertilizer by Arbuscular Mycorrhizal Fungi and Phosphate Solubilizing Bacteria on the Growth and Productivity of Barley under Deficit of Water Irrigation Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Studied Traits and Recorded Data
2.3. Statistical Analysis
3. Results
3.1. The Effects of Bio-Fertilizers, Drought, and Phosphorus Fertilizers on Yield, Yield Components
Source | PH (cm) | Sp L (cm) | Sp W (g) | G/Sp | 1000-GW (g) | GY (ton ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd | |
Bio-fertilizer | ||||||||||||
AMF | 109.37 a | 113.95 a | 9.68 a | 10.98 a | 3.55 a | 3.70 a | 59.49 a | 61.97 a | 54.71 a | 56.98 a | 4.55 a | 4.74 a |
Phos. | 105.24 b | 109.58 b | 9.01 b | 10.38 b | 3.16 b | 3.29 b | 55.91 b | 58.25 b | 53.91 b | 56.13 a | 4.28 b | 4.46 b |
WBF | 99.87 c | 103.96 c | 8.19 c | 9.53 c | 3.00 c | 3.13 c | 51.40 c | 53.51 c | 51.86 c | 53.98 b | 3.88 c | 4.04 c |
Phosphorus (RDP) fertilizers | ||||||||||||
100% SP | 108.14 a | 112.61 a | 9.42 a | 10.83 a | 3.48 a | 3.62 a | 59.06 a | 61.51 a | 55.21 a | 57.49 a | 4.59 a | 4.78 a |
66% SP | 106.14 b | 110.51 b | 9.11 b | 10.38 b | 3.31 b | 3.45 b | 56.91 b | 59.29 b | 53.84 b | 56.06 b | 4.33 b | 4.52 b |
0% SP | 100.20 c | 104.36 c | 8.34 c | 9.67 c | 2.92 c | 3.04 c | 50.83 c | 52.93 c | 51.43 c | 53.55 c | 3.78 c | 3.94 c |
Irrigation | ||||||||||||
Normal | 111.01 a | 115.59 a | 9.88 a | 11.35 a | 3.59 a | 3.74 a | 60.58 a | 63.12 a | 58.31 a | 60.71 a | 4.94 a | 5.15 a |
2 Irrigations | 106.89 b | 111.30 b | 8.93 b | 10.26 b | 3.21 b | 3.35 b | 55.79 b | 58.09 b | 53.67 b | 55.88 b | 4.08 b | 4.25 b |
1 Irrigation | 96.58 c | 100.60 c | 8.07 c | 9.27 c | 2.91 c | 3.03 c | 50.43 c | 52.51 c | 48.51 c | 50.51 c | 3.69 c | 3.84 c |
Bio-F. | ** | ** | * | * | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns |
RDP | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Irrigation | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Bio-F. * RDP | * | ** | Ns | Ns | * | * | * | Ns | ** | ** | ** | ** |
Irrigation * Bio-F. | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | ** | ** |
Irrigation * RDP | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns |
Irrigation * Bio-F. * RDP | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns |
Source | Straw Yield (ton ha−1) | Biological Yield (ton ha−1) | Harvest Index | |||
---|---|---|---|---|---|---|
1st | 2nd | 1st | 2nd | 1st | 2nd | |
Bio-fertilizer | ||||||
AMF | 6.04 a | 6.29 a | 11.02 a | 11.48 a | 52.50 a | 54.87 a |
Phos. | 5.66 b | 5.89 b | 10.58 b | 11.01 b | 51.72 a | 53.66 a |
WBF | 5.48 c | 5.70 b | 10.53 c | 10.95 b | 50.29 b | 52.34 b |
Phosphorus (RDP) fertilizers | ||||||
100% SP | 6.12 a | 6.37 a | 11.81 a | 12.30 a | 54.88 a | 55.92 a |
66% SP | 5.80 b | 6.04 b | 10.48 b | 10.91 b | 50.82 b | 52.14 b |
0% SP | 5.25 c | 5.47 c | 9.83 c | 10.23 c | 48.81 c | 50.19 c |
Irrigation | ||||||
Normal | 6.68 a | 6.95 a | 12.49 a | 13.00 a | 60.08 a | 62.56 a |
2 Irrigations | 5.51 b | 5.74 b | 10.31 b | 10.73 b | 49.59 b | 51.64 b |
1 Irrigation | 4.98 c | 5.19 c | 9.32 c | 9.70 c | 44.83 c | 46.67 c |
Bio-F. | ** | ** | Ns | * | ** | ** |
RDP | ** | ** | ** | ** | ** | ** |
Irrigation | ** | ** | ** | ** | ** | ** |
Bio-F. * RDP | Ns | Ns | * | * | ** | ** |
Irrigation * Bio-F. | ** | ** | Ns | Ns | Ns | Ns |
Irrigation * RDP | Ns | Ns | Ns | Ns | Ns | Ns |
Irrigation * Bio-F. * RDP | Ns | Ns | Ns | Ns | Ns | Ns |
3.2. The Effects of Bio-Fertilizers, Drought, and Phosphorus Fertilizers on Nutrients Uptake in Grain and Straw of Barley
Source | N/Grain (Kg h−1) | K/Grain (Kg h−1) | P/Grain (Kg h−1) | N/Straw (Kg h−1) | K/Straw (Kg h−1) | P/Straw (Kg h−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd | |
Bio-fertilizer | ||||||||||||
AMF | 111.29 a | 115.92 a | 39.01 a | 40.63 a | 13.72 a | 14.29 a | 69.91 a | 72.33 a | 32.73 a | 34.08 a | 14.12 a | 14.71 a |
Phos. | 103.24 b | 107.49 b | 31.73 b | 33.04 b | 12.14 b | 12.65 b | 56.00 b | 58.79 b | 29.98 b | 31.21 b | 12.81 b | 13.34 b |
WBF | 88.50 c | 92.13 c | 25.49 c | 26.53 c | 9.44 c | 9.83 c | 53.79 b | 55.99 b | 23.96 c | 24.94 c | 9.99 c | 10.39 c |
Phosphorus (RDP) fertilizers | ||||||||||||
100% SP | 115.81 a | 120.61 a | 36.35 a | 37.86 a | 13.70 a | 14.27 a | 69.95 a | 72.84 a | 33.29 a | 34.66 a | 14.12 a | 14.70 a |
66% SP | 107.95 b | 112.40 b | 33.89 b | 35.29 b | 12.78 b | 13.31 b | 66.24 b | 68.97 b | 31.60 b | 32.90 b | 13.41 b | 13.97 a |
0% SP | 79.26 c | 82.53 c | 25.99 c | 27.05 c | 8.82 c | 9.19 c | 43.51 c | 45.29 c | 21.79 c | 22.68 c | 9.39 c | 9.78 b |
Irrigation | ||||||||||||
Normal | 117.85 a | 122.71 a | 37.42 a | 38.97 a | 13.73 a | 14.30 a | 69.88 a | 72.76 a | 33.70 a | 35.09 a | 14.36 a | 14.95 a |
2 Irrigations | 97.27 b | 101.29 b | 30.89 b | 32.16 b | 11.33 b | 11.80 b | 57.68 b | 60.06 b | 27.82 b | 28.97 b | 11.85 b | 12.34 b |
1 Irrigation | 87.92 c | 91.54 c | 27.92 c | 29.07 c | 10.24 c | 10.67 c | 52.13 c | 54.29 c | 25.15 c | 26.18 c | 10.71 c | 11.15 c |
Bio-F. | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
RDP | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Irrigation | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Bio-F. * RDP | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Irrigation * Bio-F. | ** | ** | ** | ** | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns |
Irrigation * RDP | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Irrigation * Bio-F. * RDP | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns | Ns |
3.3. The Interactions Effects between the Bio-Fertilizers, and Phosphorus Fertilizers Rates on Yield, Yield Components of Barley
3.4. The Interactions Effects between the Bio-Fertilizers, and Phosphorus Fertilizers Rates on Nutrients Uptake in Grain and Straw of Barley
3.5. The Interactions Effects between the Bio-Fertilizers, and Irrigation Intervals on Yield, Yield Components of Barley
3.6. The Interactions Effects between the Bio-Fertilizers, Irrigation and Drought Conditions on Nutrients Uptake in Grain and Straw of Barley
3.7. The Interactions Effects between Irrigation Intervals and the Ratios of the Recommended Dose of Phosphorus Fertilizers (RDP) on Yield, Yield Components and Nutrients Uptake in Grain and Straw of Barley
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alazmani, A. Evaluation of yield and yield components of barley varieties to nitrogen. Int. J. Agric. Crop Sci. 2015, 8, 52–54. [Google Scholar]
- Lister, D.L.; Jones, H.; Oliveira, H.R.; Petrie, C.A.; Liu, X.; Cockram, J.; Kneale, C.J.; Kovaleva, O.; Jones, M.K. Barley Heads East: Genetic Analyses Reveal Routes of Spread through Diverse Eurasian Landscapes. PLoS ONE 2018, 13, e0196652. [Google Scholar] [CrossRef] [PubMed]
- Kohistani, A.W.; Choudhary, A.K. Influence of Applied Nitrogen on Productivity, Profitability and Resource-Use Efficiency in Winter Barley (Hordeum Vulgare) under Semi–Arid Conditions of Afghanistan. Indian J. Agric. Sci. 2019, 89, 741–744. [Google Scholar] [CrossRef]
- Masrahi, A.S.; Alasmari, A.; Shahin, M.G.; Qumsani, A.T.; Oraby, H.F.; Awad-Allah, M.M.A. Role of Arbuscular Mycorrhizal Fungi and Phosphate Solubilizing Bacteria in Improving Yield, Yield Components, and Nutrients Uptake of Barley under Salinity Soil. Agriculture 2023, 13, 537. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S.; Baum, M. Participatory plant breeding in water-limited environments. Exp. Agric. 2007, 43, 411–435. [Google Scholar] [CrossRef]
- Sharafi, S.; Ghassemi-Golezani, K.; Mohammadi, S.; Lak, S.; Sorkhy, B. Evaluation of drought tolerance and yield potential in winter barley (Hordeum vulgare) genotypes. J. Food Agric. Environ. 2011, 9, 419–422. [Google Scholar]
- Kumar, S.; Patial, M.; Sharma, R. Efficient Barley Breeding. In Accelerated Plant Breeding, Volume 1; Springer eBooks: Berlin/Heidelberg, Germany, 2020; pp. 309–364. [Google Scholar] [CrossRef]
- Fatemi, F.; Kianersi, F.; Pour-Aboughadareh, A.; Poczai, P.; Jadidi, O. Overview of Identified Genomic Regions Associated with Various Agronomic and Physiological Traits in Barley under Abiotic Stresses. Appl. Sci. 2022, 12, 5189. [Google Scholar] [CrossRef]
- Zaib, S.; Zubair, A.; Abbas, S.; Hussain, J.; Ahmad, I.; Shakeel, S.N. Plant Growth-Promoting Rhizobacteria (PGPR) Reduce Adverse Effects of Salinity and Drought Stresses by Regulating Nutritional Profile of Barley. Appl. Environ. Soil Sci. 2023, 2023, 7261784. [Google Scholar] [CrossRef]
- Ryan, J.J.; Ibrikci, H.; Sommer, R.; McNeill, A. Chapter 2 Nitrogen in Rainfed and Irrigated Cropping Systems in the Mediterranean Region. Adv. Agron. 2009, 104, 53–136. [Google Scholar] [CrossRef]
- Singh, V.B.; Stevanović, M.; Jha, C.K.; Beier, F.; Ghosh, R.; Campen, H.L.; Popp, A. Assessing Policy Options for Sustainable Water Use in India’s Cereal Production System. Environ. Res. Lett. 2023, 18, 094073. [Google Scholar] [CrossRef]
- Suna, T.; Kumari, A.; Paramaguru, P.; Kushwaha, N.L. Enhancing Agricultural Water Productivity Using Deficit Irrigation Practices in Water-Scarce Regions. In Enhancing Resilience of Dryland Agriculture Under Changing Climate; Springer: Berlin/Heidelberg, Germany, 2023; pp. 177–206. [Google Scholar] [CrossRef]
- Srinivasan, V.; Lambin, E.F.; Gorelick, S.M.; Thompson, B.H.; Rozelle, S. The Nature and Causes of the Global Water Crisis: Syndromes from a Meta-Analysis of Coupled Human-Water Studies. Water Resour. Res. 2012, 48, W10516 (1–16). [Google Scholar] [CrossRef]
- Awad-Allah, M.M.A.; Attia, K.A.; Omar, A.A.; Mohamed, A.H.; Habiba, R.; Alzuaibr, F.M.; Alshehri, M.A.; Alqurashi, M.; Aloufi, S.; Dessoky, E.S.; et al. Combining Ability and Gene Action Controlling Agronomic Traits for Cytoplasmic Male Sterile Line, Restorer Lines, and New Hybrids for Developing of New Drought-Tolerant Rice Hybrids. Genes 2022, 13, 906. [Google Scholar] [CrossRef] [PubMed]
- Morison, J.I.L.; Baker, N.R.; Mullineaux, P.M.; Davies, W.J. Improving Water Use in Crop Production. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 639–658. [Google Scholar] [CrossRef] [PubMed]
- Abdelhameid, N.M.; Kenawey, K. Response of Barley to Bio Fertilization with Mycorrhiza and Azotobacter under Supplemental Irrigation Conditions at the North Western Coast of Egypt. Alex. Sci. Exch. 2019, 40, 672–682. [Google Scholar] [CrossRef]
- Mishra, R.K. Fresh Water Availability and Its Global Challenge. Br. J. Multidiscip. Adv. Stud. 2023, 4, 1–78. [Google Scholar] [CrossRef]
- Tiwari, N.; Tiwari, U.S.; Shrivastava, D.K.; Tiwari, A. Sewage Water Reuse in Quality Vegetation: A Review on Potential, Current Challenges and Future Strategies. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2023, 94, 471–481. [Google Scholar] [CrossRef]
- Prado, S.A.; Giménez, V.D.; Ciancio, N.; Alzueta, I.; Serrago, R.A.; Miralles, D.J. Grain Growth and Development in Wheat (Triticum Aestivum L.) and Barley (Hordeum Vulgare L.): Coordination between Water Content and Source/Sink Ratio. Field Crops Res. 2023, 302, 109100. [Google Scholar] [CrossRef]
- El-Hakeem, M.S. Role of gender in water availability and food security relationship (a case study: Matrouh resource management project). In Mainstreaming Gender Dimensions in Water Management for Food Security and Food Safety; CIHEAM: Bari, Italy, 2007; pp. 57–64. [Google Scholar]
- Hussein, M.M.; Mahmoud, A.; Taalab, A.S. Yield and nutrient status of barley plant in response to foliar application of fertilizers under water deficit conditions. J. Appl. Sci. Res. 2013, 9, 4388–4396. [Google Scholar]
- Thijssen, M.H.; Bishaw, Z.; Ahmed, H.A.; Gupta, A. Assessing the Performance of Egypt’s Seed Sector; Wageningen Centre for Development Innovation, Wageningen University & Research: Wageningen, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Kebede, F. Status, Drivers, and Suggested Management Scenarios of Salt-Affected Soils in Africa; Springer eBooks: Berlin/Heidelberg, Germany, 2023; pp. 259–284. [Google Scholar] [CrossRef]
- Blum, A. Effective Use of Water (EUW) and Not Water-Use Efficiency (WUE) Is the Target of Crop Yield Improvement under Drought Stress. Field Crops Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Pardo, J.J.; Sánchez-Virosta, A.; Léllis, B.C.; Domínguez, A.; Martínez-Romero, A. Physiological Basis to Assess Barley Response to Optimized Regulated Deficit Irrigation for Limited Volumes of Water (ORDIL). Agric. Water Manag. 2022, 274, 107917. [Google Scholar] [CrossRef]
- Fang, Q.X.; Ma, L.; Green, T.R.; Yu, Q.; Wang, T.D.; Ahuja, L.R. Water Resources and Water Use Efficiency in the North China Plain: Current Status and Agronomic Management Options. Agric. Water Manag. 2010, 97, 1102–1116. [Google Scholar] [CrossRef]
- Dong, B.; Shi, L.; Shi, C.; Qiao, Y.; Liu, M.; Zhang, Z. Grain Yield and Water Use Efficiency of Two Types of Winter Wheat Cultivars under Different Water Regimes. Agric. Water Manag. 2011, 99, 103–110. [Google Scholar] [CrossRef]
- Sharma, B.; Tiwari, S.; Kumawat, K.C.; Cardinale, M. Nano-Biofertilizers as Bio-Emerging Strategies for Sustainable Agriculture Development: Potentiality and Their Limitations. Sci. Total Environ. 2022, 860, 160476. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Muñoz, J.; Carmona-Garcia, C. Benefits and limitations of biofertilization in agricultural practices. Livest. Res. Rural Dev. 2012, 24, 1–8. [Google Scholar]
- Afifi, M.; El-Sayed, G.; Manal, A.; El-Gamal, H.; Massoud, O. Synergistic effect of biofertilizers containing N-fixer, P and K solubilizers and humic substances on Sorghum bicolor productivity. Middle East. J. Appl. Sci. 2014, 4, 1065–1074. [Google Scholar]
- Massoud, O.; Afifi, M.; El-Akshar, Y.; El-Sayed, G. Impact of biofertilizers and humic acid on the growth and yield of wheat grown in reclaimed sandy soil. Res. J. Agric. Biol. Sci. 2013, 9, 104–113. [Google Scholar]
- Barea, J.M.; Palenzuela, J.; Cornejo, P.; Sánchez-Castro, I.; Navarro-Fernández, C.; Lopéz-García, A.; Estrada, B.; Azcón, R.; Ferrol, N.; Azcón-Aguilar, C. Ecological and Functional Roles of Mycorrhizas in Semi-Arid Ecosystems of Southeast Spain. J. Arid Environ. 2011, 75, 1292–1301. [Google Scholar] [CrossRef]
- Gupta, M.L.; Prasad, A.; Ram, M.; Kumar, S. Effect of the Vesicular–Arbuscular Mycorrhizal (VAM) Fungus Glomus Fasciculatum on the Essential Oil Yield Related Characters and Nutrient Acquisition in the Crops of Different Cultivars of Menthol Mint (Mentha Arvensis) under Field Conditions. Bioresour. Technol. 2002, 81, 77–79. [Google Scholar] [CrossRef]
- Soliman, A.S.; Morsy, E.M.; Massoud, O.N. Tolerance of Bio-Fertilized Delonix Regia Seedlings to Irrigation Intervals. J. Hortic. For. 2015, 7, 73–83. [Google Scholar] [CrossRef]
- Thirkell, T.J.; Charters, M.D.; Elliott, A.J.; Sait, S.M.; Field, K.J. Are Mycorrhizal Fungi Our Sustainable Saviours? Considerations for Achieving Food Security. J. Ecol. 2017, 105, 921–929. [Google Scholar] [CrossRef]
- Bernardo, L.; Carletti, P.; Badeck, F.W.; Rizza, F.; Morcia, C.; Ghizzoni, R.; Rouphael, Y.; Colla, G.; Terzi, V.; Lucini, L. Metabolomic Responses Triggered by Arbuscular Mycorrhiza Enhance Tolerance to Water Stress in Wheat Cultivars. Plant Physiol. Biochem. 2019, 137, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Kamali, S.; Mehraban, A. Effects of Nitroxin and Arbuscular Mycorrhizal Fungi on the Agro-Physiological Traits and Grain Yield of Sorghum (Sorghum Bicolor L.) under Drought Stress Conditions. PLoS ONE 2020, 15, e0243824. [Google Scholar] [CrossRef]
- Thalooth, T.A.; Bahr, A.; Tawfik, M.M. Productivity of some barley cultivars as affected by inoculation under water stress conditions. Elixir Appl. Bot. 2012, 51, 10743–10749. [Google Scholar]
- Sharma, A.; Yadav, S. Vesicular arbuscular mycorrhizal fungi associated with rhizosphere of Hordeum vulgare L. in Sikar district. Inter. J. Food Agric. Vet. Sci. 2013, 3, 49–53. [Google Scholar]
- Wali, A.M.; Shamseldin, A.; Radwan, F.I.; Abd El Lateef, E.M.; Zaki, N.M. Response of barley (Hordeum vulgare) cultivars to humic acid, mineral and biofertilization under calcareous soil conditions. Middle East J. Agric. Res 2018, 7, 71–82. [Google Scholar]
- Baillie, I.C. Soil Survey Staff 1999, Soil Taxonomy. Soil Use Manag. 2006, 17, 57–60. [Google Scholar] [CrossRef]
- Gerdemann, J.W.; Nicolson, T.H. Spores of Mycorrhizal Endogone Species Extracted from Soil by Wet Sieving and Decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Schenck, N.C.; Perez, Y. Manual for Identification of Vesicular Arbuscular Mycorrhizal Fungi (INVAM); University of Florida: Gainesville, FL, USA, 1990. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of A.O.A.C. International, 17th ed.; Horwitz, S.W., Ed.; AOAC: Rockville, MD, USA, 2000; Volume 2, pp. 66–68. [Google Scholar]
- Chapman, H.D.; Parker, F. Methods of analysis for soil, plant, and water. J. Plant Nutr. 1961, 22, 121–128. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis-Chemical and Microbiology Properties; American Society of Agronomy Inc.: Madison, WI, USA, 1982; 1159p. [Google Scholar]
- Casella, G. Statistical Design; Springer: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- CoStat, Version 6.4; Cohort Software 798: Monterey, CA, USA, 2005.
- Duncan, S., Jr. Nonverbal Communication. Psychol. Bull. 1969, 72, 118–137. [Google Scholar] [CrossRef]
- Hoseinlou, S.H.; Ali, E.; Mehdi, G.; Elham, M. Nitrogen use efficiency under water deficit condition in spring barley. Int. J. Agron. Plant Prod. 2013, 4, 3681–3687. [Google Scholar]
- Naghdyzadegan Jahromi, M.; Razzaghi, F.; Zand-Parsa, S. Strategies to Increase Barley Production and Water Use Efficiency by Combining Deficit Irrigation and Nitrogen Fertilizer. Irrig. Sci. 2022, 41, 261–275. [Google Scholar] [CrossRef]
- Abu-Awwad, A.M.; Kharabsheh, A.A. Influence of Supplemental Irrigation and Soil Surface Furrowing on Barley Yield in Arid Areas Affected by Surface Crust. J. Arid Environ. 2000, 46, 227–237. [Google Scholar] [CrossRef]
- Milad, R.A. Effects of water stress and nitrogen fertilization on growth yield and grain production of barley. Alex. J. Agric. Res. 2006, 27, 292–300. [Google Scholar]
- Mashi, S.A.; Inkani, A.I.; Yaro, A. On-Farm Adaptation to Climate Change: Assessment of Effects of Groundwater-Based Deficit and Supplementary Irrigation on Soil Quality under Semi-Arid Ecosystems. Turk. J. Agric. Food Sci. Technol. 2022, 10, 2588–2596. [Google Scholar] [CrossRef]
- Attia, M.I.; El-, A.; Tahoun, A.M.A.; Abdelghany, F.I.M.; El-Serafy, R. Productivity of Some Barley Cultivars as Affected by Supplemental Irrigation under Rainfed Conditions. Aust. J. Crop Sci. 2022, 2022, 665–675. [Google Scholar] [CrossRef]
- Plaut, Z.; Butow, B.J.; Blumenthal, C.S.; Wrigley, C.W. Transport of Dry Matter into Developing Wheat Kernels and Its Contribution to Grain Yield under Post-Anthesis Water Deficit and Elevated Temperature. Field Crop. Res. 2004, 86, 185–198. [Google Scholar] [CrossRef]
- Xu, Z.-Z.; Zhou, G.-S. Effects of Water Stress and High Nocturnal Temperature on Photosynthesis and Nitrogen Level of a Perennial Grass Leymus Chinensis. Plant Soil 2005, 269, 131–139. [Google Scholar] [CrossRef]
- Abideen, Z.U.; Munawar, I.; Rauf, A. Comparative characterization of wheat varieties for yield and related traits under drought stress. Biol. Agric. Sci. Res. J. 2023, 2023, 7. [Google Scholar] [CrossRef]
- Soorninia, F.; Najaphy, A.; Kahrizi, D.; Mostafaei, A. Yield Attributes and Qualitative Characters of Durum Wheat as Affected by Terminal Drought Stress. Int. J. Plant Prod. 2023, 17, 309–322. [Google Scholar] [CrossRef]
- Moradgholi, A.; Mobasser, H.; Ganjali, H.; Fanaie, H.; Mehraban, A. WUE, Protein and Grain Yield of Wheat under the Interaction of Biological and Chemical Fertilizers and Different Moisture Regimes. Cereal Res. Commun. 2021, 50, 147–155. [Google Scholar] [CrossRef]
- Ahmad, A.; Aslam, Z.; Javed, T.; Hussain, S.; Raza, A.; Shabbir, R.; Mora-Poblete, F.; Saeed, T.; Zulfiqar, F.; Ali, M.M.; et al. Screening of Wheat (Triticum Aestivum L.) Genotypes for Drought Tolerance through Agronomic and Physiological Response. Agronomy 2022, 12, 287. [Google Scholar] [CrossRef]
- Zulfiqar, B.; Raza, M.A.S.; Saleem, M.F.; Aslam, M.U.; Iqbal, R.; Muhammad, F.; Amin, J.; Ibrahim, M.A.; Khan, I.H. Biochar Enhances Wheat Crop Productivity by Mitigating the Effects of Drought: Insights into Physiological and Antioxidant Defense Mechanisms. PLoS ONE 2022, 17, e0267819. [Google Scholar] [CrossRef]
- Riaz, R.; Chowd, M.A. Genetic Analysis of Some Economic Traits of Wheat under Drought Condition. Asian J. Plant Sci. 2003, 2, 790–796. [Google Scholar] [CrossRef]
- Gul, F.; Khan, I.U.; Rutherford, S.; Dai, Z.; Li, G.T.; Du, D. Plant Growth Promoting Rhizobacteria and Biochar Production from Parthenium Hysterophorus Enhance Seed Germination and Productivity in Barley under Drought Stress. Front. Plant Sci. 2023, 14, 1175097. [Google Scholar] [CrossRef]
- Tarnawa, Á.; Kende, Z.; Sghaier, A.H.; Kovács, G.P.; Gyuricza, C.; Khaeim, H.M. Effect of Abiotic Stresses from Drought, Temperature, and Density on Germination and Seedling Growth of Barley (Hordeum Vulgare L.). Plants 2023, 12, 1792. [Google Scholar] [CrossRef] [PubMed]
- Bayoumi, T.Y.; Manal, H.E.; Metwali, E.M. Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. Afr. J. Biotechnol. 2008, 7, 2341–2352. [Google Scholar]
- Melash, A.A.; Bogale, A.A.; Bytyqi, B.; Nyandi, M.S.; Ábrahám, É.B. Nutrient Management: As a Panacea to Improve the Caryopsis Quality and Yield Potential of Durum Wheat (Triticum Turgidum L.) under the Changing Climatic Conditions. Front. Plant Sci. 2023, 14, 1232675. [Google Scholar] [CrossRef]
- Raza, A.; Mubarik, M.S.; Sharif, R.; Habib, M.; Jabeen, W.; Zhang, C.; Chen, H.; Chen, Z.; Siddique, K.H.M.; Zhuang, W.; et al. Developing Drought-Smart, Ready To Grow Future Crops. Plant Genome 2022, 16, e20279. [Google Scholar] [CrossRef]
- Raklami, A.; Bechtaoui, N.; Tahiri, A.; Anli, M.; Meddich, A.; Oufdou, K. Use of Rhizobacteria and Mycorrhizae Consortium in the Open Field as a Strategy for Improving Crop Nutrition, Productivity and Soil Fertility. Front. Microbiol. 2019, 10, 1106. [Google Scholar] [CrossRef]
- Slimani, A.; Raklami, A.; Oufdou, K.; Meddich, A. Isolierung Und Charakterisierung von PGPR Und Ihr Potenzial Zur Linderung von Trockenheit in Gerstenpflanzen. Gesunde Pflanz. 2022, 75, 377–391. [Google Scholar] [CrossRef]
- Beslemes, D.; Tigka, E.; Roussis, I.; Kakabouki, I.; Mavroeidis, A.; Vlachostergios, D.Ν. Effect of Arbuscular Mycorrhizal Fungi on Nitrogen and Phosphorus Uptake Efficiency and Crop Productivity of Two-Rowed Barley under Different Crop Production Systems. Plants 2023, 12, 1908. [Google Scholar] [CrossRef]
- Shi, J.; Wang, X.; Wang, E. Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems. Annu. Rev. Plant Biol. 2023, 74, 569–607. [Google Scholar] [CrossRef]
- Najafi, A.; Ardakani, M.R.; Rejali, F.; Sajedi, N. Response of winter barley to co-inoculation with Azotobacter and Mycorrhiza fungi influenced by plant growth promoting rhizobacteria. Ann. Biol. Res. 2012, 3, 4002–4006. [Google Scholar]
- Chen, D.; Saeed, M.; Ali, M.N.H.A.; Raheel, M.; Ashraf, W.; Hassan, Z.; Hassan, M.Z.; Farooq, U.; Hakim, M.F.; Rao, M.J.; et al. Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhizal Fungi Combined Application Reveals Enhanced Soil Fertility and Rice Production. Agronomy 2023, 13, 550. [Google Scholar] [CrossRef]
- Bárzana, G.; Aroca, R.; Paz, J.A.; Chaumont, F.; Martinez-Ballesta, M.C.; Carvajal, M.; Ruiz-Lozano, J.M. Arbuscular Mycorrhizal Symbiosis Increases Relative Apoplastic Water Flow in Roots of the Host Plant under Both Well-Watered and Drought Stress Conditions. Ann. Bot. 2012, 109, 1009–1017. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Srivastava, A.K.; Zou, Y.-N.; Ni, Q.-D.; Yu, H.; Wu, Q. Mycorrhizal-Induced Calmodulin Mediated Changes in Antioxidant Enzymes and Growth Response of Drought-Stressed Trifoliate Orange. Front. Microbiol. 2014, 5, 682. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Sheng, M.; Wang, C.Y.; Chen, H.; Li, Z.; Tang, M. Impact of Arbuscular Mycorrhizal Fungi on the Growth, Water Status, and Photosynthesis of Hybrid Poplar under Drought Stress and Recovery. Photosynthetica 2015, 53, 250–258. [Google Scholar] [CrossRef]
- Fiorilli, V.; Maghrebi, M.; Novero, M.; Votta, C.; Mazzarella, T.; Buffoni, B.; Astolfi, S.; Vigani, G. Arbuscular Mycorrhizal Symbiosis Differentially Affects the Nutritional Status of Two Durum Wheat Genotypes under Drought Conditions. Plants 2022, 11, 804. [Google Scholar] [CrossRef]
- Huang, Z.; Zou, Z.; He, C.; He, Z.; Zhang, Z.; Li, J. Physiological and Photosynthetic Responses of Melon (Cucumis Melo L.) Seedlings to Three Glomus Species under Water Deficit. Plant Soil 2010, 339, 391–399. [Google Scholar] [CrossRef]
- Lehto, T.; Zwiazek, J.J. Ectomycorrhizas and Water Relations of Trees: A Review. Mycorrhiza 2010, 21, 71–90. [Google Scholar] [CrossRef]
- Augé, R.M.; Toler, H.D.; Saxton, A.M. Arbuscular Mycorrhizal Symbiosis Alters Stomatal Conductance of Host Plants More under Drought than under Amply Watered Conditions: A Meta-Analysis. Mycorrhiza 2014, 25, 13–24. [Google Scholar] [CrossRef]
- Wahab, A.; Muhammad, M.; Munir, A.; Abdi, G.; Zaman, W.; Ayaz, A.; Khizar, C.; Reddy, S.P.P. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses. Plants 2023, 12, 3102. [Google Scholar] [CrossRef]
- Zare, L.; Ronaghi, A.; Ghasemi-Fasaei, R.; Zarei, M.; Sepehri, M. Arbuscular Mycorrhizal Fungi and Nitric Oxide Alleviate Cadmium Phytotoxicity by Improving Internal Detoxification Mechanisms of Corn Plants. Environ. Sci. Pollut. Res. 2023, 30, 93602–93616. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, Z.; Yang, X.; Luying, S.; Huan, M.; Zhu, S. Metagenomics Reveal Arbuscular Mycorrhizal Fungi Altering Functional Gene Expression of Rhizosphere Microbial Community to Enhance Iris Tectorum’s Resistance to Cr Stress. Sci. Total Environ. 2023, 895, 164970. [Google Scholar] [CrossRef]
- Francis, B.; Aravindakumar, C.T.; Brewer, P.B.; Simon, S. Plant Nutrient Stress Adaptation: A Prospect for Fertilizer Limited Agriculture. Environ. Exp. Bot. 2023, 213, 105431. [Google Scholar] [CrossRef]
- Cheng, Y.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Ma, Y. Phosphate-Solubilizing Bacteria: Their Agroecological Function and Optimistic Application for Enhancing Agro-Productivity. Sci. Total Environ. 2023, 901, 166468. [Google Scholar] [CrossRef]
- Bayani, R.; Saateyi, A.; Faghani, E. Influence of Arbuscular Mycorrhiza in Phosphorus Acquisition Efficiency and Drought-Tolerance Mechanisms in Barley (Hordeum Vulgare L.). Int. J. Biosci. IJB 2015, 7, 86–94. [Google Scholar] [CrossRef]
- Govindarajulu, M.; Pfeffer, P.E.; Jin, H.; Abubaker, J.; Douds, D.D.; Allen, J.W.; Bücking, H.; Lammers, P.J.; Shachar-Hill, Y. Nitrogen Transfer in the Arbuscular Mycorrhizal Symbiosis. Nature 2005, 435, 819–823. [Google Scholar] [CrossRef]
- Zada, H.; Ortas, I. Mycorrhizae: A solution to the crises of soil health, plant nutrition and food security. In A Solution to the Crises of Soil, Water, and Climate in Plant Production; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2023; p. 126. [Google Scholar]
- Shao, Y.; Imran, I.; Ortas, I. Impact of Mycorrhiza on Plant Nutrition and Food Security. J. Plant Nutr. 2023, 46, 3247–3272. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Wang, X.; Xie, X.; Siddikee, M.A.; Xu, R.; Dai, C. Enhanced Nodulation of Peanut When Co-Inoculated with Fungal Endophyte Phomopsis Liquidambari and Bradyrhizobium. Plant Physiol. Biochem. 2016, 98, 1–11. [Google Scholar] [CrossRef]
- Porcel, R.; Aroca, R.; Ruiz-Lozano, J.M. Salinity Stress Alleviation Using Arbuscular Mycorrhizal Fungi. A Review. Agron. Sustain. Dev. 2011, 32, 181–200. [Google Scholar] [CrossRef]
- Gietler, M.; Fidler, J.; Labudda, M.; Nykiel, M. Abscisic Acid—Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? Int. J. Mol. Sci. 2020, 21, 4607. [Google Scholar] [CrossRef] [PubMed]
- Herrera Medina, M.J.; Steinkellner, S.; Vierheilig, H.; Ocampo Bote, J.A.; García Garrido, J.M. Abscisic Acid Determines Arbuscule Development and Functionality in the Tomato Arbuscular Mycorrhiza. New Phytol. 2007, 175, 554–564. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, M.M.; Aljuaid, A.; Alharbi, M.M.; Qumsani, A.T.; Alzuaibr, F.M.; Alsubeie, M.S.; Ismail, K.A.; Gharib, H.S.; Awad-Allah, M.M.A. The Effects of Bio-Fertilizer by Arbuscular Mycorrhizal Fungi and Phosphate Solubilizing Bacteria on the Growth and Productivity of Barley under Deficit of Water Irrigation Conditions. Agronomy 2024, 14, 1973. https://doi.org/10.3390/agronomy14091973
Alotaibi MM, Aljuaid A, Alharbi MM, Qumsani AT, Alzuaibr FM, Alsubeie MS, Ismail KA, Gharib HS, Awad-Allah MMA. The Effects of Bio-Fertilizer by Arbuscular Mycorrhizal Fungi and Phosphate Solubilizing Bacteria on the Growth and Productivity of Barley under Deficit of Water Irrigation Conditions. Agronomy. 2024; 14(9):1973. https://doi.org/10.3390/agronomy14091973
Chicago/Turabian StyleAlotaibi, Mashael M., Alya Aljuaid, Maha Mohammed Alharbi, Alaa T. Qumsani, Fahad Mohammed Alzuaibr, Moodi S. Alsubeie, Khadiga Ahmed Ismail, Hany S. Gharib, and Mamdouh M. A. Awad-Allah. 2024. "The Effects of Bio-Fertilizer by Arbuscular Mycorrhizal Fungi and Phosphate Solubilizing Bacteria on the Growth and Productivity of Barley under Deficit of Water Irrigation Conditions" Agronomy 14, no. 9: 1973. https://doi.org/10.3390/agronomy14091973
APA StyleAlotaibi, M. M., Aljuaid, A., Alharbi, M. M., Qumsani, A. T., Alzuaibr, F. M., Alsubeie, M. S., Ismail, K. A., Gharib, H. S., & Awad-Allah, M. M. A. (2024). The Effects of Bio-Fertilizer by Arbuscular Mycorrhizal Fungi and Phosphate Solubilizing Bacteria on the Growth and Productivity of Barley under Deficit of Water Irrigation Conditions. Agronomy, 14(9), 1973. https://doi.org/10.3390/agronomy14091973