CRISPR/Cas9-Mediated Editing of a NODULATION SIGNALING PATHWAY 1 Homolog Alters the Production of Strigolactones in Sunflower Roots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Identification and Phylogenetic Analysis of NSP Proteins in Sunflower
2.3. RNA-Seq Data Analysis
2.4. Construction of the Vector for CRISPR-Cas9-Mediated Editing of the Candidate Gene
2.5. Sunflower Seed Sterilization and Its Transformation Using Agrobacterium (Rhizonium) Rhizogenes
2.6. Genotyping of Transgenic Roots
2.7. Identification of Strigolactones in Transgenic Sunflower Roots
3. Results
3.1. Identification and Phylogenetic Analysis of NSP Transcription Factors in Sunflowers
3.2. Expression Analyses of HaNSP Genes in Sunflower Roots
3.3. Construction of a Vector for CRISPR/Cas9-Mediated Editing of the NSP1-like Gene in Sunflowers and Selection of Transgenic Roots
3.4. Identification of the HaNSP1a Gene Editing Events in Transgenic Roots
3.5. Strigolactone Contents in Transgenic HaNSP1a-Edited Sunflower Roots
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cvejić, S.; Radanović, A.; Dedić, B.; Jocković, M.; Jocić, S.; Miladinović, D. Genetic and Genomic Tools in Sunflower Breeding for Broomrape Resistance. Genes 2020, 11, 152. [Google Scholar] [CrossRef] [PubMed]
- Antonova, T.S.; Araslanova, N.M.; Saukova, S.L.; Ivebor, M.V. On the issue of fileds weediness with seeds of broomrape (Orobanche cumana Wallr.), an obligate parasite of sunflower in Russian Federation. Vestn. Russ. Agric. Sci. 2020, 4, 29–32. (In Russian) [Google Scholar] [CrossRef]
- Antonova, T.S.; Araslanova, N.M.; Pitinova, J.V. Racial belonging of broomrape (Orobanche cumana Wallr.) seeds, collected on the fields of different regions of the Russian Federation in 2019. Agrar. Sci. 2020, 6, 62–65. [Google Scholar] [CrossRef]
- Lebedeva, M.A.; Gancheva, M.S.; Losev, M.R.; Krutikova, A.A.; Plemyashov, K.V.; Lutova, L.A. Molecular and Genetic Bases for Sunflower Resistance to Broomrape. Russ. J. Plant Physiol. 2023, 70, 92. [Google Scholar] [CrossRef]
- Yoneyama, K.; Xie, X.; Kisugi, T.; Nomura, T.; Sekimoto, H.; Yokota, T.; Yoneyama, K. Characterization of Strigolactones Exuded by Asteraceae Plants. Plant Growth Regul. 2011, 65, 495–504. [Google Scholar] [CrossRef]
- Bharti, N.; Tripathi, S.; Bhatla, S.C. Photomodulation of Strigolactone Biosynthesis and Accumulation during Sunflower Seedling Growth. Plant Signal Behav. 2015, 10, e1049792. [Google Scholar] [CrossRef]
- Joel, D.M.; Chaudhuri, S.K.; Plakhine, D.; Ziadna, H.; Steffens, J.C. Dehydrocostus Lactone Is Exuded from Sunflower Roots and Stimulates Germination of the Root Parasite Orobanche Cumana. Phytochemistry 2011, 72, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Raupp, F.M.; Spring, O. New Sesquiterpene Lactones from Sunflower Root Exudate as Germination Stimulants for Orobanche Cumana. J. Agric. Food Chem. 2013, 61, 10481–10487. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Furumoto, T.; Umeda, S.; Mizutani, M.; Takikawa, H.; Batchvarova, R.; Sugimoto, Y. Heliolactone, a Non-Sesquiterpene Lactone Germination Stimulant for Root Parasitic Weeds from Sunflower. Phytochemistry 2014, 108, 122–128. [Google Scholar] [CrossRef]
- Smit, P.; Raedts, J.; Portyanko, V.; Debellé, F.; Gough, C.; Bisseling, T.; Geurts, R. NSP1 of the GRAS Protein Family Is Essential for Rhizobial Nod Factor-Induced Transcription. Science 2005, 308, 1789–1791. [Google Scholar] [CrossRef]
- Delaux, P.; Bécard, G.; Combier, J. NSP 1 Is a Component of the Myc Signaling Pathway. New Phytol. 2013, 199, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Kohlen, W.; Lillo, A.; Op den Camp, R.; Ivanov, S.; Hartog, M.; Limpens, E.; Jamil, M.; Smaczniak, C.; Kaufmann, K.; et al. Strigolactone Biosynthesis in Medicago Truncatula and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2. Plant Cell 2011, 23, 3853–3865. [Google Scholar] [CrossRef] [PubMed]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A Comparative Platform for Green Plant Genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Babraham Bioinformatics—FastQC A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 13 May 2024).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Badouin, H.; Gouzy, J.; Grassa, C.J.; Murat, F.; Staton, S.E.; Cottret, L.; Lelandais-Brière, C.; Owens, G.L.; Carrère, S.; Mayjonade, B.; et al. The Sunflower Genome Provides Insights into Oil Metabolism, Flowering and Asterid Evolution. Nature 2017, 546, 148–152. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie Enables Improved Reconstruction of a Transcriptome from RNA-Seq Reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Xing, H.-L.; Dong, L.; Wang, Z.-P.; Zhang, H.-Y.; Han, C.-Y.; Liu, B.; Wang, X.-C.; Chen, Q.-J. A CRISPR/Cas9 Toolkit for Multiplex Genome Editing in Plants. BMC Plant Biol. 2014, 14, 327. [Google Scholar] [CrossRef] [PubMed]
- Kiryushkin, A.S.; Ilina, E.L.; Guseva, E.D.; Pawlowski, K.; Demchenko, K.N. Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. Plants 2022, 11, 51. [Google Scholar] [CrossRef]
- Parks, T.; Yordanov, Y.S. Composite Plants for a Composite Plant: An Efficient Protocol for Root Studies in the Sunflower Using Composite Plants Approach. Plant Cell Tissue Organ. Cult. 2020, 140, 647–659. [Google Scholar] [CrossRef]
- Lullien, V.; Barker, D.G.; de Lajudie, P.; Huguet, T. Plant Gene Expression in Effective and Ineffective Root Nodules of Alfalfa (Medicago sativa). Plant Mol. Biol. 1987, 9, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Sisou, D.; Tadmor, Y.; Plakhine, D.; Ziadna, H.; Hübner, S.; Eizenberg, H. Biological and Transcriptomic Characterization of Pre-Haustorial Resistance to Sunflower Broomrape (Orobanche cumana W.) in Sunflowers (Helianthus annuus). Plants 2021, 10, 1810. [Google Scholar] [CrossRef]
- Kiryushkin, A.S.; Ilina, E.L.; Kiikova, T.Y.; Pawlowski, K.; Demchenko, K.N. Do DEEPER ROOTING 1 Homologs Regulate the Lateral Root Slope Angle in Cucumber (Cucumis sativus)? Int. J. Mol. Sci. 2024, 25, 1975. [Google Scholar] [CrossRef] [PubMed]
- Boisson-Dernier, A.; Chabaud, M.; Garcia, F.; Bécard, G.; Rosenberg, C.; Barker, D.G. Agrobacterium Rhizogenes-Transformed Roots of Medicago Truncatula for the Study of Nitrogen-Fixing and Endomycorrhizal Symbiotic Associations. Mol. Plant Microbe Interact. 2001, 14, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Ruyter-Spira, C.; Al-Babili, S.; van der Krol, S.; Bouwmeester, H. The Biology of Strigolactones. Trends Plant Sci. 2013, 18, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Zhang, H.; Yu, C.; Luo, N.; Yan, J.; Zheng, S.; Hu, Q.; Zhang, D.; Kou, L.; Meng, X.; et al. Low Phosphorus Promotes NSP1–NSP2 Heterodimerization to Enhance Strigolactone Biosynthesis and Regulate Shoot and Root Architecture in Rice. Mol. Plant 2023, 16, 1811–1831. [Google Scholar] [CrossRef]
- Duriez, P.; Vautrin, S.; Auriac, M.-C.; Bazerque, J.; Boniface, M.-C.; Callot, C.; Carrère, S.; Cauet, S.; Chabaud, M.; Gentou, F.; et al. A Receptor-like Kinase Enhances Sunflower Resistance to Orobanche Cumana. Nat. Plants 2019, 5, 1211–1215. [Google Scholar] [CrossRef] [PubMed]
- Pruitt, R.N.; Joe, A.; Zhang, W.; Feng, W.; Stewart, V.; Schwessinger, B.; Dinneny, J.R.; Ronald, P.C. A Microbially Derived Tyrosine-Sulfated Peptide Mimics a Plant Peptide Hormone. New Phytol. 2017, 215, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Aparicio, M.; del Moral, L.; Muños, S.; Velasco, L.; Pérez-Vich, B. Genetic and Physiological Characterization of Sunflower Resistance Provided by the Wild-Derived OrDeb2 Gene against Highly Virulent Races of Orobanche Cumana Wallr. Theor. Appl. Genet. 2022, 135, 501–525. [Google Scholar] [CrossRef] [PubMed]
- Louarn, J.; Boniface, M.-C.; Pouilly, N.; Velasco, L.; Pérez-Vich, B.; Vincourt, P.; Muños, S. Sunflower Resistance to Broomrape (Orobanche cumana) Is Controlled by Specific QTLs for Different Parasitism Stages. Front. Plant Sci. 2016, 7, 590. [Google Scholar] [CrossRef]
- Radwan, O.; Gandhi, S.; Heesacker, A.; Whitaker, B.; Taylor, C.; Plocik, A.; Kesseli, R.; Kozik, A.; Michelmore, R.W.; Knapp, S.J. Genetic Diversity and Genomic Distribution of Homologs Encoding NBS-LRR Disease Resistance Proteins in Sunflower. Mol. Genet. Genom. 2008, 280, 111–125. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedeva, M.A.; Gancheva, M.S.; Losev, M.R.; Sokornova, S.V.; Yuzikhin, O.S.; Krutikova, A.A.; Plemyashov, K.V.; Lutova, L.A. CRISPR/Cas9-Mediated Editing of a NODULATION SIGNALING PATHWAY 1 Homolog Alters the Production of Strigolactones in Sunflower Roots. Agronomy 2025, 15, 129. https://doi.org/10.3390/agronomy15010129
Lebedeva MA, Gancheva MS, Losev MR, Sokornova SV, Yuzikhin OS, Krutikova AA, Plemyashov KV, Lutova LA. CRISPR/Cas9-Mediated Editing of a NODULATION SIGNALING PATHWAY 1 Homolog Alters the Production of Strigolactones in Sunflower Roots. Agronomy. 2025; 15(1):129. https://doi.org/10.3390/agronomy15010129
Chicago/Turabian StyleLebedeva, Maria A., Maria S. Gancheva, Maksim R. Losev, Sofia V. Sokornova, Oleg S. Yuzikhin, Anna A. Krutikova, Kirill V. Plemyashov, and Lyudmila A. Lutova. 2025. "CRISPR/Cas9-Mediated Editing of a NODULATION SIGNALING PATHWAY 1 Homolog Alters the Production of Strigolactones in Sunflower Roots" Agronomy 15, no. 1: 129. https://doi.org/10.3390/agronomy15010129
APA StyleLebedeva, M. A., Gancheva, M. S., Losev, M. R., Sokornova, S. V., Yuzikhin, O. S., Krutikova, A. A., Plemyashov, K. V., & Lutova, L. A. (2025). CRISPR/Cas9-Mediated Editing of a NODULATION SIGNALING PATHWAY 1 Homolog Alters the Production of Strigolactones in Sunflower Roots. Agronomy, 15(1), 129. https://doi.org/10.3390/agronomy15010129