Influence of No-Tillage on Soil CO2 Emissions Affected by Monitoring Hours in Maize in the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Management
2.3. CO2 Flux Sampling and Measurement
2.4. Auxiliary Measurements
2.5. Data Analysis
3. Results
3.1. Soil CO2 Emissions
3.2. Soil Water Content and Soil Temperature
3.3. Relationship Between Soil CO2 Emissions with SWC and ST
4. Discussion
4.1. Influence of Sampling Method on the Response of Soil CO2 Emissions to NT
4.2. Influence of Sampling Method on the Response of SWC and ST to NT
4.3. Influence of Sampling Method on the Relationship of Soil CO2 Emissions with SWC and ST
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Valentini, R.; Matteucci, G.; Dolman, A.J.; Schulze, E.D.; Rebmann, C.; Moors, E.J.; Granier, A.; Gross, P.; Jensen, N.O.; Pilegaard, K. Respiration as the main determinant of carbon balance in European forests. Nature 2000, 404, 861–865. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Subke, J.A.; Inglima, I.; Cotrufo, M.F. Trends and methodological impacts in soil CO2 efflux partitioning: A meta analytical review. Global Change Biol. 2006, 12, 921–943. [Google Scholar] [CrossRef]
- Farhate, C.V.; de Souza, Z.M.; La Scala, N.J.; de Sousa, A.M.; Santos, A.G.; Carvalho, J.N. Soil tillage and cover crop on soil CO2 emissions from sugarcane fields. Soil Use Manag. 2019, 35, 273–282. [Google Scholar] [CrossRef]
- Rutkowska, B.; Szulc, W.; Sosulski, T.; Skowronska, M.; Szczepaniak, J. Impact of reduced tillage on CO2 emission from soil under maize cultivation. Soil Tillage Res. 2018, 180, 21–28. [Google Scholar] [CrossRef]
- Kabiri, V.; Raiesi, F.; Ghazavi, M.A. Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts. Agric. Ecosyst. Environ. 2016, 232, 73–84. [Google Scholar] [CrossRef]
- Helgason, B.L.; Walley, F.L.; Germida, J.J. Fungal and bacterial abundance in long-term no-till and intensive-till soils of the Northern Great Plains. Soil Sci. Soc. Am. J. 2009, 73, 120–127. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Lajeunesse, M.J.; Miao, G.; Piao, S.; Wan, S.; Wu, Y.; Wang, Z.; Yang, S.; Li, P.; et al. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Global Change Biol. 2016, 22, 1394–1405. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.M.; Valero, C.; Angel, M.; Gil Rodriguez, M.; Silva, L.L. Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma 2015, 237, 60–70. [Google Scholar] [CrossRef]
- Pareja-Sanchez, E.; Cantero-Martinez, C.; Alvaro-Fuentes, J.; Plaza-Bonilla, D. Tillage and nitrogen fertilization in irrigated maize: Key practices to reduce soil CO2 and CH4 emissions. Soil Tillage Res. 2019, 191, 29–36. [Google Scholar] [CrossRef]
- Guzman, J.; Al-Kaisi, M.; Parkin, T. Greenhouse gas emissions dynamics as influenced by corn residue removal in continuous corn system. Soil Sci. Soc. Am. J. 2015, 79, 612–625. [Google Scholar] [CrossRef]
- Sainju, U.M.; Caesar-TonThat, T.; Lenssen, A.W.; Barsotti, J.L. Dryland soil greenhouse gas emissions affected by cropping sequence and nitrogen fertilization. Soil Sci. Soc. Am. J. 2012, 76, 1741. [Google Scholar] [CrossRef]
- Dossou-Yovo, E.R.; Brueggemann, N.; Jesse, N.; Huat, J.; Ago, E.E.; Agbossou, E.K. Reducing soil CO2 emission and improving upland rice yield with no-tillage, straw mulch and nitrogen fertilization in northern Benin. Soil Tillage Res. 2016, 156, 44–53. [Google Scholar] [CrossRef]
- Jabro, J.D.; Sainju, U.; Stevens, W.B.; Evans, R.G. Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. J. Environ. Manag. 2008, 88, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Lakhal, E.K.; Ayyoub, A.R. Effect of air relative humidity harvest on soil moisture content under moroccan climatic conditions. El Khadir Lakhal Int. J. Eng. Res. Appl. 2015, 5, 74–82. [Google Scholar]
- Ravi, S.; D’Odorico, P.; Over, T.M.; Zobeck, T.M. On the effect of air humidity on soil susceptibility to wind erosion: The case of air-dry soils. Geophys. Res. Lett. 2004, 31, 19485. [Google Scholar] [CrossRef]
- Xian, Y.R.; Li, J.L.; Zhang, Y.; Shen, Y.Y.; Wang, X.Q.; Huang, J.X.; Sui, P. Determining suitable sampling times for soil CO2 and N2O emissions helps to accurately evaluate the ability of rubber-based agroforestry systems to cope with climate stress. Forests 2024, 15, 950. [Google Scholar] [CrossRef]
- Du, K.; Li, F.; Qiao, Y.; Leng, P.; Li, Z.; Ge, J.; Yang, G. Influence of no-tillage and precipitation pulse on continuous soil respiration of summer maize affected by soil water in the North China Plain. Sci. Total Environ. 2021, 766, 144384. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Li, F. Responses of greenhouse gas fluxes to experimental warming in wheat season under conventional tillage and no-tillage fields. J. Environ. Sci. 2017, 54, 314–327. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, F.; Ai, Z.; Li, J.; Gu, C. Stable isotope evidences for identifying crop water uptake in a typical winter wheat-summer maize rotation field in the North China Plain. Sci. Total Environ. 2018, 618, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Q.; Qiao, Y.; Du, K.; Li, Z.; Tian, C.; Zhu, N.; Leng, P.; Yue, Z.; Cheng, H.; et al. Trade-offs between high yields and soil CO2 emissions in semi-humid maize cropland in northern China. Soil Tillage Res. 2022, 221, 105412. [Google Scholar] [CrossRef]
- Wang, K.; Liu, C.; Zheng, X.; Pihlatie, M.; Li, B.; Haapanala, S.; Vesala, T.; Liu, H.; Wang, Y.; Liu, G.; et al. Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields. Biogeosciences 2013, 10, 6865–6877. [Google Scholar] [CrossRef]
- Fan, J.L.; Luo, R.Y.; Liu, D.Y.; Chen, Z.M.; Luo, J.F.; Boland, N.; Tang, J.W.; Hao, M.D.; McConkey, B.; Ding, W.X. Stover retention rather than no-till decreases the global warming potential of rainfed continuous maize cropland. Field Crops Res. 2018, 219, 14–23. [Google Scholar] [CrossRef]
- Pabst, H.; Gerschlauer, F.; Kiese, R.; Kuzyakov, Y. Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania. Land Degrad. Dev. 2016, 27, 592–602. [Google Scholar] [CrossRef]
- Inglima, I.; Alberti, G.; Bertolini, T.; Vaccari, F.P.; Gioli, B.; Miglietta, F.; Cotrufo, M.F.; Peressotti, A. Precipitation pulses enhance respiration of Mediterranean ecosystems: The balance between organic and inorganic components of increased soil CO2 efflux. Global Change Biol. 2009, 15, 1289–1301. [Google Scholar] [CrossRef]
- Wu, Y.F.; Whitaker, J.; Toet, S.; Bradley, A.; Davies, C.A.; McNamara, N.P. Diurnal variability in soil nitrous oxide emissions is a widespread phenomenon. Global Change Biol. 2021, 27, 4950–4966. [Google Scholar] [CrossRef]
- Lammirato, C.; Wallman, M.; Weslien, P.; Klemedtsson, L.; Rütting, T. Measuring frequency and accuracy of annual nitrous oxide emission estimates. Agric. For. Meteorol. 2021, 310, 108624. [Google Scholar] [CrossRef]
- Silva, B.O.; Moitinho, M.R.; de Araujo Santos, G.A.; Teixeira, D.B.; Fernandes, C.; La Scala, N., Jr. Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil Tillage Res. 2019, 186, 224–232. [Google Scholar] [CrossRef]
- Poll, C.; Marhan, S.; Back, F.; Niklaus, P.A.; Kandeler, E. Field-scale manipulation of soil temperature and precipitation change soil CO2 flux in a temperate agricultural ecosystem. Agric. Ecosyst. Environ. 2013, 165, 88–97. [Google Scholar] [CrossRef]
- Ali, S.; Xu, Y.; Ahmad, I.; Jia, Q.; Ma, X.; Ullah, H.; Alam, M.; Adnan, M.; Daur, I.; Ren, X.; et al. Tillage and deficit irrigation strategies to improve winter wheat production through regulating root development under simulated rainfall conditions. Agric. Water Manag. 2018, 209, 44–54. [Google Scholar] [CrossRef]
Years | Treatments | MonS Method | DayS Method |
---|---|---|---|
2018 | NT | 1958 ± 11 Ac | 2189 ± 21 Bd |
CT | 1584 ± 43 Aa | 1610 ± 23 Aa | |
2019 | NT | 1932 ± 27 Bbc | 1864 ± 14 Ac |
CT | 1883 ± 37 Bb | 1755 ± 11 Ab | |
Across years | NT | 1940 ± 15 | 2027 ± 164 |
CT | 1716 ± 164 | 1688 ± 74 | |
Across NT and CT | 2018 | 1753 ± 201 | 1899 ± 290 |
2019 | 1903 ± 149 | 1809 ± 56 |
Years | Treatments | SWC (%) | ST (°C) | ||
---|---|---|---|---|---|
MonS Method | DayS Method | MonS Method | DayS Method | ||
2018 | NT | 22.70 ± 0.04 Ad | 22.81 ± 0.06 Ac | 25.57 ± 0.09 Ac | 25.83 ± 0.17 Bc |
CT | 22.60 ± 0.13 Ac | 22.70 ± 0.07 Ac | 26.00 ± 0.11 Ad | 25.76 ± 0.16 Ac | |
2019 | NT | 21.20 ± 0.02 Ab | 21.22 ± 0.08 Ab | 24.54 ± 0.06 Aa | 25.04 ± 0.06 Ba |
CT | 20.50 ± 0.04 Aa | 20.58 ± 0.11 Aa | 25.20 ± 0.10 Ab | 25.27 ± 0.07 Ab | |
Across years | NT | 21.95 ± 0.15 | 22.01 ± 0.02 | 25.05 ± 0.12 | 25.46 ± 0.08 |
CT | 21.55 ± 0.06 | 21.64 ± 0.04 | 25.60 ± 0.04 | 25.26 ± 0.08 | |
Across NT and CT | 2018 | 22.65 ± 0.05 | 22.75 ± 0.05 | 25.78 ± 0.21 | 25.80 ± 0.16 |
2019 | 20.85 ± 0.12 | 20.90 ± 0.01 | 24.87 ± 0.13 | 24.93 ± 0.02 |
Years | NT/CT | MonS Method | DayS Method | ||||
---|---|---|---|---|---|---|---|
Regression Coefficients | R2 | Regression Coefficients | R2 | ||||
SWC | ST | SWC | ST | ||||
2018 + 2019 | NT | NS | NS | NS | NS | NS | NS |
2018 + 2019 | CT | −0.445 | 1.086 | 0.939 ** | 2.893 | 1.988 | 0.923 ** |
2018 | NT + CT | 0.953 | −0.043 | 0.851 * | 0.501 | 0.529 | 0.832 ** |
2019 | NT + CT | 1.032 | 0.142 | 0.993 ** | 0.529 | −0.452 | 0.905 ** |
2018 + 2019 | NT + CT | NS | NS | NS | 2.732 | 2.306 | 0.669 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, K.; Li, F.; Leng, P.; Zhang, Q. Influence of No-Tillage on Soil CO2 Emissions Affected by Monitoring Hours in Maize in the North China Plain. Agronomy 2025, 15, 136. https://doi.org/10.3390/agronomy15010136
Du K, Li F, Leng P, Zhang Q. Influence of No-Tillage on Soil CO2 Emissions Affected by Monitoring Hours in Maize in the North China Plain. Agronomy. 2025; 15(1):136. https://doi.org/10.3390/agronomy15010136
Chicago/Turabian StyleDu, Kun, Fadong Li, Peifang Leng, and Qiuying Zhang. 2025. "Influence of No-Tillage on Soil CO2 Emissions Affected by Monitoring Hours in Maize in the North China Plain" Agronomy 15, no. 1: 136. https://doi.org/10.3390/agronomy15010136
APA StyleDu, K., Li, F., Leng, P., & Zhang, Q. (2025). Influence of No-Tillage on Soil CO2 Emissions Affected by Monitoring Hours in Maize in the North China Plain. Agronomy, 15(1), 136. https://doi.org/10.3390/agronomy15010136