The Exploitation of Nanotechnology in Herbicides and Bioherbicides: A Novel Approach for Sustainable Weed Management
Abstract
:1. Introduction
2. Methodology
- Papers not written in English;
- Not original research (reviews, conference papers and book chapters);
- Unrelated articles with different treatment (neither herbicides nor bioherbicides) or different issue.
- Papers that reported trials on nanoparticle’s role in the detoxification of environment parts (water, soil and air);
- Papers that reported ecotoxicological profile of NPs;
- Mini reviews considered an experimental trial by Scopus database.
3. Characteristics of NPs for Weed Control
4. Nanoformulations for Enhancing Traditional Herbicides and Bioherbicides
4.1. Nanoemulsions
Main Methodologies for the Preparation of Nanoemulsions
- Low-energy methods generally employ only chemicals and normal agitation to create the nanoemulsion. These methods include phase inversion, spontaneous emulsification and solvent displacement. However, low-energy methods require a high concentration of emulsifying agents, which can impact the environmental safety [63]. An example of a low-energy method is reported in the experiment conducted by Hazrati et al. [60], namely, the catastrophic phase inversion method, who produced a stable nanoemulsion of Satureja hortensis L. essential oil without heating the oil, which could lead to a loss of the substance’s properties. This method consists of gradually adding water to a mixture of essential oil and surfactant while stirring at a specific rate. Water is added until the mixture undergoes a phase inversion from a water-in-oil emulsion to an oil-in-water emulsion. According to Kumar et al. [64], although low-energy methods are less energy-intensive, they require high concentrations of emulsifying agents that are not environmentally safe.
- High-energy methods are widely used to produce nanoemulsions. High-energy methods, such as sonication, microfluidization and high-pressure homogenization, require a machine to induce intense forces to produce smaller emulsions. These technologies allow saving on the use of emulsifiers and surfactants to obtain smaller, more stable and more efficient droplets from an herbicidal point of view. This was demonstrated by Somala et al. [63], who adopted microfluidization to prepare a nanoemulsion based on citronella essential oil, and by Dimak et al. [65], who applied microfluidization to prepare a nanoemulsion of peppermint essential oil.
4.2. Nanocapsules and Nanospheres
4.2.1. Poly(ε-Caprolactone) (PLC) Nanocapsules
4.2.2. Poly(Lactic-co-Glycolic Acid) (PLGA) Nanospheres
4.2.3. Chitosan and Pectin-Based Matrices
4.2.4. Metal–Organic Framework-Based NPs
4.3. Silver NPs
4.4. Clay’s Nanocarrier
5. Plant-Based Nanobioherbicides
6. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- World Population Prospects—Population Division—United Nations. Available online: https://population.un.org/wpp/ (accessed on 5 October 2024).
- FAO. The Future of Food and Agriculture—Alternative Pathways to 2050; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; p. 224. [Google Scholar]
- Kubiak, A.; Wolna-Maruwka, A.; Niewiadomska, A.; Pilarska, A.A. The Problem of Weed Infestation of Agricultural Plantations vs. the Assumptions of the European Biodiversity Strategy. Agronomy 2022, 12, 1808. [Google Scholar] [CrossRef]
- Peters, K.; Breitsameter, L.; Gerowitt, B. Impact of climate change on weeds in agriculture: A review. Agron. Sustain. Dev. 2014, 34, 707–721. [Google Scholar] [CrossRef]
- Das, T.K.; Behera, B.; Nath, C.P.; Ghosh, S.; Sen, S.; Raj, R.; Ghosh, S.; Sharma, A.R.; Yaduraju, N.T.; Nalia, A.; et al. Herbicides use in crop production: An analysis of cost-benefit, non-target toxicities and environmental risks. Crop Prot. 2024, 181, 106691. [Google Scholar] [CrossRef]
- Devi, P.I.; Manjula, M.; Bhavani, R.V. Agrochemicals, Environment, and Human Health. Annu. Rev. Environ. Resour. 2022, 47, 399–421. [Google Scholar] [CrossRef]
- Travlos, I.; de Prado, R.; Chachalis, D.; Bilalis, D.J. Editorial: Herbicide Resistance in Weeds: Early Detection, Mechanisms, Dispersal, New Insights and Management Issues. Front. Ecol. Evol. 2020, 8, 213. [Google Scholar] [CrossRef]
- Parven, A.; Meftaul, I.M.; Venkateswarlu, K.; Megharaj, M. Herbicides in modern sustainable agriculture: Environmental fate, ecological implications, and human health concerns. Int. J. Environ. Sci. Technol. 2024, 22, 1181–1202. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018, 616–617, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cui, H.; Wang, Y.; Sun, C.; Cui, B.; Zeng, Z. Development Strategies and Prospects of Nano-based Smart Pesticide Formulation. J. Agric. Food Chem. 2018, 66, 6504–6512. [Google Scholar] [CrossRef] [PubMed]
- Tataridas, A.; Kanatas, P.; Chatzigeorgiou, A.; Zannopoulos, S.; Travlos, I. Sustainable Crop and Weed Management in the Era of the EU Green Deal: A Survival Guide. Agronomy 2022, 12, 589. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G. Integrated weed management in herbaceous field crops. Agronomy 2020, 10, 466. [Google Scholar] [CrossRef]
- Hasan, M.; Ahmad-Hamdani, M.S.; Rosli, A.M.; Hamdan, H. Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management. Plants 2021, 10, 1212. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, V.; de Sousa, B.T.; Preisler, A.C.; Carvalho, L.B.; Pereira, A.D.E.S.; Tornisielo, V.L.; Dalazen, G.; Oliveira, H.C.; Fraceto, L.F. Foliar absorption and field herbicidal studies of atrazine-loaded polymeric nanoparticles. J. Hazard Mater. 2021, 418, 126350. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.J.; Basri, M.; Omar, D.; Abdul Rahman, M.B.; Salleh, A.B.; Raja Abdul Rahman, R.N.Z. Physicochemical characterization and formation of glyphosate-laden nano-emulsion for herbicide formulation. Ind. Crops Prod. 2012, 36, 607–613. [Google Scholar] [CrossRef]
- Gruère, G.; Narrod, C.; Abbott, L. Agricultural, Food, and Water Nanotechnologies for the Poor: Opportunities, Constraints, and the Role of the Consultative Group on International Agricultural Research. Communications February 2011. [Online]. Available online: http://www.ifpri.org/sites/default/files/publications/ifpridp01064.pdf (accessed on 6 October 2024).
- Mishra, V.; Mishra, R.K.; Dikshit, A.; Pandey, A.C. Interactions of Nanoparticles with Plants: An Emerging Prospective in the Agriculture Industry. In Emerging Technologies and Management of Crop Stress Tolerance: Volume 1—Biological Techniques; Ahmad, P., Rasool, S., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 1, pp. 159–180. [Google Scholar] [CrossRef]
- Rodríguez-Mejías, F.J.; Scavo, A.; Chinchilla, N.; Molinillo, J.M.G.; Schwaiger, S.; Mauromicale, G.; Macías, F.A. Perspectives and Advances in Organic Formulations for Agriculture: Encapsulation of Herbicides for Weed Control. Agronomy 2023, 13, 1898. [Google Scholar] [CrossRef]
- Yadav, A.S.; Srivastava, D.S. Application of nano-technology in weed management: A Review. J. Crop Sci. Technol. 2015, 4, 21–23. [Google Scholar]
- Wilkins, R.M. Controlled Delivery of Crop-Protection Agents; Taylor and Francis Ltd.: London, UK, 1990; p. 322. [Google Scholar]
- Gao, Y.; Liang, Y.; Zhou, Z.; Yang, J.; Tian, Y.; Niu, J.; Tang, G.; Tang, J.; Chen, X.; Li, Y.; et al. Metal-Organic Framework Nanohybrid Carrier for Precise Pesticide Delivery and Pest Management. Chem. Eng. J. 2021, 422, 130143. [Google Scholar] [CrossRef]
- Pérez-de-Luque, A. Can nanotechnology improve the application of bioherbicides? Pest Manag. Sci. 2024, 80, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Su, X.; Yan, S.; Shen, J. Multifunctional Nanoparticles and Nanopesticides in Agricultural Application. Nanomaterials 2023, 13, 1255. [Google Scholar] [CrossRef] [PubMed]
- Forini, M.M.L.; Pontes, M.S.; Antunes, D.R.; Lima, P.H.C.D.; Santos, J.S.; Santiago, E.F.; Grillo, R. Nano-enabled weed management in agriculture: From strategic design to enhanced herbicidal activity. Plant Nano Biol. 2022, 1, 100008. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; Clark, J.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Ditta, A. How helpful is nanotechnology in agriculture? Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 033002. [Google Scholar] [CrossRef]
- Lim, C.J.; Basri, M.; Omar, D.; Abdul Rahman, M.B.; Salleh, A.B.; Raja Abdul Rahman, R.N.Z. Green nanoemulsion-laden glyphosate isopropylamine formulation in suppressing creeping foxglove (A. gangetica), slender button weed (D. ocimifolia) and buffalo grass (P. conjugatum). Pest Manag. Sci. 2013, 69, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Bhanjana, G.; Sharma, A.; Dilbaghi, N.; Sidhu, M.C.; Kim, K.-H. Development of nanoformulation approaches for the control of weeds. Sci. Total Environ. 2017, 586, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Grillo, R.; dos Santos, N.Z.P.; Maruyama, C.R.; Rosa, A.H.; de Lima, R.; Fraceto, L.F. Poly(ɛ-caprolactone)nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation. J. Hazard. Mater. 2012, 231–232, 1–9. [Google Scholar] [CrossRef]
- Pereira, A.E.S.; Grillo, R.; Mello, N.F.S.; Rosa, A.H.; Fraceto, L.F. Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J. Hazard. Mater. 2014, 268, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhai, Y.; Monikh, F.A.; Arenas-Lago, D.; Grillo, R.; Vijver, M.G.; Peijnenburg, W.J.G.M. The Differences between the Effects of a Nanoformulation and a Conventional Form of Atrazine to Lettuce: Physiological Responses, Defense Mechanisms, and Nutrient Displacement. J. Agric. Food Chem. 2021, 69, 12527–12540. [Google Scholar] [CrossRef] [PubMed]
- Bombo, A.B.; Pereira, A.E.S.; Lusa, M.G.; De Medeiros Oliveira, E.; De Oliveira, J.L.; Campos, E.V.R.; De Jesus, M.B.; Oliveira, H.C.; Fraceto, L.F.; Mayer, J.L.S. A Mechanistic View of Interactions of a Nanoherbicide with Target Organism. J. Agric. Food Chem. 2019, 67, 4453–4462. [Google Scholar] [CrossRef] [PubMed]
- Preisler, A.C.; Pereira, A.E.S.; Campos, E.V.R.; Dalazen, G.; Fraceto, L.F.; Oliveira, H.C. Atrazine nanoencapsulation improves pre-emergence herbicidal activity against Bidens pilosa without enhancing long-term residual effect on Glycine max. Pest Manag. Sci. 2020, 76, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Diyanat, M.; Saeidian, H.; Baziar, S.; Mirjafary, Z. Preparation and characterization of polycaprolactone nanocapsules containing pretilachlor as a herbicide nanocarrier. Environ. Sci. Pollut. Res. 2019, 26, 21579–21588. [Google Scholar] [CrossRef]
- Sousa, B.T.; Santo Pereira, A.D.E.; Fraceto, L.F.; de Oliveira, H.C.; Dalazen, G. Effectiveness of nanoatrazine in post-emergent control of the tolerant weed Digitaria insularis. J. Plant Prot. Res. 2020, 60, 185–192. [Google Scholar] [CrossRef]
- Chen, X.; Wang, T. Preparation and Characterization of Atrazine-Loaded Biodegradable PLGA Nanospheres. J. Integr. Agric. 2019, 18, 1035–1041. [Google Scholar] [CrossRef]
- Dos Santos Silva, M.; Cocenza, D.S.; Grillo, R.; de Melo, N.F.S.; Tonello, P.S.; de Oliveira, L.C.; Cassimiro, D.L.; Rosa, A.H.; Fraceto, L.F. Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. J. Hazard. Mater. 2011, 190, 366–374. [Google Scholar] [CrossRef]
- Khan, B.A.; Nadeem, M.A.; Iqbal, M.; Yaqoob, N.; Javaid, M.M.; Maqbool, R.; Elnaggar, N.; Oraby, H. Chitosan nanoparticles loaded with mesosulfuron methyl and mesosulfuron methyl + florasulam + MCPA isooctyl to manage weeds of wheat (Triticum aestivum L.). Green Process. Synth. 2023, 12, 20228152. [Google Scholar] [CrossRef]
- Khan, B.A.; Nadeem, M.A.; Najeed Alawadi, H.F.; Javaid, M.M.; Mahmood, A.; Qamar, R.; Iqbal, M.; Mumtaz, A.; Maqbool, R.; Oraby, H.; et al. Synthesis, characterization, and evaluation of nanoparticles of clodinofop propargyl and fenoxaprop-P-ethyl on weed control, growth, and yield of wheat (Triticum aestivum L.). Green Process. Synth. 2023, 12, 20230105. [Google Scholar] [CrossRef]
- Khatem, R.; Celis, R.; Hermosín, M.C. Cationic and anionic clay nanoformulations of imazamox for minimizing environmental risk. Appl. Clay Sci. 2019, 168, 106–115. [Google Scholar] [CrossRef]
- Granetto, M.; Serpella, L.; Fogliatto, S.; Re, L.; Bianco, C.; Vidotto, F.; Tosco, T. Natural clay and biopolymer-based nanopesticides to control the environmental spread of a soluble herbicide. Sci. Total Environ. 2022, 806, 151199. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Han, A.; Zhao, Y.; Li, H.; Yang, Y.; Yuan, B.; Wang, Y.; Liu, R.; Yin, X.; Du, X. Smart, degradable, and eco-friendly carboxymethyl cellulose-CaII hydrogel-like networks gated MIL-101(FeIII) nanoherbicides for paraquat delivery. Sci. Total Environ. 2023, 903, 166424. [Google Scholar] [CrossRef] [PubMed]
- Saklan, M.; Yildirim, A.; Ozyilmaz, E.; Yilmaz, M. Encapsulation of diuron with Zn-based magnetic metal-organic framework and reduction of its mobility in soil. J. Mol. Liq. 2024, 413, 125949. [Google Scholar] [CrossRef]
- Ke, M.; Qu, Q.; Peijnenburg, W.J.G.M.; Li, X.; Zhang, M.; Zhang, Z.; Lu, T.; Pan, X.; Qian, H. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Sci. Total Environ. 2018, 644, 1070–1079. [Google Scholar] [CrossRef]
- Feng, L.; Xu, N.; Qu, Q.; Zhang, Z.; Ke, M.; Lu, T.; Qian, H. Synergetic toxicity of sliver nanoparticle and glyphosate on wheat (Triticum aestivum L.). Sci. Total Environ. 2021, 797, 149200. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.S. Nanotechnology in agriculture: Prospects and constraints. Nanotechnol. Sci. Appl. 2014, 7, 63–71. [Google Scholar] [CrossRef]
- Yang, L.; Watts, D.J. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. 2005, 158, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liang, H.W.; Yang, Y.; Yu, S.H. Stability and Reactivity: Positive and Negative Aspects for Nanoparticle Processing. Chem. Rev. 2018, 118, 3209–3250. [Google Scholar] [CrossRef] [PubMed]
- Amna; Alharby, H.F.; Hakeem, K.R.; Qureshi, M.I. Weed control through herbicide-loaded nanoparticles. In Nanomaterials and Plant Potential; Husen, A., Iqbal, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 507–527. [Google Scholar] [CrossRef]
- Mehrazar, E.; Rahaie, M.; Rahaie, S. Application of nanoparticles for pesticides, herbicides, fertilisers and animals feed management. Int. J. Nanoparticles 2015, 8, 1–19. [Google Scholar] [CrossRef]
- Souza, L.R.R.; da Rocha Neto, A.C.; da Silva, C.R.; Franchi, L.P.; de Souza, T.A.J. Green Synthesis Approaches of Nanoagroparticles. In Nanotechnology in in Bioformulations. Nanotechnology in the Life Sciences; Prasad, R., Kumar, V., Kumar, M., Choudhary, D., Eds.; Springer: Cham, Switzerland, 2019; pp. 353–380. [Google Scholar] [CrossRef]
- Mustafa, I.F.; Hussein, M.Z. Synthesis and technology of nanoemulsion-based pesticide formulation. Nanomaterials 2020, 10, 1608. [Google Scholar] [CrossRef] [PubMed]
- Eldarier, S.M.; Abou-Zeid, H.; Marzouk, R.I.; Abo Hatab, A.S. Biosynthesis of Silver Nanoparticles via Haplophyllum Tuberculatum (Forssk.) A. Juss. (Rutaceae) and Its Use as Bioherbicide. Egypt. J. Bot. 2020, 60, 25–40. [Google Scholar] [CrossRef]
- Campos, E.V.R.; Bidyarani, N.; Takeshita, V.; Fraceto, L.F. Nature-Based Herbicides and Micro-/Nanotechnology Fostering Sustainable Agriculture. ACS Sustain. Chem. Eng. 2023, 11, 9900–9917. [Google Scholar] [CrossRef]
- Vega-Vásquez, P.; Mosier, N.S.; Irudayaraj, J. Nanoscale Drug Delivery Systems: From Medicine to Agriculture. Front. Bioeng. Biotechnol. 2020, 8, 79. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, K.; Dixit, S.; Mishra, K.; Srivastava, S. A review on positive and negative impacts of nanotechnology in agriculture. Int. J. Environ. Sci. Technol. 2019, 16, 2175–2184. [Google Scholar] [CrossRef]
- Baldim, I.; Oliveira, W.P.; Kadian, V.; Rao, R.; Yadav, N.; Mahant, S.; Lucarini, M.; Durazzo, A.; Da Ana, R.; Capasso, R.; et al. Natural Ergot Alkaloids in Ocular Pharmacotherapy: Known Molecules for Novel Nanoparticle-Based Delivery Systems. Biomolecules 2020, 10, 980. [Google Scholar] [CrossRef] [PubMed]
- Chuah, L.H.; Loo, H.L.; Goh, C.F.; Fu, J.Y.; Ng, S.F. Chitosan-based drug delivery systems for skin atopic dermatitis: Recent advancements and patent trends. Drug. Deliv. Transl. Res. 2023, 13, 1436–1455. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Xu, J.; Lynch, I.; Guo, Z.; Xie, C.; Zhang, P. Advanced nanopesticides: Advantage and action mechanisms. Plant Physiol. Biochem. 2023, 203, 108051. [Google Scholar] [CrossRef]
- Hazrati, H.; Saharkhiz, M.J.; Niakousari, M.; Moein, M. Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol. Environ. Saf. 2017, 142, 423–430. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Chen, X.; Mei, L.; Feng, S.; Duan, P.; Cai, H.; Qu, K.; Zhang, J.; Miao, Y.; et al. Development and Characterization of Artemisia Argyi Essential Oil-Loaded Nanoemulsion for Sustainable Weed Control: Enhanced Stability, Amplified Activity, Protected Non-Target. J. Clean. Prod. 2024, 457, 142487. [Google Scholar] [CrossRef]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef] [PubMed]
- Somala, N.; Laosinwattana, C.; Chotsaeng, N.; Teerarak, M. Citronella essential oil-based nanoemulsion as a post-emergence natural herbicide. Sci. Rep. 2023, 13, 20851. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev. Nutr. Food Sci. 2019, 24, 225–234. [Google Scholar] [CrossRef]
- Dimak, J.; Somala, N.; Laosinwattana, C.; Teerarak, M. The effect of microfludization on characteristics and herbicidal potential of peppermint nanoemulsion on Amaranthus tricolor. Int. J. Agric. Technol. 2024, 20, 77–86. [Google Scholar]
- Teixeira, S.; Eblagon, K.M.; Miranda, F.R.; Pereira, M.F.; Figueiredo, J.L. Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications. C 2021, 7, 42. [Google Scholar] [CrossRef]
- Tucuch-Pérez, M.A.; Mendo-González, E.I.; Ledezma-Pérez, A.; Iliná, A.; Hernández-Castillo, F.D.; Barrera-Martinez, C.; Anguiano-Cabello, J.; Laredo-Alcalá, E.I.; Arredondo-Valdés, R. The Herbicidal Activity of Nano- and MicroEncapsulated Plant Extracts on the Development of the Indicator Plants Sorghum bicolor and Phaseolus vulgaris and Their Potential for Weed Control. Agriculture 2023, 13, 2041. [Google Scholar] [CrossRef]
- Kaur, I.; Agnihotri, S.; Goyal, D. Fabrication of chitosan-alginate nanospheres for controlled release of cartap hydrochloride. Nanotechnology 2022, 33, 025701. [Google Scholar] [CrossRef]
- Rojas, S.; Rodríguez-Diéguez, A.; Horcajada, P. Metal–Organic Frameworks in Agriculture. ACS Appl. Mater. Interfaces 2022, 14, 16983–17007. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Li, Y.; Tjong, S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 2019, 20, 449. [Google Scholar] [CrossRef]
- Jiang, T.; Huang, J.; Peng, J.; Wang, Y.; Du, L. Characterization of Silver Nanoparticles Synthesized by the Aqueous Extract of Zanthoxylum nitidum and Its Herbicidal Activity against Bidens pilosa L. Nanomaterials 2023, 13, 1637. [Google Scholar] [CrossRef]
- Choy, J.; Park, M. Cationic and anionic clays for biological applications. In Interface Science and Technology; Wypych, F., Satyanarayana, K.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 1, pp. 403–424. [Google Scholar] [CrossRef]
- Chen, B.; Sun, Q.; Wang, D.; Zeng, X.; Wang, J.-X.; Chen, J.-F. High-Gravity-Assisted Synthesis of Surfactant-Free Transparent Dispersions of Monodispersed MgAl-LDH Nanoparticles. Ind. Eng. Chem. Res. 2020, 59, 2960–2967. [Google Scholar] [CrossRef]
- Alexandre, M.; Dubois, P. Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng. R Rep. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Uddin, M.N.; Hossain, M.T.; Mahmud, N.; Alam, S.; Jobaer, M.; Mahedi, S.I.; Ali, A. Research and applications of nanoclays: A review. SPE Polymers 2024, 5, 507–535. [Google Scholar] [CrossRef]
- Floody, M.C.; Theng, B.; Reyes, P.; Mora, M.L. Natural nanoclays: Applications and future trends–a Chilean perspective. Clay Miner. 2009, 44, 161–176. [Google Scholar] [CrossRef]
- La Iacona, M.; Lombardo, S.; Mauromicale, G.; Scavo, A.; Pandino, G. Allelopathic Activity of Three Wild Mediterranean Asteraceae: Silybum marianum, Cynara cardunculus var. sylvestris, Galactites tomentosus. Agronomy 2024, 14, 575. [Google Scholar] [CrossRef]
- Scavo, A.; Mejías, F.J.R.; Chinchilla, N.; Molinillo, J.M.G.; Schwaiger, S.; Lombardo, S.; Macías, F.A.; Mauromicale, G. Wheat Response and Weed-Suppressive Ability in the Field Application of a Nanoencapsulated Disulfide (DiS-NH2) Bioherbicide Mimic. Agronomy 2023, 13, 1132. [Google Scholar] [CrossRef]
- Taban, A.; Saharkhiz, M.J.; Khorram, M. Formulation and assessment of nano-encapsulated bioherbicides based on biopolymers and essential oil. Ind. Crops Prod. 2020, 149, 112348. [Google Scholar] [CrossRef]
- Kaur, P.; Gupta, S.; Kaur, K.; Kaur, N.; Kumar, R.; Bhullar, M.S. Nanoemulsion of Foeniculum vulgare essential oil: A propitious striver against weeds of Triticum aestivum. Ind. Crops Prod. 2021, 168, 113601. [Google Scholar] [CrossRef]
- Chamoun, L.B.S.; Rodrigues Filho, J.; Corte, V.B.; Perin, I.T.D.A.L.; Fernandes, C.P. A nanoemulsion of Rosmarinus officinalis L. essential oil with allelopathic effect against Lactuca sativa L. seeds. Braz. J. Dev. 2021, 7, 86752–86771. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, K.; Wu, B.; Zhou, J.; Lv, Y. Silver nanoparticles with different particle sizes enhance the allelopathic effects of Canada goldenrod on the seed germination and seedling development of lettuce. Ecotoxicology 2018, 27, 1116–1125. [Google Scholar] [CrossRef] [PubMed]
Type of NPs | Characteristic | Type of Tested Herbicides | Reference | |||
---|---|---|---|---|---|---|
Size (nm) | Shape | Z Potential (mV) | Specific Surface Area (m2/g) | |||
Nanoemulsion | 20–200 | Spherical | from −44.17 to −1.84 | – | Glyphosate isopropylamine | [15,27] |
Polysaccharide pectin NPs | 50–90 | Spherical | −35.9 | – | Metsulfuron methyl | [28] |
Poly(ɛ-caprolactone) nanocapsules | 200–300 (with atrazine or pretilachlor) | Spherical with atrazine, irregular polyhedral with pretilachlor | from −30 to −23 | – | Atrazine; ametrine; simazine; pretilachlor | [14,29,30,31,32,33,34,35] |
Poly(lactic-co-glycolic acid) NPs | 204–520 | Spherical | – | – | Atrazine | [36] |
Chitosan NPs (CN) Chitosan/Alginate NPs (C/AN) | 40–70 (CN); 197–305 (C/AN) | Spherical | −22.8 ± 2.3 (C/AN) | – | Mesosulfuron methyl and mesosulfuron methyl + florasulam + MCPA (2-methyl-4-chlorophenoxyacetic acid) isooctylic acid; clodinofop-propargyl and fenoxaprop-P-ethyl | [37,38,39] |
Anionic Synthetic Clay (ASC) and Cationic Organic Clay (COC) | 225–306 | Lamellar | 22 (ASC); 125 (COC) | 19–91.8 | Imazamox, 2,4-D, bentazone and dicamba | [40,41] |
Metal–organic frameworks | 252–280 | Regular polyhedrons | −15.3 | 1600–2000 | Paraquat and diquat | [42,43] |
Silver NPs | 10–30 | Spherical, semi-spherical or cubic | from −5.6 to −3.65 | – | Used alone and in combination with glyphosate | [44,45] |
Characteristic | Description | Reference |
---|---|---|
Higher specific surface area (SSA) to volume ratio | There are more atoms on the surface of an NP than in the internal part. The increased SSA leads to enhanced reactivity and enhanced catalytic activity | [46,47,48] |
Reduced size | The small size of NPs allows their penetration into the stomata of leaves | [49] |
Controlled release | NPs can be engineered to release herbicides measuredly, reducing the need for frequent applications and minimizing their environmental impact | [50,51] |
Enhanced bioavailability | NPs can enhance the bioavailability of herbicide active ingredients, leading to a greater uptake and increased efficacy | [52] |
Multifunctional characteristics | Hybrid nanomaterials can combine the advantages of organic and inorganic materials into a single structure, offering properties such as a good targeting ability and reactivity | [24,42,43] |
Biosynthesis | Some types of NPs, such as silver-based NPs, can be biosynthesized using plant extracts, offering an eco-friendly approach for weed control | [53] |
Nanoencapsulation | NPs can be used to encapsulate the herbicidal metabolites extracted from microorganisms, improving their efficacy | [54] |
Steps for the Synthesis | Method with Zanthoxylum nitidum (Roxb.) DC. [71] | Method with Haplophyllum tuberculatum (Forssk.) A. Juss [53] |
---|---|---|
Donor plant | Dried and ground Z. nitidum roots | Dried vegetative part of H. tuberculatum |
Extract preparation | Sonication at room temperature for 30 min, followed by centrifugation and filtration | Immersion in distilled water for 24 h at 25 °C in the dark, followed by centrifugation. Adjustment of pH to 6.8 |
Extract concentration | Not mentioned, but a ratio of 0.5 g powder to 50 mL water is used for extraction | Preparation of 5%, 10% and 20% dilutions of the crude extract |
Reducing agent | Bioactive compounds present in the aqueous extract | Bioactive compounds present in the crude aqueous extract |
AgNPs synthesis | Addition of 0.1 mol L−1 AgNO3 dropwise to the extract, stirring continuously for 3 h at room temperature | Addition of 10 mL extract to 100 mL of 3 mM AgNO3, shaking for 2 h and, then, stirring at room temperature for 24 h |
Nanotechnology | Active Ingredient | Target Weeds | % of Weed Suppression | Type of Experiment | Reference |
---|---|---|---|---|---|
Nanoemulsion | S. hortensis L. essential oil | Amaranthus retroflexus L. and Chenopodium album L. | A. retroflexus and C. album seed germination: −95% and −70.7%, respectively. Total mortality of both species at 4000 μL L−1 | In vitro and greenhouse | [60] |
Nanoemulsion | Cymbopogon nardus L. essential oil | Echinochloa cruss-galli (L.) P. Beauv and A. tricolor | E. crus-galli and A. tricolor growth: −80% and −85%, respectively | Greenhouse | [63] |
Nanoemulsion | Foeniculum vulgare Mill. essential oil | Phalaris minor Retz., Avena ludoviciana Durieu, Rumex dentatus L. and Medicago denticulata Willd | Seed germination: total inhibition at 0.05 wt% and 0.1 wt% | In vitro | [80] |
Nanoemulsion | Rosmarinus officinalis L. essential oil | Lactuca sativa L. | Seed germination: −61%, −60% and −30% at concentrations of 10, 7 and 5 mg mL−1, respectively | In vitro | [81] |
Nanoemulsion | Mentha × piperita L. essential oil | A. tricolor | Seed germination (−82.5%) and root growth (−59.92%) at 800 µL L−1 | In vitro | [65] |
Nanoemulsion with two different surfactants: cremophor EL and polyoxyethylene lauryl ether | Artemisia argyi H.Lév. and Vaniot essential oil | Setaria viridis (L.) P. Beauv., E. crus-galli, Portulaca oleracea L. and A. retroflexus | Fresh biomass weight: more than −80% | Greenhouse and pot trial in open air | [61] |
Nanocapsules of Arabic gum, Persian gum/gelatin and Persian gum | S. hortensis essential oil | A. retroflexus | Injury: nearly 100% damage after 7 days 15 mL L−1 (except for Arabic gum) | Greenhouse | [79] |
Polimeric NPs | DiS-NH2 (2,2′-disulfanediyldianiline) | Durum wheat’s weed flora | Aboveground biomass: −51.3% at 0.75 g m−2 and −40.9% at 1.5 g m−2 | Field | [78] |
Chitosan and alginate NPs | Ethanolic extracts of Carya illinoinensis (Wangenh.) K.Koch, Ruta graveolens L. and Solanum rostratum Dunal | Sorghum bicolor (L.) Moench and Phaseolus vulgaris L. | Seed germination: −96 to −100% by most of the extracts at 12.5% and 25% concentrations. Root and hypocotyl growth were completely inhibited by the majority of extracts | In vitro | [67] |
AgNPs | Green synthetized AgNPs from H. tuberculatum (Forssk.) A. Juss. | P. minor | Seed germination: total inhibition compared to the crude aqueous extract of H. tuberculatum | Pot trial | [53] |
AgNPs | Z. nitidum | Bidens pilosa L. | Seed germination: −11.86% by Z. nitidum aqueous extract, −18.64% by Z. nitidum AgNPs. Seedling growth: −19.38% of root length and −23.33% of shoot length by Z. nitidum AgNPs | In vitro | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Iacona, M.; Scavo, A.; Lombardo, S.; Mauromicale, G. The Exploitation of Nanotechnology in Herbicides and Bioherbicides: A Novel Approach for Sustainable Weed Management. Agronomy 2025, 15, 228. https://doi.org/10.3390/agronomy15010228
La Iacona M, Scavo A, Lombardo S, Mauromicale G. The Exploitation of Nanotechnology in Herbicides and Bioherbicides: A Novel Approach for Sustainable Weed Management. Agronomy. 2025; 15(1):228. https://doi.org/10.3390/agronomy15010228
Chicago/Turabian StyleLa Iacona, Mirko, Aurelio Scavo, Sara Lombardo, and Giovanni Mauromicale. 2025. "The Exploitation of Nanotechnology in Herbicides and Bioherbicides: A Novel Approach for Sustainable Weed Management" Agronomy 15, no. 1: 228. https://doi.org/10.3390/agronomy15010228
APA StyleLa Iacona, M., Scavo, A., Lombardo, S., & Mauromicale, G. (2025). The Exploitation of Nanotechnology in Herbicides and Bioherbicides: A Novel Approach for Sustainable Weed Management. Agronomy, 15(1), 228. https://doi.org/10.3390/agronomy15010228