Cumulative Energy Demand and Greenhouse Gas Emissions from Potato and Tomato Production in Southeast Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Tomato and Potato Production Areas
2.2. Life Cycle Analysis—Functional Units and System Boundaries
2.3. Life Cycle Analysis Inventory–Data Collection
2.4. Life Cycle Impact Analysis
2.4.1. Cumulative Energy Demand Indicators
2.4.2. GHG Emissions Indicators
Input | Unit | E.F. (kg CO2 eq unit−1) | Reference | |
---|---|---|---|---|
Phase 1 | ||||
N fertilizer | ||||
N application | kg N | – | 4.24 | [30] |
N leaching | kg N | – | 0.70 | [30] |
N volatilization | kg N | – | 0.56 | [30] |
Urea | kg | – | 0.73 | [29] |
Lime | kg | – | 0.48 | [29] |
Diesel (tractor) | L | 56.8 | 2.603 | [27,31] |
Electricity | kWh | 3.6 | – | - |
Phase 2 | ||||
Diesel (Transportation) | L | 56.8 | 2.603 | [27,31] |
Input | Unit | β(j) (MJ unit−1) | E.F. (kg CO2 eq unit−1) | Reference |
---|---|---|---|---|
Phase 3 | ||||
N fertilizer | kg N | 51.82 | 3.97 | [27,32] |
P fertilizer | kg P2O5 | 12.44 | 1.13 | [1,32] |
K fertilizer | kg K2O | 11.15 | 0.71 | [32] |
Lime | kg | 1.16 | 0.01 | [32,33] |
Gypsum | kg | 1.31 | 0.03 | [34,35] |
Fungicide | kg a.i.a | 173–397 | 11.94–27.39 | [36] |
Insecticide | kg a.i.a | 57.8–580 | 3.99–40.02 | [36] |
Herbicide | kg a.i.a | 201–400 | 13.87–27.6 | [36] |
Diesel | L | – | 0.581 | [32] |
Machinery | kg | 122.4 | 8.45 | [27] adapted |
Electricity—generation | MJ | 0.05 | 0.102 | [27,37] |
Structure irrigation b | kg | 32.2–60 | 1.06–3.1 | [27,38] |
Tomato seeds c | kg | 32.2–58.5 | 1.8–5.1 | [27,38] |
Potato seeds | kg | 1.6 | 0.16 | the authors |
2.5. Depreciation
2.6. Mitigation Scenarios
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolandnazar, E.; Rohani, A.; Taki, M. Energy consumption forecasting in agriculture by artificial intelligence and mathematical models. Energy Sources, Part A Recover. Recovery Util. Environ. Eff. 2020, 42, 1618–1632. [Google Scholar] [CrossRef]
- Banerjee, H.; Sarkar, S.; Ray, K. Energetics, GHG emissions and economics in nitrogen management practices under potato cultivation: A farm-level study. Energy Ecol. Environ. 2017, 2, 250–258. [Google Scholar] [CrossRef]
- Kumar, A.; Rana, K.S.; Choudhary, A.K.; Bana, R.S.; Sharma, V.K.; Prasad, S.; Gupta, G.; Choudhary, M.; Pradhan, A.; Rajpoot, S.K.; et al. Energy budgeting and carbon footprints of zero-tilled pigeonpea—Wheat cropping system under sole or dual crop basis residue mulching and Zn-fertilization in a semi-arid agro-ecology. Energy 2021, 231, 120862. [Google Scholar] [CrossRef]
- Potenza, R.F.; Quintana, G.O.; Cardoso, A.M.; Tsai, D.S.; Cremer, M.S.; Silva, B.F.; Carvalho, K.; Coluna, I.; Shimbo, J.; Silva, C.; et al. Análise das Emissões Brasileiras de Gases de Efeito Estufa e Suas Implicações Para as Metas Climáticas do Brasil 1970–2020. Available online: http://www.observatoriodoclima.eco.br/ (accessed on 8 October 2022).
- Pereira, B.D.J.; Cecílio Filho, A.B.; La Scala, N. Greenhouse gas emissions and carbon footprint of cucumber, tomato and lettuce production using two cropping systems. J. Clean. Prod. 2021, 282, 124517. [Google Scholar] [CrossRef]
- Cecílio Filho, A.B.; Nascimento, C.S.; Pereira, B.D.J.; Nascimento, C.S. Nitrogen fertilisation impacts greenhouse gas emissions, carbon footprint, and agronomic responses of beet intercropped with arugula. J. Environ. Manag. 2022, 307, 114568. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Ghahderijani, M.; Sefeedpari, P. Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. J. Clean. Prod. 2012, 33, 183–191. [Google Scholar] [CrossRef]
- Theurl, M.C.; Haberl, H.; Erb, K.-H.; Lindenthal, T. Contrasted greenhouse gas emissions from local versus long-range tomato production. Agron. Sustain. Dev. 2014, 34, 593–602. [Google Scholar] [CrossRef]
- Pérez Neira, D.; Soler Montiel, M.; Delgado Cabeza, M.; Reigada, A. Energy use and carbon footprint of the tomato production in heated multi-tunnel greenhouses in Almeria within an exporting agri-food system context. Sci. Total Environ. 2018, 628–629, 1627–1636. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H.; Rajaeifar, M.A. Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran. Agric. Syst. 2014, 123, 120–127. [Google Scholar] [CrossRef]
- Zarei, M.J.; Kazemi, N.; Marzban, A. Life cycle environmental impacts of cucumber and tomato production in open-field and greenhouse. J. Saudi Soc. Agric. Sci. 2019, 18, 249–255. [Google Scholar] [CrossRef]
- Ntinas, G.K.; Neumair, M.; Tsadilas, C.D.; Meyer, J. Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions. J. Clean. Prod. 2017, 142, 3617–3626. [Google Scholar] [CrossRef]
- Winans, K.; Brodt, S.; Kendall, A. Life cycle assessment of California processing tomato: An evaluation of the effects of evolving practices and technologies over a 10-year (2005–2015) timeframe. Int. J. Life Cycle Assess. 2020, 25, 538–547. [Google Scholar] [CrossRef]
- Timpanaro, G.; Branca, F.; Cammarata, M.; Falcone, G.; Scuderi, A. Life cycle assessment to highlight the environmental burdens of early potato production. Agronomy 2021, 11, 879. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Akram, A.; Keyhani, A.; Sefeedpari, P.; Shine, P.; Brandao, M. Integration of life cycle assessment, artificial neural networks, and metaheuristic optimization algorithms for optimization of tomato-based cropping systems in Iran. Int. J. Life Cycle Assess. 2020, 25, 620–632. [Google Scholar] [CrossRef]
- ISO 14040; ISO International Organization for Standardization, Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044; ISO International Organization for Standardization, Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Pergola, M.; Persiani, A.; Pastore, V.; Palese, A.M.; Arous, A.; Celano, G. A comprehensive Life Cycle Assessment (LCA) of three apricot orchard systems located in Metapontino area (Southern Italy). J. Clean. Prod. 2017, 142, 4059–4071. [Google Scholar] [CrossRef]
- Romero-Gámez, M.; Antón, A.; Leyva, R.; Suárez-Rey, E.M. Inclusion of uncertainty in the LCA comparison of different cherry tomato production scenarios. Int. J. Life Cycle Assess. 2017, 22, 798–811. [Google Scholar] [CrossRef]
- Tasca, A.L.; Nessi, S.; Rigamonti, L. Environmental sustainability of agri-food supply chains: An LCA comparison between two alternative forms of production and distribution of endive in northern Italy. J. Clean. Prod. 2017, 140, 725–741. [Google Scholar] [CrossRef]
- Martin-Gorriz, B.; Gallego-Elvira, B.; Martínez-Alvarez, V.; Maestre-Valero, J.F. Life cycle assessment of fruit and vegetable production in the Region of Murcia (south-east Spain) and evaluation of impact mitigation practices. J. Clean. Prod. 2020, 265, 121656. [Google Scholar] [CrossRef]
- FAO. Faostat Crops Database. 2018. Available online: http://www.fao.org/faostat/en/#data/QC,04.25.21 (accessed on 8 October 2022).
- EPE. Empresa de Pesquisa Energética. Matriz Energética e Elétrica. 2022. Available online: https://www.epe.gov.br (accessed on 11 November 2022).
- UN. United Nations. Sustainable Development Goals. 2015. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 8 October 2022).
- IBGE. Instituto Brasileiro De Geografia E Estatística. Produção Agrícola Municipal. 2023. Available online: https://sidra.ibge.gov.br/pesquisa/pam/tabelas (accessed on 5 January 2025).
- Temizyurek-Arslan, M.; Karacetin, E. Assessing the environmental impacts of organic and conventional mixed vegetable production based on the life cycle assessment approach. Integr. Environ. Assess. Manag. 2022, 18, 1733–1743. [Google Scholar] [CrossRef]
- Aguilera, E.; Guzmán, G.I.; Infante-Amate, J.; Soto, D.; García-Ruiz, R.; Herrera, A.; Villa, I.; Torremocha, E.; Carranza, G.; Molina, M.G. Embodied Energy In Agricultural Inputs. Incorporating A Historical Perspective. Soc. Esp. De Hist. Agrar. 2015, 1, 119. [Google Scholar]
- TACO. Tabela Brasileira de Composição de Alimentos; NEPA—UNICAMP: Campinas, Brazil, 2011; Available online: https://www.google.com/search?client=firefox-b-d&q=Tabela+Brasileira+de+Composi%C3%A7%C3%A3o+de+Alimentos#vhid=zephyr:0&vssid=atritem-https://www.cfn.org.br/wp-content/uploads/2017/03/taco_4_edicao_ampliada_e_revisada.pdf (accessed on 6 October 2022).
- IPCC. Guidelines for national greenhouse gas inventories. In IPCC National Greenhouse Gas Inventories Programme; Eggleston, S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006; p. 664. [Google Scholar]
- IPCC. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- CETESB. Companhia Ambiental do Estado de São Paulo. Relatórios de Emissões Veiculares no Estado São Paulo. 2018. Available online: https://cetesb.sp.gov.br/veicular/relatorios-e-publicacoes/ (accessed on 6 October 2022).
- Macedo, I.C.; Seabra, J.E.A.; Silva, J.E.A.R. Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 2008, 32, 582–595. [Google Scholar] [CrossRef]
- Mayer, F.D.; Brondani, M.; Aita, B.C.; Hoffmann, R.; Lora, E.E.S. Environmental and Energy Assessment of Small Scale Ethanol Fuel Production. Energy Fuels 2015, 29, 6704–6716. [Google Scholar] [CrossRef]
- Guareschi, R.F.; Dos Reis Martins, M.; Sarkis, L.F.; Rodrigues Alves, B.J.; Jantalia, C.P.; Boddey, R.M.; Urquiaga, S. An analysis of energy efficiency and greenhouse gas emissions from organic soybean cultivation in Brazil. Semin. Cienc. Agrar. 2019, 40, 3461–3476. [Google Scholar] [CrossRef]
- Popp, M.; Lindsay, K.; Ashworth, A.; Moore, P.; Owens, P.; Adams, T.; McCarver, M.; Roark, B.; Pote, D.; Pennington, J. Economic and GHG emissions changes of aeration and gypsum application. Agric. Ecosyst. Environ. 2021, 321, 107616. [Google Scholar] [CrossRef]
- Audsley, E.; Stacey, K.; Parsons, D.J.; Willians, A.G. Estimation of the Greenhouse Gas Emissions from Agricultural Pesticide Manufacture and Use; Cranfield University: Bedford, UK, 2009. [Google Scholar]
- MCTI. Ministério da Ciência, Tecnologia e Inovação. 2019. Available online: http://www.mctic.gov.br/mctic/opencms/index.html (accessed on 28 June 2022).
- Posen, I.D.; Jaramillo, P.; Griffin, W.M. Uncertainty in the life cycle greenhouse gas emissions from U.S. Production of three biobased polymer families. Environ. Sci. Technol. 2016, 50, 2846–2858. [Google Scholar] [CrossRef]
- Cech, R.; Leisch, F.; Zaller, J.G. Pesticide Use and Associated Greenhouse Gas Emissions in Sugar Beet, Apples, and Viticulture in Austria from 2000 to 2019. Agriculture 2022, 12, 879. [Google Scholar] [CrossRef]
- Lagnelöv, O.; Larsson, G.; Larsolle, A.; Hansson, P.-A. Life Cycle Assessment of Autonomous Electric Field Tractors in Swedish Agriculture. Sustainability 2021, 13, 11285. [Google Scholar] [CrossRef]
- Canabarro, N.I.; Silva-Ortiz, P.; Nogueira, L.A.H.; Cantarella, H.; Maciel-Filho, R.; Souza, G.M. Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala. Renew. Sustain. Energy Rev. 2023, 171, 113019. [Google Scholar] [CrossRef]
- Karakaya, A.; Özilgen, M. Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes. Energy 2011, 36, 5101–5110. [Google Scholar] [CrossRef]
- Clavreul, J.; Butnar, I.; Rubio, V.; King, H. Intra- and inter-year variability of agricultural carbon footprints—A case study on field-grown tomatoes. J. Clean. Prod. 2017, 158, 156–164. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Akram, A.; Keyhani, A.; Raei, M.; Elshout, P.M.F.; Huijbregts, M.A.J.; van Zelm, R. Variability in the carbon footprint of open-field tomato production in Iran—A case study of Alborz and East-Azerbaijan provinces. J. Clean. Prod. 2017, 142, 1510–1517. [Google Scholar] [CrossRef]
- Jones, C.D.; Fraisse, C.W.; Ozores-Hampton, M. Quantification of greenhouse gas emissions from open field-grown Florida tomato production. Agric. Syst. 2012, 113, 64–72. [Google Scholar] [CrossRef]
- Adewale, C.; Reganold, J.P.; Higgins, S.; Evans, R.D.; Carpenter-Boggs, L. Improving carbon footprinting of agricultural systems: Boundaries, tiers, and organic farming. Environ. Impact Assess. Rev. 2018, 71, 41–48. [Google Scholar] [CrossRef]
Source | Characteristics | Unit | Tomato | Potato |
---|---|---|---|---|
Machinery a | ||||
Tractors (90 to 210 hp), plows, subsoilers, harrows, fertilizers, sprayers and harvesters. | kg ha−1 year−1 | 447.7 | 592.0 | |
Fertilizers | ||||
N fertilizer (N) | Urea, Calcium Nitrate, MAP, NPK | kg ha−1 year−1 | 233.40 | 184.62 |
P fertilizer (P2O5) | MAP, NPK | kg ha−1 year−1 | 319.40 | 541.63 |
K fertilizer (K2O) | Potassium chloride, NPK | kg ha−1 year−1 | 322.80 | 327.63 |
Limestone | Dolomitic limestone | kg ha−1 year−1 | 641.67 | 301.35 |
Gypsum | Agricultural gypsum | kg ha−1 year−1 | - | 528.00 |
Pesticides | ||||
Herbicides (i.a) b | Metribuzim, Triazinona, etc. | kg ha−1 year−1 | 0.58 | 1.39 |
Fungicides (i.a) b | Copper oxychloride, mancozeb, etc. | kg ha−1 year−1 | 41.87 | 21.91 |
Insecticides (i.a) b | Acephate, Formentanate hydrochloride, etc. | kg ha−1 year−1 | 4.49 | 3.43 |
Fuel | ||||
Fuel for tractor | Diesel used in tractor operations | L ha−1 year−1 | 278.00 | 303.50 |
Fuel for transportation | Diesel used in transport operations | L ha−1 year−1 | 58.85 | 18.25 |
Electricity | Electricity consumed by the irrigation system | kWh ha−1 year−1 | 1298.14 | 1205.42 |
Irrigation structure | ||||
Steel c | Galvanized steel used in the system structure | kg | 10,499.27 | 10,499.27 |
Iron c | Iron used in gearmotor and motor-pump assemblies | kg | 110.16 | 36.72 |
PVC c | PVC pipes used to assemble the pipeline | kg | 1652.61 | 1652.61 |
Rubbers c | Polystyrene rubbers used to cover electrical wiring | kg | 1180.50 | 1180.50 |
Seedling | ||||
Seedling trays | Polypropylene trays | kg ha−1 year−1 | 26.68 | - |
Steel c | Galvanized steel used in the structure of the greenhouse | kg | 3500.00 | - |
Polyethylene c | Plastic used in the greenhouse | kg | 160.00 | - |
Seed potatoes | Seed potato production | kg ha−1 year−1 | - | 3303.50 |
Energy | Tomato | Potato | ||||
---|---|---|---|---|---|---|
Max. | Med. | Min. | Max. | Med. | Min. | |
Phase 1 (MJ ha–1) | 22,324.14 | 20,463.72 | 17,864.90 | 22,281.32 | 21,578.31 | 20,875.30 |
Phase 2 (MJ ha–1) | 4884.80 | 3342.68 | 710.00 | 1079.20 | 1036.60 | 994.00 |
Phase 3 (MJ ha–1) | 40,584.66 | 35,747.16 | 29,519.58 | 36,521.75 | 35,377.11 | 34,224.61 |
CED (MJ ha–1) | 67,793.60 | 59,553.56 | 48,094.48 | 59,882.27 | 57,992.02 | 56,093.92 |
Energy Output (MJ ha–1) | 94,720.00 | 70,912.00 | 54,400.00 | 10,8945.00 | 10,7600.00 | 10,6255.00 |
Net Energy (MJ ha–1) | 26,926.40 | 11,358.44 | 6305.52 | 50,161.08 | 49,607.98 | 49,062.73 |
Non-Renewable Energy (MJ ha–1) | 60,364.12 | 52,825.08 | 42,066.99 | 49,221.68 | 48,149.94 | 47,070.33 |
Renewable Energy (MJ ha–1) | 7429.48 | 6728.49 | 6027.49 | 10660.59 | 9842.09 | 9023.59 |
CED (MJ kg–1) | 0.57 | 0.54 | 0.54 | 1.48 | 1.44 | 1.42 |
EROI (%) | 39.72 | 19.07 | 13.11 | 89.42 | 85.54 | 81.93 |
Greenhouse gas emissions | ||||||
Phase 1 (kg CO2 eq ha–1) | 2554.43 | 2359.89 | 2075.85 | 2242.64 | 2175.51 | 2108.38 |
Phase 2 (kg CO2 eq ha–1) | 223.86 | 153.19 | 32.54 | 49.46 | 47.50 | 45.55 |
Phase 3 (kg CO2 eq ha–1) | 3348.31 | 2757.83 | 2161.27 | 3307.45 | 3202.11 | 3096.59 |
Total emissions (kg CO2 eq ha–1) | 6126.60 | 5270.90 | 4269.66 | 5599.55 | 5425.13 | 5250.53 |
Carbon footprint (kg CO2 eq kg–1) | 0.044 | 0.042 | 0.037 | 0.140 | 0.136 | 0.131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, B.d.J.; La Scala, N., Jr.; Cecílio Filho, A.B. Cumulative Energy Demand and Greenhouse Gas Emissions from Potato and Tomato Production in Southeast Brazil. Agronomy 2025, 15, 235. https://doi.org/10.3390/agronomy15010235
Pereira BdJ, La Scala N Jr., Cecílio Filho AB. Cumulative Energy Demand and Greenhouse Gas Emissions from Potato and Tomato Production in Southeast Brazil. Agronomy. 2025; 15(1):235. https://doi.org/10.3390/agronomy15010235
Chicago/Turabian StylePereira, Breno de Jesus, Newton La Scala, Jr., and Arthur Bernardes Cecílio Filho. 2025. "Cumulative Energy Demand and Greenhouse Gas Emissions from Potato and Tomato Production in Southeast Brazil" Agronomy 15, no. 1: 235. https://doi.org/10.3390/agronomy15010235
APA StylePereira, B. d. J., La Scala, N., Jr., & Cecílio Filho, A. B. (2025). Cumulative Energy Demand and Greenhouse Gas Emissions from Potato and Tomato Production in Southeast Brazil. Agronomy, 15(1), 235. https://doi.org/10.3390/agronomy15010235