Impact of Microplastic-Amended Soil on Seed Germination of Alfalfa (Medicago sativa) in a Controlled Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods for Soil Physical, Chemical and Biological Properties
2.1.1. Soil pH and Electrical Conductivity Methods
2.1.2. Soil Texture
2.1.3. Soil Moisture Content
2.1.4. Soil Microbes
Initial Soil Properties
2.2. Statistical Analysis
3. Germination Experiments
Germination Variables
4. Results and Discussion
4.1. Germination Percentage (GP%)
4.2. Mean Germination Time (MGT)
4.3. Germination Index
4.4. Changes in Soil Physical Chemical and Biological Properties (Pre-Post Experiment)
4.4.1. Soil pH and Electrical Conductivity
4.4.2. Texture and Soil Moisture Content
4.4.3. Soil Microbes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, F.; Wang, Q.; Adams, C.A.; Sun, Y.; Zhang, S. Effects of microplastics on soil properties: Current knowledge and future perspectives. J. Hazard. Mater. 2022, 424, 127531. [Google Scholar] [CrossRef] [PubMed]
- Bakhshoodeh, R.; Santos, R.M. Comparative bibliometric trends of microplastics and perfluoroalkyl and polyfluoroalkyl substances: How these hot environmental remediation research topics developed over time. RSC Adv. 2022, 12, 4973–4987. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Y.; Kaur, M.; Yao, Z.; Chen, T.; Xu, M. Phytotoxic effects of polyethylene microplastics on the growth of food crops soybean (Glycine max) and Mung Bean (Vigna radiata). Int. J. Environ. Res. Public Health 2021, 18, 10629. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Feng, Q.; Wang, J. Mini-review of microplastics in the atmosphere and their risks to humans. In Science of the Total Environment; Elsevier B.V.: Amsterdam, The Netherlands, 2020; Volume 703. [Google Scholar] [CrossRef]
- Wang, J.; Yue, D.; Wang, H. In situ Fe3O4 nanoparticles coating of polymers for separating hazardous PVC from microplastic mixtures. Chem. Eng. J. 2021, 407, 127170. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Sci. Total Environ. 2021, 780, 146546. [Google Scholar] [CrossRef]
- Guo, J.-J.; Huang, X.-P.; Xiang, L.; Wang, Y.-Z.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.-H. Source, migration and toxicology of Microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef]
- Ganesh Kumar, G.A.; Anjana, K.; Hinduja, M.; Sujitha, K.; Dharani, G. Review on plastic wastes in marine environment—Biodegradation and biotechnological solutions. Mar. Pollut. Bull. 2020, 150, 110733. [Google Scholar] [CrossRef]
- Möller, J.N.; Löder, M.G.J.; Laforsch, C. Finding Microplastics in Soils: A Review of Analytical Methods. Environ. Sci. Technol. 2020, 54, 2078–2090. [Google Scholar] [CrossRef]
- Rillig, M.C.; Lehmann, A. Microplastic in terrestrial ecosystems Research shifts from ecotoxicology to ecosystem effects and Earth system feedbacks. Science 2020, 368, 1430–1431. [Google Scholar] [CrossRef]
- Rochman, C.M. Microplastics research-from sink to source. Science 2018, 360, 28–29. [Google Scholar] [CrossRef]
- Curren, E.; Leaw, C.P.; Lim, P.T.; Leong, S.C.Y. Evidence of Marine Microplastics in Commercially Harvested Seafood. Front. Bioeng. Biotechnol. 2020, 8, 562760. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef] [PubMed]
- Thushari, G.G.N.; Senevirathna, J.D.M.; Yakupitiyage, A.; Chavanich, S. Effects of microplastics on sessile invertebrates in the eastern coast of Thailand: An approach to coastal zone conservation. Mar. Pollut. Bull. 2017, 124, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Zantis, L.J.; Borchi, C.; Vijver, M.G.; Peijnenburg, W.; Di Lonardo, S.; Bosker, T. Nano-and microplastics commonly cause adverse impacts on plants at environmentally relevant levels: A systematic review. Sci. Total Environ. 2023, 867, 161211. [Google Scholar] [CrossRef]
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- Boots, B. Implication of microplastics on soil faunal communities—identifying gaps of knowledge. Emerg. Top. Life Sci. 2022, 6, 403–409. [Google Scholar] [CrossRef]
- Guo, M.; Zhao, F.; Tian, L.; Ni, K.; Lu, Y.; Borah, P. Effects of polystyrene microplastics on the seed germination of herbaceous ornamental plants. Sci. Total Environ. 2022, 809, 151100. [Google Scholar] [CrossRef]
- Lin, D.; Yang, G.; Dou, P.; Qian, S.; Zhao, L.; Yang, Y.; Fanin, N. Microplastics negatively affect soil fauna but stimulate microbial activity: Insights from a field-based microplastic addition experiment. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201268. [Google Scholar] [CrossRef]
- Sahasa, R.G.; Dhevagi, P.; Poornima, R.; Ramya, A.; Moorthy, P.S.; Alagirisamy, B.; Karthikeyan, S. Effect of polyethylene microplastics on seed germination of blackgram (Vigna mungo L.) and tomato (solanum lycopersicum L.). Environ. Adv. 2023, 11, 100349. [Google Scholar] [CrossRef]
- De Silva, Y.S.; Rajagopalan, U.M.; Kadono, H.; Li, D. Effects of microplastics on lentil (Lens culinaris) seed germination and seedling growth. Chemosphere 2022, 303, 135162. [Google Scholar] [CrossRef]
- Seppänen, M.M.; Alitalo, V.; Bäckström, H.K.; Mäkiniemi, K.; Jokela, V.; Falghera-Winseman, L.; Khazaei, H. Growth, freezing tolerance, and yield performance of alfalfa (Medicago sativa L.) cultivars grown under controlled and field conditions in northern latitudes. Can. J. Plant Sci. 2018, 98, 1109–1118. [Google Scholar] [CrossRef]
- Liu, Z.; Rong, Q.; Zhou, W.; Liang, G. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. PLoS ONE 2017, 12, e0172767. [Google Scholar] [CrossRef] [PubMed]
- Kankarla, V.; Shukla, M.K.; Picchioni, G.A.; VanLeeuwen, D.; Schutte, B.J. Germination and emergence responses of alfalfa, triticale and quinoa irrigated with brackish groundwater and desalination concentrate. Agronomy 2020, 10, 549. [Google Scholar] [CrossRef]
- Hoorman, J.J. Understanding Soil Microbes and Nutrient Recycling; Ohio State University Extension: Columbus, OH, USA, 2020; Available online: https://ohioline.osu.edu/factsheet/SAG-16 (accessed on 1 November 2024).
- Nanda, A.; Mohapatra, B.B.; Mahapatra, A.P.K.; Mahapatra, A.P.K.; Mahapatra, A.P.K. Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. Int. J. Stat. Appl. Math. 2021, 6, 59–65. [Google Scholar] [CrossRef]
- Botyanszká, L.; Šurda, P.; Vitková, J.; Lichner, Ľ.; Igaz, D. Effect of microplastics on silty loam soil properties and radish growth. J. Hydrol. Hydromech. 2022, 70, 321–329. [Google Scholar] [CrossRef]
- Ranal, M.A.; Santana, D.G. How and why to measure the germination process? Rev. Bras. Bot. 2006, 29, 1–11. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Caesaria, P.U.; Rillig, M.C. Microplastics of different shapes increase seed germination synchrony while only films and fibers affect seed germination velocity. Front. Environ. Sci. 2022, 10, 1017349. [Google Scholar] [CrossRef]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of microplastics in soil ecosystems: Above and below ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef]
- Pflugmacher, S.; Sulek, A.; Mader, H.; Heo, J.; Noh, J.H.; Penttinen, O.-P.; Kim, Y.; Kim, S.; Esterhuizen, M. The influence of new and artificial aged microplastic and leachates on the germination of Lepidium sativum L. Plants 2020, 9, 339. [Google Scholar] [CrossRef]
- Iqbal, S.; Xu, J.; Khan, S.; Arif, M.S.; Yasmeen, T.; Nadir, S.; Schaefer, D.A. Deciphering microplastic ecotoxicology: Impacts on crops and soil ecosystem functions. Circ. Agric. Syst. 2021, 1, 1–7. [Google Scholar] [CrossRef]
- Azeem, I.; Adeel, M.; Ahmad, M.A.; Shakoor, N.; Zain, M.; Yousef, N.; Yinghai, Z.; Boots, K.; Zhou, P.; White, J.C.; et al. Microplastic and nanoplastic interactions with plant species: Trends, meta-analysis, and Perspectives. Environ. Sci. Technol. Lett. 2022, 9, 482–492. [Google Scholar] [CrossRef]
- Orchard, T. Estimating the parameters of plant seedling emergence. Seed Sci. Technol. 1977, 5, 61–69. [Google Scholar]
- Talská, R.; Machalová, J.; Smýkal, P.; Hron, K. A comparison of seed germination coefficients using functional regression. Appl. Plant Sci. 2020, 8, e11366. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, Y.; Chen, W.; Zhu, B.; Qu, S.; Xu, M. Critical Review of Global Plastics Stock and Flow Data. J. Ind. Ecol. 2021, 25, 1300–1317. [Google Scholar] [CrossRef]
- Roman, A.M.; Truta, A.M.; Morar, I.M.; Viman, O.; Dan, C.; Sestras, A.F.; Holonec, L.; Boscaiu, M.; Sestras, R.E. From seed to seedling: Influence of seed geographic provenance and germination treatments on reproductive material represented by seedlings of robinia pseudoacacia. Sustainability 2022, 14, 5654. [Google Scholar] [CrossRef]
- Kader, M.A. A comparison of seed germination calculation formulae and the associated interpretation of resulting data. J. Proc. R. Soc. New South Wales 2005, 138, 65–75. [Google Scholar] [CrossRef]
- Bandow, N.; Will, V.; Wachtendorf, V.; Simon, F.G. Contaminant release from aged microplastic. Environ. Chem. 2017, 14, 394–405. [Google Scholar] [CrossRef]
- Chia, R.W.; Lee, J.-Y.; Jang, J.; Kim, H.; Kwon, K.D. Soil Health and Microplastics: A review of the impacts of microplastic contamination on soil properties. J. Soils Sediments 2022, 22, 2690–2705. [Google Scholar] [CrossRef]
- Xing, X.; Yu, M.; Xia, T.; Ma, L. Interactions between water flow and microplastics in silt loam and loamy sand. Soil Sci. Soc. Am. J. 2021, 85, 1956–1962. [Google Scholar] [CrossRef]
- Jing, X.; Su, L.; Wang, Y.; Yu, M.; Xing, X. How Do Microplastics Affect Physical Properties of Silt Loam Soil under Wetting–Drying Cycles? Agronomy 2023, 13, 844. [Google Scholar] [CrossRef]
- Qi, Y.; Beriot, N.; Gort, G.; Huerta Lwanga, E.; Gooren, H.; Yang, X.; Geissen, V. Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environ. Pollut. 2020, 266, 115097. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.S.; Zhang, F.X.; Li, X.T. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Sci. Total Environ. 2019, 670, 1–7. [Google Scholar] [CrossRef] [PubMed]
- JoVE Science Education Database. Environmental Microbiology. In Culturing and Enumerating Bacteria from Soil Samples; JoVE: Cambridge, MA, USA, 2023. [Google Scholar]
- Pandey, V.; Gautam, P.; Singh, A.P. Study of microbial count in soil under different land use systems in a mollisol. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 16–21. [Google Scholar] [CrossRef]
- Rong, L.; Zhao, L.; Zhao, L.; Cheng, Z.; Yao, Y.; Yuan, C.; Wang, L.; Sun, H. LDPE microplastics affect soil microbial communities and nitrogen cycling. Sci. Total Environ. 2021, 773, 145640. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Z.; Zhu, F.; Zhu, C.; Wang, C.; Gu, C. Effect of polyvinyl chloride microplastics on bacterial community and nutrient status in two agricultural soils. Bull. Environ. Contam. Toxicol. 2021, 107, 602–609. [Google Scholar] [CrossRef]
- de Souza MacHado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, Y.; Zhang, J.; Wen, T.; Wang, H.; Qu, C.; Tan, W.; Xi, B.; Hui, K.; Tang, J. Specific response of soil properties to microplastics pollution: A Review. Environ. Res. 2023, 232, 116427. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Li, D.; Sheerin, E.D.; Shi, Y.; Xiao, L.; Yang, L.; Boland, J.J.; Wang, J.J. Alcohol Pretreatment to Eliminate the Interference of Micro Additive Particles in the Identification of Microplastics Using Raman Spectroscopy. Environ. Sci. Technol. 2022, 56, 12158–12168. [Google Scholar] [CrossRef]
Color | Structure | Texture (%) | pH | EC (dS/m) | MC (%) | Microbial Count (CFU) | ||
---|---|---|---|---|---|---|---|---|
Sand | Sil | Clay | ||||||
10 YR 2/2 | Granular | 2.0 | 97.0 | 1.0 | 8.37 | 19.57 | 56.9 | 1.7 × 106 |
Treatment | Mean Germination Time (MGT) in Days |
---|---|
Control | 1.70 ± 0.12 (ab) |
FF 0.2% | 1.53 ± 0.06 (a) |
FF 1.0% | 1.87± 0.04 (b) |
PP 0.2% | 1.61 ± 0.07 (ab) |
PP 1.0% | 1.66 ± 0.07 (ab) |
Treatment | Germination Index |
---|---|
Control | 7.06 ± 0.38 (a) |
FF 0.2% | 7.60 ± 0.22 (a) |
FF 1.0% | 5.72 ± 0.27 (b) |
PP 0.2% | 6.94 ± 0.22 (a) |
PP 1.0% | 6.78 ± 0.2 (a) |
Initial Microbial Count (Pre-Experiment) | |||||
---|---|---|---|---|---|
Treatments | C 10−3 | D 10−4 | Total | CFU | Classification |
Control | 72,000 | 1,100,000 | 1,172,000 | 1.17 × 106 | Healthy Soil |
FF MP 0.2% | 51,000 | 460,000 | 511,000 | 5.11 × 105 | Unhealthy Soil |
PP MP 0.2% | 69,000 | 810,000 | 879,000 | 8.79 × 105 | Unhealthy Soil |
FF MP 1.0% | 69,000 | 850,000 | 919,000 | 9.19 × 105 | Unhealthy Soil |
PP MP 1.0% | 61,000 | 770,000 | 831,000 | 8.31 × 105 | Unhealthy Soil |
Final Microbial Count (Post-Experiment) | |||||
Treatments | C 103 | D 104 | Total | CFU | Classification |
Control | 307,000 | 1,470,000 | 1,777,000 | 1.78 × 106 | Healthy Soil |
FF MP 0.2% | 318,000 | 2,600,000 | 2,918,000 | 2.92 × 106 | Healthy Soil |
PP MP 0.2% | 167,000 | 1,590,000 | 1,757,000 | 1.76 × 106 | Healthy Soil |
FF MP 1.0% | 286,000 | 2,850,000 | 3,136,000 | 3.14 × 106 | Healthy Soil |
PP MP 1.0% | 174,000 | 2,210,000 | 2,384,000 | 2.38 × 106 | Healthy Soil |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatum, A.; Martin, V.; Kankarla, V. Impact of Microplastic-Amended Soil on Seed Germination of Alfalfa (Medicago sativa) in a Controlled Environment. Agronomy 2025, 15, 237. https://doi.org/10.3390/agronomy15010237
Tatum A, Martin V, Kankarla V. Impact of Microplastic-Amended Soil on Seed Germination of Alfalfa (Medicago sativa) in a Controlled Environment. Agronomy. 2025; 15(1):237. https://doi.org/10.3390/agronomy15010237
Chicago/Turabian StyleTatum, Abigail, Victoria Martin, and Vanaja Kankarla. 2025. "Impact of Microplastic-Amended Soil on Seed Germination of Alfalfa (Medicago sativa) in a Controlled Environment" Agronomy 15, no. 1: 237. https://doi.org/10.3390/agronomy15010237
APA StyleTatum, A., Martin, V., & Kankarla, V. (2025). Impact of Microplastic-Amended Soil on Seed Germination of Alfalfa (Medicago sativa) in a Controlled Environment. Agronomy, 15(1), 237. https://doi.org/10.3390/agronomy15010237