Regulation of Pear Fruit Quality: A Review Based on Chinese Pear Varieties
Abstract
:1. Introduction
2. Metabolic Regulation of Pear Fruit Quality
2.1. Sweetness
2.2. Color
2.3. Texture
2.4. Physiological Disorders
3. Stone Cells Affect Fruit Quality of Pears
4. Sugar Affects Pear Fruit Quality
5. Regulation of Pear Fruit Quality by Plant Hormones
5.1. Cytokinin
5.2. Gibberellin
5.3. Ethylene
5.4. ABA
5.5. Salicylic Acid
6. Post-Translational Modifications in Regulating Pear Fruit Quality
6.1. Ubiquitination
6.2. Methylation Modifications
6.3. Acetylation Modifications
7. Genomic Sequencing Technologies in the Study of Pear Fruit Quality
8. Conclusions and Perspective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barthwal, R.; Negi, A.; Kathuria, D.; Singh, N. Ozonation: Post-harvest processing of different fruits and vegetables enhancing and preserving the quality. Food Chem. 2025, 463, 141489. [Google Scholar] [CrossRef] [PubMed]
- Abdel Moniem, H.; Yusuf, M.S.; Chen, G. Ecology and population structure of some indigenous geese breeds and the impact of four GH and Pit-1 SNPs on their body weights. Environ. Sci. Pollut. Res. Int. 2021, 28, 37603–37615. [Google Scholar] [CrossRef] [PubMed]
- Orrego, C.E.; Salgado, N.; Botero, C.A. Developments and trends in fruit bar production and characterization. Crit. Rev. Food Sci. Nutr. 2014, 54, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, N.; Liu, Z.; Wang, L.; Yang, M.; Liu, M. The underlying molecular mechanisms of hormonal regulation of fruit color in fruit-bearing plants. Plant Mol. Biol. 2024, 114, 104. [Google Scholar] [CrossRef] [PubMed]
- Arji, I.; Hassany, B.; Ghamarnia, H. The effects of water stress on apple qualities and quantities (Golden delicious variety). J. Hortic. Sci. 2016, 29, 610–620. [Google Scholar]
- Beier, S.; Marella, N.C.; Yvin, J.C.; Von Wiren, N.; Hosseini, S.A. Silicon mitigates potassium deficiency by enhanced remobilization and modulated potassium transporter regulation. Environ. Exp. Bot. 2022, 198, 104849. [Google Scholar] [CrossRef]
- Dong, X.; Wang, Z.; Tian, L.; Zhang, Y.; Qi, D.; Huo, H.; Xu, J.; Li, Z.; Liao, R.; Shi, M.; et al. De novo assembly of a wild pear (Pyrus betuleafolia) genome. Plant Biotechnol. J. 2020, 18, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, H.; Ren, A.; Chen, G.; Ye, W.; Wu, Y.; Ma, P.; Yu, W.; He, T. A comparison of the mineral element content of 70 different varieties of pear fruit (Pyrus ussuriensis) in China. PeerJ 2023, 11, e15328. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, G.; Yang, Z.; Wang, Y.; Zhang, Z.; Li, L.; Waqas, M.; Hong, N.; Liu, H.; Wang, G.; et al. Identification and Characterization of a Pear Chlorotic Leaf Spot-Associated Virus, a Novel Emaravirus Associated with a Severe Disease of Pear Trees in China. Plant Dis. 2020, 104, 2786–2798. [Google Scholar] [CrossRef]
- Sun, W.; Gong, P.; Zhao, Y.; Ming, L.; Zeng, Q.; Liu, F. Current Situation of Fire Blight in China. Phytopathology 2023, 113, 2143–2151. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wu, X.; Shi, Z.; Tao, S.; Liu, Z.; Qi, K.; Xie, Z.; Qiao, X.; Gu, C.; Yin, H.; et al. A large-scale proteogenomic atlas of pear. Mol. Plant 2023, 16, 599–615. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, Y.-F.; Huo, H.-L.; Xu, J.-Y.; Tian, L.-M.; Dong, X.-G.; Qi, D.; Liu, C. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits. J. Integr. Agric. 2022, 21, 2275–2290. [Google Scholar] [CrossRef]
- Gottschalk, C.; Bell, R.L.; Volk, G.M.; Dardick, C. Over a century of pear breeding at the USDA. Front. Plant Sci. 2024, 15, 1474143. [Google Scholar] [CrossRef] [PubMed]
- Saito, T. Advances in Japanese pear breeding in Japan. Breed. Sci. 2016, 66, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.K.U.; Zhang, X.; Ma, Z.; Huang, M.; Yang, C.; Wang, X.; Liu, M.; Peng, J. Contribution of the LAC Genes in Fruit Quality Attributes of the Fruit-Bearing Plants: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 15768. [Google Scholar] [CrossRef]
- Cho, G.; Burckhardt, D.; Inoue, H.; Luo, X.; Lee, S. Systematics of the east Palaearctic pear psyllids (Hemiptera: Psylloidea) with particular focus on the Japanese and Korean fauna. Zootaxa 2017, 4362, 75–98. [Google Scholar] [CrossRef] [PubMed]
- Kan, J.; Yuan, N.; Lin, J.; Li, H.; Yang, Q.; Wang, Z.; Shen, Z.; Ying, Y.; Li, X.; Cao, F. Seed Germination and Growth Improvement for Early Maturing Pear Breeding. Plants 2023, 12, 4120. [Google Scholar] [CrossRef]
- Mo, R.; Li, Y.; Yuan, Q.; He, M.; Xu, X.; Chen, G.; Zhang, W.; Duan, Y. Nest-Site Features and Breeding Ecology of Chestnut-Vented Nuthatch Sitta nagaensis in Southwestern China. Animals 2023, 13, 2034. [Google Scholar] [CrossRef]
- Blattný, C. PEARS. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 4428–4433. [Google Scholar]
- Reiland, H.; Slavin, J. Systematic Review of Pears and Health. Nutr. Today 2015, 50, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Zhang, L.; Lv, J.; Zhang, Y.; Sun, M.; Chen, J.; Ge, Y. Effects of 1-methylcyclopropene (1-MCP) treatment on ethanol fermentation of Nanguo pear fruit during ripening. J. Food Biochem. 2022, 46, e14035. [Google Scholar] [CrossRef] [PubMed]
- Li, J.M.; Huang, X.S.; Li, L.T.; Zheng, D.M.; Xue, C.; Zhang, S.L.; Wu, J. Proteome analysis of pear reveals key genes associated with fruit development and quality. Planta 2015, 241, 1363–1379. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Yu, J.; Li, X.; Li, J.; Fan, J.; Liu, H.; Wei, W.; Zhang, L.; Gu, K.; Liu, D.; et al. Increased DNA methylation contributes to the early ripening of pear fruits during domestication and improvement. Genome Biol. 2024, 25, 87. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, K.; Li, X.; Blanco-Ulate, B.; Yang, Q.; Yao, G.; Wei, Y.; Wu, J.; Sheng, B.; Chang, , Y.; et al. A pear S1-bZIP transcription factor PpbZIP44 modulates carbohydrate metabolism, amino acid, and flavonoid accumulation in fruits. Hortic Res. 2023, 10, uhad140. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Anwar, R.; Yousef, A.F.; Li, B.; Luvisi, A.; De Bellis, L.; Aprile, A.; Chen, F. Influence of Bagging on the Development and Quality of Fruits. Plants 2021, 10, 358. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, F.S.; Xu, K.; Xu, N. Effects of fruit bag color on the microenvironment, yield and quality of tomato fruits. Ying Yong Sheng Tai Xue Bao 2013, 24, 2229–2234. [Google Scholar] [PubMed]
- Wang, H.; Zhang, S.; Fu, Q.; Wang, Z.; Liu, X.; Sun, L.; Zhao, Z. Transcriptomic and metabolomic analysis reveals a protein module involved in preharvest apple peel browning. Plant Physiol. 2023, 192, 2102–2122. [Google Scholar] [CrossRef]
- Zhao, J.; Zou, Q.; Bao, T.; Kong, M.; Gu, T.; Jiang, L.; Wang, T.; Xu, T.; Wang, N.; Zhang, Z.; et al. Transcription factor MdbZIP44 targets the promoter of MdPPO2 to regulate browning in Malus domestica Borkh. Plant Physiol. Biochem. 2024, 214, 108934. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dai, M.; Cai, D.; Shi, Z. Proteome and transcriptome profile analysis reveals regulatory and stress-responsive networks in the russet fruit skin of sand pear. Hortic. Res. 2020, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Sun, S.; Chen, X.; Wu, S.; Wang, D.; Chen, X. PyMYB10 and PyMYB10.1 Interact with bHLH to Enhance Anthocyanin Accumulation in Pears. PLoS ONE 2015, 10, e0142112. [Google Scholar] [CrossRef]
- Feng, S.; Wang, Y.; Yang, S.; Xu, Y.; Chen, X. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta 2010, 232, 245–255. [Google Scholar] [CrossRef]
- Yang, G.; Xue, Z.; Lin-Wang, K.; Chen, G.; Zhao, Y.; Chang, Y.; Xu, S.; Sun, M.; Xue, C.; Li, J.; et al. An ’activator-repressor’ loop controls the anthocyanin biosynthesis in red-skinned pear. Mol. Hortic. 2024, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Sun, M.; Brewer, L.; Tang, Z.; Nieuwenhuizen, N.; Cooney, J.; Xu, S.; Sheng, J.; Andre, C.; Xue, C.; et al. Allelic variation of BBX24 is a dominant determinant controlling red coloration and dwarfism in pear. Plant Biotechnol. J. 2024, 22, 1468–1490. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Yu, W.; Gao, Y.; Ni, J.; Yin, L.; Zhang, X.; Li, H.; Wang, D.; Bai, S.; Teng, Y. Light-Induced Basic/Helix-Loop-Helix64 Enhances Anthocyanin Biosynthesis and Undergoes CONSTITUTIVELY PHOTOMORPHOGENIC1-Mediated Degradation in Pear. Plant Physiol. 2020, 184, 1684–1701. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Shu, Q.; Lin-Wang, K.; Allan, A.C.; Espley, R.V.; Su, J.; Pei, M.; Wu, J. The PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10 module regulates light-induced anthocyanin biosynthesis in red pear. Mol. Hortic. 2021, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Gou, S.; Zhong, T.; Wei, S.; An, X.; Sun, H.; Sun, C.; Hu, K.; Zhang, H. Persulfidation of transcription factor MYB10 inhibits anthocyanin synthesis in red-skinned pear. Plant Physiol. 2023, 192, 2185–2202. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Su, J.; Zhu, Y.; Yao, G.; Allan, A.C.; Ampomah-Dwamena, C.; Shu, Q.; Lin-Wang, K.; Zhang, S.; Wu, J. The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter. Hortic. Res. 2019, 6, 134. [Google Scholar] [CrossRef]
- Wu, X.; Chen, Y.; Wang, X.; Qi, K.; Qiao, X.; Li, Q.; Xie, Z.; Cao, P.; Zhang, S.; Yin, H. New insights into aroma regulation in pear peel and flesh under methyl jasmonate treatment obtained by metabolite and whole-transcriptome RNA sequencing analyses. Postharvest Biol. Technol. 2023, 201, 112347. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Xu, J.; Korban, S.S.; Fei, Z.; Tao, S.; Ming, R.; Tai, S.; Khan, A.M.; Postman, J.D.; et al. Diversification and independent domestication of Asian and European pears. Genome Biol. 2018, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Gerasopoulos, D.; Richardson, D.G. Effects of exogenous propylene and fruit calcium on ripening of non-chilled and chilled Anjou pears. Postharvest Biol. Technol. 1996, 8, 111–120. [Google Scholar] [CrossRef]
- Wang, D.; Ma, Q.; Belwal, T.; Li, D.; Li, W.; Li, L.; Luo, Z. High Carbon Dioxide Treatment Modulates Sugar Metabolism and Maintains the Quality of Fresh-Cut Pear Fruit. Molecules 2020, 25, 4261. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, F.; Wang, Y.; Zhang, Y.; Zhang, Y.; Liu, Y.; Sun, X.; Qi, K.; Xie, Z.; Zhang, S. Transcription factors Pbr3RAV2 and PbrTTG1 regulate pear resistance to Botryosphaeria dothidea via the autophagy pathway. Plant Physiol. 2024, 195, 3024–3038. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; He, Y.; Lv, S.; Zhu, H.; Wang, T.; Wang, G.; Hong, N.; Wang, L. The PcMYB44-mediated miR397-PcLACs module regulates defence-induced lignification in pear resistance to fungal disease. Mol. Plant Pathol. 2023, 24, 1107–1125. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Du, B.; Zhang, Y. Conjugated trienols and programmed cell death are more closely related to superficial scald than reactive oxygen species in apple fruit stored at low temperature. Sci. Hortic. 2019, 246, 597–603. [Google Scholar] [CrossRef]
- He, J.; Feng, Y.; Cheng, Y.; Karuppanapandian, T.; Wang, J.; Guan, J. Changes in α-Farnesene and Phenolic Metabolism and the Expression of Associated Genes during the Development of Superficial Scald in Two Distinct Pear Cultivars. Int. J. Mol. Sci. 2022, 23, 12088. [Google Scholar] [CrossRef] [PubMed]
- Zhai, R.; Xiang, F.; Song, J.; Wang, Z.; Yang, C.; Xu, L. Roles of laccase and cultivar-specific phenolic composition in scald-like disorder development in pears. Postharvest Biol. Technol. 2021, 181, 111651. [Google Scholar] [CrossRef]
- Xue, C.; Yao, J.L.; Qin, M.F.; Zhang, M.Y.; Allan, A.C.; Wang, D.F.; Wu, J. PbrmiR397a regulates lignification during stone cell development in pear fruit. Plant Biotechnol. J. 2019, 17, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Yao, J.L.; Xue, Y.S.; Su, G.Q.; Wang, L.; Lin, L.K.; Allan, A.C.; Zhang, S.L.; Wu, J. PbrMYB169 positively regulates lignification of stone cells in pear fruit. J. Exp. Bot. 2019, 70, 1801–1814. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Shan, Y.; Yao, J.L.; Wang, R.; Xu, S.; Liu, D.; Ye, Z.; Lin, J.; Li, X.; Xue, C.; et al. The transcription factor PbrMYB24 regulates lignin and cellulose biosynthesis in stone cells of pear fruits. Plant Physiol. 2023, 192, 1997–2014. [Google Scholar] [CrossRef] [PubMed]
- Peco, J.D.; Rapoport, H.F.; Centeno, A.; Pérez-López, D. Does Regulated Deficit Irrigation Affect Pear Fruit Texture by Modifying the Stone Cells? Plants 2023, 12, 4024. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, S.; Sun, H.; Liu, C.; Li, X.; Liu, Y.; Deguo, L.; Du, G. Production of reactive oxygen species by PuRBOHF is critical for stone cell development in pear fruit. Hortic. Res. 2021, 8, 249. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yuan, K.; Ren, M.; Xie, Z.; Qi, K.; Gong, X.; Wang, Q.; Zhang, S.; Tao, S. PbPDCB16-mediated callose deposition affects the plasmodesmata blockage and reduces lignification in pear fruit. Plant Sci. Int. J. Exp. Plant Biol. 2023, 337, 111876. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Jiang, H.; Liu, W.; Zhang, S.; Hou, X.; Zhang, S.; Wang, N.; Zhang, R.; Zhang, Z.; et al. Transcriptome analysis reveals that PbMYB61 and PbMYB308 are involved in the regulation of lignin biosynthesis in pear fruit stone cells. Plant J. 2023, 116, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Xie, Z.; Qi, K.; Zhao, L.; Yuan, Y.; Xu, J.; Rui, W.; Shiratake, K.; Bao, J.; Khanizadeh, S.; et al. PbMC1a/1b regulates lignification during stone cell development in pear (Pyrus bretschneideri) fruit. Hortic. Res. 2020, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Qi, K.; Zhao, L.; Xie, Z.; Pan, J.; Yan, X.; Shiratake, K.; Zhang, S.; Tao, S. PbAGL7-PbNAC47-PbMYB73 complex coordinately regulates PbC3H1 and PbHCT17 to promote the lignin biosynthesis in stone cells of pear fruit. Plant J. 2024, 120, 1933–1953. [Google Scholar] [CrossRef]
- Cheng, R.; Cheng, Y.; Lü, J.; Chen, J.; Wang, Y.; Zhang, S.; Zhang, H. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit. Physiol. Plant 2018, 164, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Wu, R.F.; Yu, C.Y.; Qi, K.J.; Wu, C.; Zhang, H.P.; Zhang, S.L. Spatio-temporally expressed sorbitol transporters cooperatively regulate sorbitol accumulation in pear fruit. Plant Sci. 2021, 303, 110787. [Google Scholar] [CrossRef]
- Li, J.; Qin, M.; Qiao, X.; Cheng, Y.; Li, X.; Zhang, H.; Wu, J. A New Insight into the Evolution and Functional Divergence of SWEET Transporters in Chinese White Pear (Pyrus bretschneideri). Plant Cell Physiol. 2017, 58, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Li, J.M.; Zheng, D.M.; Li, L.T.; Qiao, X.; Wei, S.W.; Bai, B.; Zhang, S.L.; Wu, J. Genome-Wide Function, Evolutionary Characterization and Expression Analysis of Sugar Transporter Family Genes in Pear (Pyrus bretschneideri Rehd). Plant Cell Physiol. 2015, 56, 1721–1737. [Google Scholar] [CrossRef]
- Nishio, S.; Hayashi, T.; Shirasawa, K.; Saito, T.; Terakami, S.; Takada, N.; Takeuchi, Y.; Moriya, S.; Itai, A. Genome-wide association study of individual sugar content in fruit of Japanese pear (Pyrus spp.). BMC Plant Biol. 2021, 21, 378. [Google Scholar] [CrossRef]
- Katayama, H.; Amo, H.; Wuyun, T.; Uematsu, C.; Iketani, H. Genetic structure and diversity of the wild Ussurian pear in East Asia. Breed. Sci. 2016, 66, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Ren, X.; Du, B.; Yang, Y. Pyrus ussuriensis Maxim 70% ethanol eluted fraction ameliorates inflammation and oxidative stress in LPS-induced inflammation in vitro and in vivo. Food Sci. Nutr. 2023, 11, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, W.; Li, J.; Yue, P.; Bu, H.; Jiang, J.; Liu, W.; Xu, Y.; Yuan, H.; Li, T.; et al. Histone Acetylation at the Promoter for the Transcription Factor PuWRKY31 Affects Sucrose Accumulation in Pear Fruit. Plant Physiol. 2020, 182, 2035–2046. [Google Scholar] [CrossRef] [PubMed]
- Lü, J.; Tao, X.; Yao, G.; Zhang, S.; Zhang, H. Transcriptome Analysis of Low- and High-Sucrose Pear Cultivars Identifies Key Regulators of Sucrose Biosynthesis in Fruits. Plant Cell Physiol. 2020, 61, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Zhang, X.; Zhang, Z.; Luo, W.; Nambeesan, S.U.; Li, Q.; Qiao, X.; Yang, B.; Wang, L.; Zhang, S. PbrbZIP15 promotes sugar accumulation in pear via activating the transcription of the glucose isomerase gene PbrXylA1. Plant J. Cell Mol. Biol. 2024, 117, 1392–1412. [Google Scholar] [CrossRef]
- Qin, M.F.; Li, L.T.; Singh, J.; Sun, M.Y.; Bai, B.; Li, S.W.; Ni, J.P.; Zhang, J.Y.; Zhang, X.; Wei, W.L.; et al. Construction of a high-density bin-map and identification of fruit quality-related quantitative trait loci and functional genes in pear. Hortic. Res. 2022, 9, uhac141. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Chen, J.; Liu, X.; Wang, B.; Zhao, Y.; Liao, L.; Allan, A.C.; Sun, C.; Duan, Y.; Li, X.; et al. A metabolic perspective of selection for fruit quality related to apple domestication and improvement. Genome Biol. 2023, 24, 95. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Wang, S.B.; Li, Y.J.; Hao, X.Y.; Zong, Y.Z.; Zhang, D.S.; Shen, J.; Shi, X.R.; Li, P. Effects of elevated CO(2) concentration on cell structure and stress resistance physiology of Setaria italica under drought stress. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2023, 34, 1281–1289. [Google Scholar]
- Kieber, J.J.; Schaller, G.E. Cytokinin signaling in plant development. Development 2018, 145, dev149344. [Google Scholar] [CrossRef] [PubMed]
- Laburthe, M.; Couvineau, A.; Rouyer-Fessard, C. Study of species specificity in growth hormone-releasing factor (GRF) interaction with vasoactive intestinal peptide (VIP) receptors using GRF and intestinal VIP receptors from rat and human: Evidence that Ac-Tyr1hGRF is a competitive VIP antagonist in the rat. Mol. Pharmacol. 1986, 29, 23–27. [Google Scholar]
- Zhang, M.; Li, H.; Zhu, H.; Zhao, H.; Zhang, K.; Ge, W. Molecular Mechanisms of the miR396b-GRF1 Module Underlying Rooting Regulation in Acer rubrum L. Evol. Bioinform. Online 2023, 19, 11769343231211071. [Google Scholar] [CrossRef]
- Wang, H.; Sha, G.; Gao, R.; Pang, J.; Zhai, R.; Yang, C.; Wang, Z.; Xu, L. PbGIF1 promoting cell-proliferation in pear fruit is transcriptionally activated by PbRR1. Hortic. Plant J. 2024, 10, 689–697. [Google Scholar] [CrossRef]
- Sha, G.; Cheng, J.; Wang, X.; Xue, Q.; Zhang, H.; Zhai, R.; Yang, C.; Wang, Z.; Xu, L. PbbHLH137 interacts with PbGIF1 to regulate pear fruit development by promoting cell expansion to increase fruit size. Physiol. Plant 2024, 176, e14451. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sun, W.; Zhang, N.; Zhang, S.; Bie, Y.; Deng, C.; Liu, H.; Song, L.; Manzoor, M.A.; Wang, J.; et al. PyTRM112 is involved in the regulation of GA-mediated fruit size and shape in Pyrus pyrifolia. Sci. Hortic. 2024, 333, 113248. [Google Scholar] [CrossRef]
- Haydon, M.J.; Mielczarek, O.; Frank, A.; Román, Á.; Webb, A.A.R. Sucrose and Ethylene Signaling Interact to Modulate the Circadian Clock. Plant Physiol. 2017, 175, 947–958. [Google Scholar] [CrossRef]
- Lao, T.D.; Nguyen, N.H.; Le, T.A.H.; Nguyen, P.D.T. Insights into Sucrose Metabolism and Its Ethylene-Dependent Regulation in Cucumis melo L. Mol. Biotechnol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.R.; Zaman, R.; La, V.H.; Bae, D.W.; Kim, T.H. Ethephon-Induced Ethylene Enhances Starch Degradation and Sucrose Transport with an Interactive Abscisic Acid-Mediated Manner in Mature Leaves of Oilseed rape (Brassica napus L.). Plants 2021, 10, 1670. [Google Scholar] [CrossRef]
- Li, X.; Guo, W.; Xu, M.; Zhao, J.; Wang, G.; Yuan, H.; Wang, A. PuWRKY31 affects ethylene production in response to sucrose signal in pear fruit. Hortic. Res. 2022, 9, uhac156. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Liu, H.; Zheng, S.; Qi, K.; Xie, Z.; Wang, X.; Hong, Y.; Cui, Y.; Liu, X.; Gu, C.; et al. The transcription factor PbbHLH164 is destabilized by PbRAD23C/D.1 and mediates ethylene biosynthesis during pear fruit ripening. J. Adv. Res. 2024, 66, 119–131. [Google Scholar] [PubMed]
- Ni, J.; Zhao, Y.; Tao, R.; Yin, L.; Gao, L.; Strid, Å.; Qian, M.; Li, J.; Li, Y.; Shen, J.; et al. Ethylene mediates the branching of the jasmonate-induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits. Plant Biotechnol. J. 2020, 18, 1223–1240. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Premathilake, A.T.; Gao, Y.; Yu, W.; Tao, R.; Teng, Y.; Bai, S. Ethylene-activated PpERF105 induces the expression of the repressor-type R2R3-MYB gene PpMYB140 to inhibit anthocyanin biosynthesis in red pear fruit. Plant J. 2021, 105, 167–181. [Google Scholar] [CrossRef]
- Ni, J.; Wang, S.; Yu, W.; Liao, Y.; Pan, C.; Zhang, M.; Tao, R.; Wei, J.; Gao, Y.; Wang, D.; et al. The ethylene-responsive transcription factor PpERF9 represses PpRAP2.4 and PpMYB114 via histone deacetylation to inhibit anthocyanin biosynthesis in pear. Plant Cell 2023, 35, 2271–2292. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Ge, C.; Ling, Y.; Mo, F.; Yang, M.; Jiang, L.; Chen, Q.; Lin, Y.; Sun, B.; Zhang, Y.; et al. ABA and sucrose co-regulate strawberry fruit ripening and show inhibition of glycolysis. Mol. Genet. Genom. 2020, 295, 421–438. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Pei, M.S.; Guo, Z.H.; Wu, L.; Qi, K.J.; Wang, X.P.; Liu, H.; Liu, Z.; Lang, Z.; Zhang, S. Multi-omics provide insights into the regulation of DNA methylation in pear fruit metabolism. Genome Biol. 2024, 25, 70. [Google Scholar] [CrossRef]
- Fatmi, M.; Bougsiba, M.; Saoud, H. First Report of Fire Blight Caused by Erwinia amylovora on Pear, Apple, and Quince in Morocco. Plant Dis. 2008, 92, 314. [Google Scholar] [CrossRef]
- Shi, H.Y.; Cao, L.W.; Yue, X.U.; Yang, X.; Chen, L. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai). J. Integr. Agric. 2021, 20, 2424–2437. [Google Scholar] [CrossRef]
- Xu, Y.; Song, S.; Wang, H.; Cao, X.; Zhao, X.; Wang, W.; Huo, L.; Li, Y.; Wassie, M.; Lu, B.; et al. Genome-wide identification of the CONSTANS-LIKE (COL) family and mechanism of fruit senescence regulation by PpCOL8 in sand pear (Pyrus pyrifolia). J. Integr. Agric. 2024, 23, 1222–1237. [Google Scholar] [CrossRef]
- Yue, P.; Jiang, Z.; Sun, Q.; Wei, R.; Yin, Y.; Xie, Z.; Larkin, R.M.; Ye, J.; Chai, L.; Deng, X. Jasmonate activates a CsMPK6-CsMYC2 module that regulates the expression of β-citraurin biosynthetic genes and fruit coloration in orange (Citrus sinensis). Plant Cell 2023, 35, 1167–1185. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, Z.; Lv, T.; Wei, Y.; Liu, W.; Wei, Y.; Yang, G.; Liu, L.; Li, T.; Wang, A. Exogenous Ca2+ promotes transcription factor phosphorylation to suppress ethylene biosynthesis in apple. Plant Physiol. 2023, 191, 2475–2488. [Google Scholar] [CrossRef] [PubMed]
- Sriskantharajah, K.; El Kayal, W.; Ayyanath, M.M.; Saxena, P.K.; Sullivan, A.J.; Paliyath, G.; Subramanian, J. Preharvest Spray Hexanal Formulation Enhances Postharvest Quality in ’Honeycrisp’ Apples by Regulating Phospholipase D and Calcium Sensor Proteins Genes. Plants 2021, 10, 2332. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Z.; Lv, T.; Xu, Y.; Wei, Y.; Liu, W.; Liu, L.; Wang, A.; Li, T. Ethylene enhances MdMAPK3-mediated phosphorylation of MdNAC72 to promote apple fruit softening. Plant Cell 2023, 35, 2887–2909. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, N.; Chen, M.; Zhang, R.; Sun, Q.; Xu, H.; Zhang, Z.; Wang, Y.; Sui, X.; Wang, S.; et al. Methylation of MdMYB1 locus mediated by RdDM pathway regulates anthocyanin biosynthesis in apple. Plant Biotechnol. J. 2020, 18, 1736–1748. [Google Scholar] [CrossRef]
- Wu, C.; Deng, W.; Shan, W.; Liu, X.; Zhu, L.; Cai, D.; Wei, W.; Yang, Y.; Chen, J.; Lu, W.; et al. Banana MKK1 modulates fruit ripening via the MKK1-MPK6-3/11-4-bZIP21 module. Cell Rep. 2023, 42, 112832. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lu, M.; An, H. Lysine acetylproteome analysis reveals the lysine acetylation in developing fruit and a key acetylated protein involved in sucrose accumulation in Rosa roxburghii Tratt. J. Proteom. 2024, 305, 105248. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Yin, M.; Xu, M.; Zhang, H.; Li, S.; Han, Y.; Ji, S.; Li, X.; Du, G. Transcription factors PuPRE6/PuMYB12 and histone deacetylase PuHDAC9-like regulate sucrose levels in pear. Plant Physiol. 2024, 194, 1577–1592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.Y.; Xue, C.; Hu, H.; Li, J.; Xue, Y.; Wang, R.; Fan, J.; Zou, C.; Tao, S.; Qin, M.; et al. Genome-wide association studies provide insights into the genetic determination of fruit traits of pear. Nat. Commun. 2021, 12, 1144. [Google Scholar] [CrossRef]
- Song, B.; Li, X.; Cao, B.; Zhang, M.; Korban, S.S.; Yu, L.; Yang, W.; Zhao, K.; Li, J.; Wu, J. An identical-by-descent segment harbors a 12-bp insertion determining fruit softening during domestication and speciation in Pyrus. BMC Biol. 2022, 20, 215. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Hu, H.; Cao, Y.; Xu, R.; Lin, Y.; Muhammad, T.u.Q.; Song, Y.; He, G.; Han, Y.; Guo, H.; et al. Pear genomes display significant genetic diversity and provide novel insights into the fruit quality traits differentiation. Hortic. Plant J. 2024, 10, 1274–1290. [Google Scholar] [CrossRef]
- Sun, M.; Yao, C.; Shu, Q.; He, Y.; Chen, G.; Yang, G.; Xu, S.; Liu, Y.; Xue, Z.; Wu, J. Telomere-to-telomere pear (Pyrus pyrifolia) reference genome reveals segmental and whole genome duplication driving genome evolution. Hortic. Res. 2023, 10, uhad201. [Google Scholar] [CrossRef] [PubMed]
- Serra, S.; Borghi, S.; Mupambi, G.; Camargo-Alvarez, H.; Layne, D.; Schmidt, T.; Kalcsits, L.; Musacchi, S. Photoselective Protective Netting Improves “Honeycrisp” Fruit Quality. Plants 2020, 9, 1708. [Google Scholar] [CrossRef]
- Tas, A.; Gundogdu, M.; Ercisli, S.; Orman, E.; Celik, K.; Marc, R.A.; Buckova, M.; Adamkova, A.; Mlcek, J. Fruit Quality Characteristics of Service Tree (Sorbus domestica L.). Genotypes. ACS Omega 2023, 8, 19862–19873. [Google Scholar] [CrossRef] [PubMed]
- Munné-Bosch, S.; Bermejo, N.F. Fruit quality in organic and conventional farming: Advantages and limitations. Trends Plant Sci. 2024, 29, 878–894. [Google Scholar] [CrossRef]
- Fallik, E.; Ziv, C. How rootstock/scion combinations affect watermelon fruit quality after harvest? J. Sci. Food Agric. 2020, 100, 3275–3282. [Google Scholar] [CrossRef] [PubMed]
- Fredes, A.; Roselló, S.; Beltrán, J.; Cebolla-Cornejo, J.; Pérez-de-Castro, A.; Gisbert, C.; Picó, M.B. Fruit quality assessment of watermelons grafted onto citron melon rootstock. J. Sci. Food Agric. 2017, 97, 1646–1655. [Google Scholar] [CrossRef]
- Wang, N.; Yang, C.; Pan, Z.; Liu, Y.; Peng, S. Boron deficiency in woody plants: Various responses and tolerance mechanisms. Front. Plant Sci. 2015, 6, 916. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Cheng, Y.; Ma, Y.; Guan, J.; Zhang, H. Regulation of Pear Fruit Quality: A Review Based on Chinese Pear Varieties. Agronomy 2025, 15, 58. https://doi.org/10.3390/agronomy15010058
Zhang Y, Cheng Y, Ma Y, Guan J, Zhang H. Regulation of Pear Fruit Quality: A Review Based on Chinese Pear Varieties. Agronomy. 2025; 15(1):58. https://doi.org/10.3390/agronomy15010058
Chicago/Turabian StyleZhang, Ying, Yudou Cheng, Yuru Ma, Junfeng Guan, and Hao Zhang. 2025. "Regulation of Pear Fruit Quality: A Review Based on Chinese Pear Varieties" Agronomy 15, no. 1: 58. https://doi.org/10.3390/agronomy15010058
APA StyleZhang, Y., Cheng, Y., Ma, Y., Guan, J., & Zhang, H. (2025). Regulation of Pear Fruit Quality: A Review Based on Chinese Pear Varieties. Agronomy, 15(1), 58. https://doi.org/10.3390/agronomy15010058