Grass Cover in Vineyards as a Multifunctional Solution for Sustainable Grape Growing: A Case Study of Cabernet Sauvignon Cultivation in Serbia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Climate Factors
2.3. Soil and Plant Sampling and Chemical Characterisation
2.4. Grape Samples
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Markovic, N.; Przic, Z. Serbian viticulture from the 19th century to the present day. Ann. Univ. Craiova-Agric. Mont. Cadastre Ser. 2022, 52, 261–269. [Google Scholar] [CrossRef]
- Vucicevic, A. Statistical Year Book 2023; Statistical Office of the Republica of Serbia: Belgrade, Serbia, 2023; pp. 205, 220. Available online: https://publikacije.stat.gov.rs/G2023/PdfE/G20232056.pdf (accessed on 20 December 2023).
- International Organisation of Vine and Wine (OIV). Statistical Report on World Vitiviniculture for 2015. p. 3. Available online: https://www.oiv.int/public/medias/2777/report-mainz-congress-2015-oiv-en-7.pdf (accessed on 20 December 2024).
- International Organisation of Vine and Wine (OIV). Statistical Report on World Vitiviniculture for 2016. p. 13. Available online: https://www.oiv.int/public/medias/5029/world-vitiviniculture-situation-2016.pdf (accessed on 20 December 2024).
- International Organisation of Vine and Wine (OIV). Statistical Report on World Vitiviniculture for 2017. p. 3. Available online: https://www.oiv.int/public/medias/5479/oiv-en-bilan-2017.pdf (accessed on 20 December 2024).
- International Organisation of Vine and Wine (OIV). Statistical Report on World Vitiviniculture for 2018. p. 17. Available online: https://www.oiv.int/public/medias/6371/oiv-statistical-report-on-world-vitiviniculture-2018.pdf (accessed on 20 December 2024).
- International Organisation of Vine and Wine (OIV). Statistical Report on World Vitiviniculture for and 2019. p. 17. Available online: https://www.oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (accessed on 20 December 2024).
- Anderson, K.; Nelgen, S.; Pinilla, V. Global Wine Markets, 1860 to 2016: A Statistical Compendium; University of Adelaide Press: Adelaide, Australia, 2017; pp. 1–582. Available online: http://www.jstor.org/stable/10.20851/j.ctv346tgs (accessed on 22 December 2024).
- Anderson, K.; Nelgen, S. Which Winegrape Varieties are Grown Where? A Global Empirical Picture; University of Adelaide: Adelaide, Australia, 2020; pp. 1–699. Available online: https://www.adelaide.edu.au/press/titles/winegrapes (accessed on 22 December 2024).
- Przic, Z. Viticulture in Serbia/Romanian border zone. Ann. Univ. Craiova-Agric. Mont. Cadastre Ser. 2022, 52, 306–313. [Google Scholar] [CrossRef]
- Przic, Z.; Markovic, N. Agrobiological and technological characteristics of some grapevine varieties and clones grown in Serbia. Ann. Univ. Craiova-Agric. Mont. Cadastre Ser. 2019, 49, 229–237. [Google Scholar]
- Guzmán, G.; Cabezas, J.M.; Sánchez-Cuesta, R.; Lora, Á.; Bauer, T.; Strauss, P.; Winter, S.; Zaller, J.G.; Gómez, J. A field evaluation of the impact of temporary cover crops on soil properties and vegetation communities in southern Spain vineyards. Agric. Ecosyst. Environ. 2019, 272, 135–145. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Brunori, E.; Farina, R.; Biasi, R. Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agric. Ecosyst. Environ. 2016, 223, 10–21. [Google Scholar] [CrossRef]
- Mairata, A.; Labarga, D.; Puelles, M.; Rivacoba, L.; Portu, J.; Pou, A. Organic Mulching versus Soil Conventional Practices in Vineyards: A Comprehensive Study on Plant Physiology, Agronomic, and Grape Quality Effects. Agronomy 2024, 14, 2404. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Sbraci, S.; Storchi, P.; Mattii, G.B. Sustainable Viticulture: Effects of Soil Management in Vitis vinifera. Agronomy 2020, 10, 1949. [Google Scholar] [CrossRef]
- Virto, I.; Imaz, M.J.; Fernandez-Ugalde, O.; Urrutia, I.; Enrique, A.; Bescansa, P. Soil quality evaluation following the implementation of permanent cover crops in semi-arid vineyards. Organic matter, physical and biological soil properties. Span. J. Agric. Res. 2012, 10, 1121. [Google Scholar] [CrossRef]
- Fourie, J.; Agenbag, G.; Louw, P. Cover Crop Management in a Sauvignon Blanc/Ramsey Vineyard in the Semi-Arid Olifants River Valley, South Africa. 3. Effect of Different Cover Crops and Cover Crop Management Practices on the Organic Matter and Macro-Nutrient Contents of a Sandy Soil. S. Afr. J. Enol. Vitic. 2016, 28, 92–100. [Google Scholar] [CrossRef]
- Ragasová, L.; Kopta, T.; Winkler, J.; Pokluda, R. The Current Stage of Greening Vegetation in Selected Wine-Regions of South Moravian Region (Czech Republic). Agronomy 2019, 9, 541. [Google Scholar] [CrossRef]
- Ostojić, Z.; Lakić, J.; Barić, K. Zatravljivanje vinograda. Glas. Biljn. Zaštite 2021, 21, 416–420. [Google Scholar]
- Zengin, H.; Sabir, A. Physiological and Growth Responses of Grapevine Rootstocks (Vitis spp.) to Organic and Synthetic Mulch Application in Arid Ecology under the Effect of Climate Change. J. Cent. Eur. Agric. 2022, 23, 655–664. [Google Scholar] [CrossRef]
- Ruml, M.; Vuković, A.; Vujadinović, M.; Đurđević, V.; Ranković-Vasić, Z.; Atanacković, Z.; Sivčev, B.; Marković, N.; Matijašević, S.; Petrović, N. On the use of regional climate models: Implications of climate change for viticulture in Serbia. Agric. For. Meteorol. 2012, 158-159, 53–62. [Google Scholar] [CrossRef]
- Vujadinović Mandić, M.; Vuković Vimić, A.; Ranković-Vasić, Z.; Đurović, D.; Ćosić, M.; Sotonica, D.; Nikolić, D.; Đurđević, V. Observed Changes in Climate Conditions and Weather-Related Risks in Fruit and Grape Production in Serbia. Atmosphere 2022, 13, 948. [Google Scholar] [CrossRef]
- Vuković Vimić, A.; Djurdjević, V.; Ranković-Vasić, Z.; Nikolić, D.; Ćosić, M.; Lipovac, A.; Cvetković, B.; Sotonica, D.; Vojvodić, D.; Vujadinović Mandić, M. Enhancing Capacity for Short-Term Climate Change Adaptations in Agriculture in Serbia: Development of Integrated Agrometeorological Prediction System. Atmosphere 2022, 13, 1337. [Google Scholar] [CrossRef]
- The Public Enterprise Official Gazette. Program for Adaptation to Climate Change for the Period 2023–2030; Republic of Serbia: Belgrade, Serbia, 2024; pp. 119/23; Available online: https://reliefweb.int/report/serbia/republic-serbia-climate-change-adaptation-programme-period-2023-2030 (accessed on 26 November 2023). (In Serbian)
- Gbejewoh, O.; Keesstra, S.; Blancquaert, E. The 3Ps (Profit, Planet, and People) of Sustainability amidst Climate Change: A South African Grape and Wine Perspective. Sustainability 2021, 13, 2910. [Google Scholar] [CrossRef]
- Sgubin, G.; Swingedouw, D.; Mignot, J.; Gambetta, G.A.; Bois, B.; Loukos, H.; Noël, T.; Pieri, P.; García de Cortázar-Atauri, I.; Ollat, N.; et al. Non-linear loss of suitable wine regions over Europe in response to increasing global warming. Glob. Chang. Biol. 2023, 29, 808–826. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Sgubin, G.; Bois, B.; Ollat, N.; Swingedouw, D.; Zito, S.; Gambetta, G. Climate change impacts and adaptations of wine production. Nat. Rev. Earth Environ. 2024, 5, 258–275. [Google Scholar] [CrossRef]
- Napoli, M.; Marta, A.D.; Zanchi, C.A.; Orlandini, S. Assesment of soil and nutrient losses by runoff under different soil management practices in an Italian hilly vineyard. Soil Tillage Res. 2017, 168, 71–80. [Google Scholar] [CrossRef]
- Gristina, L.; Novara, A.; Minacapilli, M. Rethinking vineyard ground management to counter soil tillage erosion. Soil Tillage Res. 2017, 2017, 105275. [Google Scholar] [CrossRef]
- Pardini, A.; Faiello, C.; Longhi, F.; Mancuso, S.; Snowball, R. Cover crop species and their management in vineyards and olive groves. Adv. Hort. Sci. 2002, 16, 225–234. [Google Scholar]
- Morlat, R.; Jacquet, A. Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward. Am. J. Enol. Vitic. 2003, 54, 1–17. [Google Scholar] [CrossRef]
- Mairata, A.; Labarga, D.; Puelles, M.; Rivacoba, L.; Portu, J.; Pou, A. The organic mulches in vineyards exerted an influence on spontaneous weed cover and plant biodiversity. Eur. J. Agron. 2023, 151, 126997. [Google Scholar] [CrossRef]
- Kool, D.; Tong, B.; Tian, Z.; Heitman, J.L.; Sauer, T.J.; Horton, R. Soil Water Retention and Hydraulic Conductivity Dynamics Following Tillage. Soil Tillage Res. 2019, 193, 95–100. [Google Scholar] [CrossRef]
- Burg, P.; Čížková, A.; Mašán, V.; Sedlar, A.; Matwijczuk, A.; Souček, J. The Effect of Mulch Materials on Selected Soil Properties, Yield and Grape Quality in Vineyards under Central European Conditions. Agronomy 2022, 12, 1862. [Google Scholar] [CrossRef]
- Giese, G.; Wolf, T.K.; Velasco-Cruz, C.; Roberts, L.; Heitman, J. Cover Crop and Root Pruning Impacts on Vegetative Growth, Crop Yield Components, and Grape Composition of Cabernet Sauvignon. Am. J. Enol. Vitic. 2015, 66, 212–226. [Google Scholar] [CrossRef]
- Baumgartner, K.; Steenwerth, K.L.; Veilleux, L. Cover-Crop Systems Affect Weed Communities in a California Vineyard. Weed Sci. 2008, 56, 596–605. [Google Scholar] [CrossRef]
- Cabrera-Pérez, C.; Llorens, J.; Escolà, A.; Royo-Esnal, A.; Recasens, J. Organic Mulches as an Alternative for Under-Vine Weed Management in Mediterranean Irrigated Vineyards: Impact on Agronomic Performance. Eur. J. Agron. 2023, 145, 126798. [Google Scholar] [CrossRef]
- Xi, Z.-M.; Tao, Y.-S.; Zhang, L.; Li, H. Impact of cover crops in vineyard on the aroma compounds of Vitis vinifera L. cv. Cabernet Sauvignon wine. Food Chem. 2011, 127, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Lopes, C.M. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agric. Ecosyst. Environ. 2007, 121, 336–342. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, J.; Yan, Y.; Liu, W.; Cui, P.; Xu, C.; Nan, L.; Liu, X. Multivariate Analysis and Optimization of the Relationship between Soil Nutrients and Berry Quality of Vitis vinifera cv. Cabernet Franc Vineyards in the Eastern Foothills of the Helan Mountains, China. Horticulturae 2024, 10, 61. [Google Scholar] [CrossRef]
- Simić, A.; Bjelić, Z.; Mandić, V.; Sokolović, D.; Babić, S. Permanent and sown grasslands in Serbia: Current state and trends. Ann. Univ. Craiova-Agric. Mont. Cadastre Ser. 2019, 49, 244–253. [Google Scholar]
- Ingels, C.A.; Scow, K.M.; Whisson, D.A.; Drenovsky, R.E. Effects of cover crops on grapevines, yield, juice composition, soil microbial ecology, and gopher activity. Am. J. Enol. Vitic. 2005, 56, 19–29. [Google Scholar] [CrossRef]
- Agnelli, A.; Bol, R.; Trumbore, S.E.; Dixon, L.; Cocco, S.; Corti, G. Carbon and nitrogen in soil and vine roots in harrowed and grass-covered vineyards. Agric. Ecosyst. Environ. 2014, 193, 70–82. [Google Scholar] [CrossRef]
- Peng, J.; Wei, W.; Lu, H.-C.; Chen, W.; Li, S.-D.; Wang, J.; Duan, C.-Q.; He, F. Effect of Covering Crops between Rows on the Vineyard Microclimate, Berry Composition and Wine Sensory Attributes of ‘Cabernet Sauvignon’ (Vitis vinifera L. cv.) Grapes in a Semi-Arid Climate of Northwest China. Horticulturae 2022, 8, 518. [Google Scholar] [CrossRef]
- Silvestroni, O.; Dottori, E.; Pallotti, L.; Lattanzi, T.; Santilocchi, R.; Lanari, V. Using Legume-Enriched Cover Crops to Improve Grape Yield and Quality in Hillside Vineyards. Agronomy 2024, 14, 2528. [Google Scholar] [CrossRef]
- Celette, F.; Findeling, A.; Gary, C. Competition for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. Eur. J. Agron. 2009, 30, 41–51. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. A Review: Soil Management, Sustainable Strategies and Approaches to Improve the Quality of Modern Viticulture. Agronomy 2021, 11, 2359. [Google Scholar] [CrossRef]
- Moris, K. National Turfgrass Evaluation Program: How Is Turfgrass Quality Evaluated? Available online: http://www.ntep.org/reports/ratings.htm#quality (accessed on 1 December 2024).
- Hugie, K.L.; Watkins, E. Performance of low-input turfgrass species as affected by mowing and nitrogen fertilization in Minnesota. HortScience 2016, 51, 1278–1286. [Google Scholar] [CrossRef]
- Republic Hydrometeorological Service of Serbia: Distribution of Stations and Basic Climate Values. Available online: https://www.hidmet.gov.rs/ciril/meteorologija/klimatologija_srednjaci.php (accessed on 10 January 2024).
- Republic Hydrometeorological Service of Serbia: Annual Bulletins with All Daily Station Data. Available online: https://www.hidmet.gov.rs/ciril/meteorologija/klimatologija_godisnjaci.php (accessed on 10 January 2024).
- Digital Atlas of Serbia. Available online: https://atlas-klime.eko.gov.rs/eng/about (accessed on 21 December 2024).
- International Organisation of Vine and Wine (OIV). Resolution OIV-VITI 423-2012 Rev1, Appendix 2: Bioclimatic Indices Currently Used in the Practice of Vitiviniculture Zoning 2012, Izmir, Turkey. Available online: https://www.oiv.int/public/medias/400/viti-2012-1-en.pdf (accessed on 23 December 2024).
- Devyatova, E.; Kochugova, E.; Cydenzapov, M. Comparison of Selyaninov’s Hydrothermal Coefficient (Aridity Criterion) over Buryatia, Russia, in the Summer Period from 1979 to 2019 according to Meteorological Stations and ECMWF ERA5. Environ. Sci. Proc. 2022, 19, 55. [Google Scholar] [CrossRef]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–995. [Google Scholar]
- Zdunić, G.; Gođevac, D.; Šavikin, K.; Krivokuća, D.; Mihailović, M.; Pržić, Z.; Marković, N. Grape Seed Polyphenols and Fatty Acids of Autochthonous Prokupac Vine Variety from Serbia. Chem. Biodivers. 2019, 16, e1900053. [Google Scholar] [CrossRef]
- Markovic, N.; Przic, Z. Grape Growing Technology-Practicum; University of Belgrade Faculty of Agriculture and Foundation of Holy monastery Hilandar: Belgrade, Serbia, 2020; pp. 1–287. [Google Scholar]
- Životić, L.J.; Vuković Vimić, A. Soil Degradation and Climate Change in Serbia; UNDP: Belgrade, Serbia, 2022; pp. 1–87. [Google Scholar]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef]
- Banjanin, T.; Rankovic-Vasic, Z.; Glisic, M.; Przic, Z. The Observed Changes in Climate Characteristics in the Trebinje Vineyard Area (Bosnia and Herzegovina). Atmosphere 2024, 15, 514. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Napoli, M.; Cecchi, S.; Orlandini, S.; Mugnai, G.; Zanchi, C.A. Simulation of field-measured soil loss in Mediterranean hilly areas (Chianti, Italy) with RUSLE. Catena 2016, 145, 246–256. [Google Scholar] [CrossRef]
- Linares, T.R.; De La Fuente, L.M.; Junquera, G.P.; Lissarrague García-Gutierrez, J.R.; Baeza, T.P. Effect of soil management strategies on the characteristics of the grapevine root system in irrigated vineyards under semi-arid conditions. Aust. J. Grape Wine Res. 2018, 24, 439–449. [Google Scholar] [CrossRef]
- Lopes, C.M.; Santos, T.P.; Monteiro, A.; Rodrigues, M.L.; Costa, J.M.; Chaves, M.M. Combining Cover Cropping with Deficit Irrigation in a Mediterranean Low Vigor Vineyard. Sci. Hortic. 2011, 129, 603–612. [Google Scholar] [CrossRef]
- Gontier, L.; Caboulet, D.; Lhoutellier, C. Assessment of the Agronomic Value of Sewage Sludge Compost Applied on Wine-Growing Soils. Acta Hortic. 2011, 1018, 255–262. [Google Scholar] [CrossRef]
- Muscas, E.; Cocco, A.; Mercenaro, L.; Cabras, M.; Lentini, A.; Porqueddu, C.; Nieddu, G. Effects of vineyard floor cover crops on grapevine vigor, yield, and fruit quality, and the development of the vine mealybug under a Mediterranean climate. Agric. Ecosyst. Environ. 2017, 237, 203–212. [Google Scholar] [CrossRef]
- Okur, N.; Kayikcioglu, H.; Ates, F.; Yagmur, B. A comparison of soil quality and yield parameters under organic and conventional vineyard systems in Mediterranean conditions (West Turkey). Biol. Agric. Hortic. 2015, 32, 73–84. [Google Scholar] [CrossRef]
- Lopes, C.M.; Monteiro, A.; Machado, J.P.; Fernandes, N.; Araújo, A. Cover cropping in a sloping non-irrigated vineyard: II–Effects on vegetative growth, yield, berry and wine quality of ‘Cabernet Sauvignon’ grapevines. Ciência Técnica Vitivinícola 2008, 23, 37–43. [Google Scholar]
- Mercenaro, L.; Nieddu, G.; Pulina, P.; Porqueddu, C. Sustainable management of an intercropped Mediterranean vineyard. Agric. Ecosyst. Environ. 2014, 192, 95–104. [Google Scholar] [CrossRef]
- Pornaro, C.; Meggio, F.; Tonon, F.; Mazzon, L.; Sartori, L.; Berti, A.; Macolino, S. Selection of inter-row herbaceous covers in a sloping, organic, non-irrigated vineyard. PLoS ONE 2022, 17, e0279759. [Google Scholar] [CrossRef] [PubMed]
- Beslic, Z.; Pantelic, M.; Dabic, D.; Todic, S.; Natic, M.; Tesic, Z. Effect of vineyard floor management on water regime, growth response, yield and fruit quality in Cabernet Sauvignon. Sci. Hortic. 2015, 197, 650–656. [Google Scholar] [CrossRef]
TAN | TVEG | PAN | PVEG | WIN | HI | CI | DI | NT0 | NT35 | NT15 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1991–2020 | 12.3 | 18.0 | 669 | 439 | 1755 | 2336 | 11.2 | 170 | 4.6 | 8.7 | 2.4 |
2020 | 13.0 | 18.1 | 724 | 550 | 1765 | 2367 | 11.7 | 216 | 8.0 | 0.0 | 0.0 |
2021 | 12.7 | 17.8 | 796 | 443 | 1739 | 2404 | 9.9 | 156 | 9.0 | 20.0 | 1.0 |
2022 | 13.2 | 18.6 | 809 | 556 | 1876 | 2475 | 12.1 | 259 | 6.0 | 11.0 | 1.0 |
April | May | June | July | August | September | |
---|---|---|---|---|---|---|
1991–2020 | 1.45 | 1.22 | 1.43 | 0.95 | 0.80 | 1.04 |
2020 | 0.26 | 1.90 | 1.71 | 2.11 | 1.31 | 0.44 |
2021 | 2.13 | 0.97 | 0.33 | 2.25 | 0.85 | 0.59 |
2022 | 2.22 | 1.16 | 1.81 | 1.10 | 1.36 | 2.03 |
Depth | pHH2O | pHKCl | Ntot (%) | Available (mg 100−1 g of Soil) | Total Organic C (%) | C/N | |
---|---|---|---|---|---|---|---|
P2O5 | K2O | ||||||
0–30 cm | 6.81 | 4.84 | 0.08 | 2.42 | 0.32 | 0.82 | 9.9 |
30–60 cm | 6.56 | 5.06 | 0.07 | 2.79 | 0.30 | 0.66 | 8.9 |
80–100 cm | 7.86 | 6.75 | 0.04 | 4.57 | 0.49 | 0.39 | 10.5 |
Total Fresh Biomass (g) | Total Dry Biomass (g) | Cover Quality Index | N Content (%) | |
---|---|---|---|---|
Fertiliser (A) | 2020 | |||
0 | 4299 b | 1478 b | 5.52 c | 1.71 c |
50 | 4598 b | 1554 b | 6.19 b | 1.83 b |
100 | 4949 a | 1860 a | 6.83 a | 1.90 a |
Clone (B) | ||||
15 | 2903 C | 955 C | 5.81 B | 1.50 C |
169 | 1614 D | 694 D | 4.22 C | 1.67 B |
191 | 7368 A | 2337 B | 7.28 A | 2.08 A |
412 | 6575 B | 2537 A | 7.42 A | 2.01 A |
ANOVA | ||||
A | 322 ** | 145 ** | 0.26 ** | 0.11 ** |
B | 372 ** | 167 ** | 0.30 ** | 0.14 ** |
Fertiliser (A) | 2021 | |||
0 | 950 c | 375 c | 4.8 c | 1.67 c |
50 | 1948 b | 724 b | 5.8 b | 1.95 b |
100 | 2983 a | 1015 a | 7.0 a | 2.18 a |
Clone (B) | ||||
15 | 1466 B | 548 B | 5.6 C | 1.85 AB |
169 | 1463 B | 401 B | 5.2 D | 2.08 |
191 | 2213 A | 852 A | 6.0 B | 1.80 B |
412 | 2699 A | 1019 A | 6.6 A | 2.01 AB |
ANOVA | ||||
A | 481 ** | 188 ** | 0.17 ** | 0.21 ** |
B | 555 ** | 217 ** | 0.19 ** | 0.24 ** |
Fertiliser (A) | 2022 | |||
0 | 1533 c | 549 c | 7.36 b | 1.68 c |
50 | 3506 b | 1205 b | 7.48 b | 1.87 b |
100 | 5287 a | 1604 a | 7.81 a | 2.32 a |
Clone (B) | ||||
15 | 4651 A | 1594 A | 7.92 A | 1.82 B |
169 | 2669 C | 869 C | 7.13 C | 2.08 A |
191 | 2695 C | 859 C | 7.56 B | 1.85 B |
412 | 3788 B | 1154 B | 7.61 AB | 2.06 A |
ANOVA | ||||
A | 611 ** | 220 ** | 0.28 ** | 0.20 ** |
B | 706 ** | 254 ** | 0.33 ** | 0.23 ** |
Bunch Characteristics (cm and g) | Berry Mass (g) | Grape Quality Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|
Length | Width | Mass | Stem Mass | % Sugar | TAC (g L−1) | GAI | pH | ||
2020, Fertiliser (A) | |||||||||
0 | 13 | 8.23 | 162 | 6.98 | 154 | 20.8 | 7.21 | 3.08 | 2.95 |
50 | 13.3 | 8.81 | 173 | 7.03 | 165 | 21.6 | 7.16 | 3.10 | 2.95 |
100 | 13.5 | 8.15 | 165 | 7.63 | 157 | 21.0 | 7.33 | 3.00 | 2.91 |
Clone (B) | |||||||||
15 | 14.2 B | 8.90 AB | 184 B | 7.03 | 177 B | 18.6 C | 5.97 C | 3.17 A | 3.16 A |
169 | 15.4 A | 9.48 A | 211 A | 7.87 | 202 A | 24.3 A | 7.60 AB | 3.21 A | 2.59 C |
191 | 11.7 C | 8.10 BC | 140 C | 7.27 | 130 C | 20.5 BC | 8.13 A | 2.80 B | 2.98 B |
412 | 11.8 C | 7.10 C | 132 C | 6.67 | 125 C | 21.2 B | 7.23 B | 3.04 AB | 3.03 B |
ANOVA | |||||||||
A | 1.02 NS | 0.91 NS | 21 NS | 1.32 NS | 20 NS | 1.86 NS | 0.69 NS | 0.27 NS | 0.06 NS |
B | 0.89 ** | 1.05 ** | 24 ** | 1.52 NS | 23 ** | 2.15 ** | 0.80 ** | 0.31 * | 0.07 ** |
2021, Fertiliser (A) | |||||||||
0 | 11.5 | 7.2 a | 119 ab | 4.45 ab | 114 ab | 24.0 | 7.12 | 3.40 | 3.10 |
50 | 11.1 | 6.5 ab | 111 b | 4.00 b | 105 b | 24.5 | 6.67 | 3.73 | 3.10 |
100 | 11.7 | 6.2 b | 127 a | 4.49 a | 122 a | 24.0 | 6.77 | 3.58 | 3.12 |
Clone (B) | |||||||||
15 | 11.6 AB | 6.5 AB | 122 AB | 4.75 A | 114 B | 25.5 A | 6.54 B | 3.95 A | 3.10 B |
169 | 12.1 A | 7.2 A | 131 A | 4.47 AB | 127 A | 24.9 A | 6.71 B | 3.73 AB | 3.13 A |
191 | 11.1 B | 6.9 AB | 117 BC | 4.19 BC | 112 BC | 23.1 B | 7.37 A | 3.15 C | 3.10 B |
412 | 11.0 | 6.0 B | 107 C | 3.84 C | 102 C | 23.2 B | 6.79 B | 3.45 BC | 3.08 B |
ANOVA | |||||||||
A | 0.56 NS | 0.96 * | 11 ** | 0.47 * | 10 ** | 1.4 NS | 0.48 NS | 0.34 NS | 0.02 NS |
B | 0.64 ** | 1.11 * | 12 ** | 0.55 ** | 11 ** | 1.7 ** | 0.56 ** | 0.40 ** | 0.03 ** |
2022, Fertiliser (A) | |||||||||
0 | 14.3 a | 8.23 | 166 | 7.18 a | 159 | 21.2 | 7.11 ab | 3.01 ab | 3.17 |
50 | 13.4 b | 7.97 | 152 | 5.91 b | 145 | 21.5 | 6.46 b | 3.38 a | 3.19 |
100 | 13.9 ab | 8.20 | 153 | 6.23 ab | 147 | 21.2 | 7.25 a | 2.84 b | 3.20 |
Clone (B) | |||||||||
15 | 15.1 A | 8.16 A | 176 A | 6.77 AB | 169 A | 22.8 A | 6.33 B | 3.72 A | 3.26 A |
169 | 14.5 AB | 8.57 A | 186 A | 7.31 A | 177 A | 21.6 B | 7.08 AB | 2.82 B | 3.19 B |
191 | 12.1 C | 7.55 B | 125 B | 5.70 B | 120 B | 19.9 C | 7.15 AB | 2.82 B | 3.19 B |
412 | 13.7 B | 8.26 A | 141 B | 5.97 B | 135 B | 20.9 B | 7.20 A | 2.93 B | 3.11 C |
ANOVA | |||||||||
A | 0.86 * | 0.52 NS | 16 NS | 1.10 ** | 14.6 NS | 0.86 NS | 0.76 * | 0.41 ** | 0.05 NS |
B | 0.99 ** | 0.60 ** | 18 ** | 1.27 ** | 16.8 ** | 0.99 | 0.88 * | 0.48 ** | 0.06 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pržić, Z.; Simić, A.; Brajević, S.; Marković, N.; Vuković Vimić, A.; Vujadinović Mandić, M.; Niculescu, M. Grass Cover in Vineyards as a Multifunctional Solution for Sustainable Grape Growing: A Case Study of Cabernet Sauvignon Cultivation in Serbia. Agronomy 2025, 15, 253. https://doi.org/10.3390/agronomy15020253
Pržić Z, Simić A, Brajević S, Marković N, Vuković Vimić A, Vujadinović Mandić M, Niculescu M. Grass Cover in Vineyards as a Multifunctional Solution for Sustainable Grape Growing: A Case Study of Cabernet Sauvignon Cultivation in Serbia. Agronomy. 2025; 15(2):253. https://doi.org/10.3390/agronomy15020253
Chicago/Turabian StylePržić, Zoran, Aleksandar Simić, Snežana Brajević, Nebojša Marković, Ana Vuković Vimić, Mirjam Vujadinović Mandić, and Mariana Niculescu. 2025. "Grass Cover in Vineyards as a Multifunctional Solution for Sustainable Grape Growing: A Case Study of Cabernet Sauvignon Cultivation in Serbia" Agronomy 15, no. 2: 253. https://doi.org/10.3390/agronomy15020253
APA StylePržić, Z., Simić, A., Brajević, S., Marković, N., Vuković Vimić, A., Vujadinović Mandić, M., & Niculescu, M. (2025). Grass Cover in Vineyards as a Multifunctional Solution for Sustainable Grape Growing: A Case Study of Cabernet Sauvignon Cultivation in Serbia. Agronomy, 15(2), 253. https://doi.org/10.3390/agronomy15020253