Hyper-seq Technology and Genome-Wide Selection Breeding of Soybeans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Materials
2.2. DNA Extraction and Hyper-seq Library Construction
2.3. Sequencing and Data Quality Control
2.4. SNP Identification and Filtering
2.5. Establishment of Different Data Sets
2.6. Phenotypic Data Analysis Methods
2.7. Genome-Wide Selection Prediction
3. Results and Analysis
3.1. Analysis of Phenotypic and Genotypic Data
3.2. Analysis of Different Model Prediction Results
3.3. Effect of Different Number of SNPs on Model Accuracy
3.4. Effect of Different Sample Sizes on Model Accuracy
3.5. Impact of Different Sequencing Types on Model Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hartman, G.L.; West, E.D.; Herman, T.K. Crops that feed the World 2. Soybean—Worldwide production, use, and constraints caused by pathogens and pests. Food Secur. 2011, 3, 5–17. [Google Scholar] [CrossRef]
- Tan, H.; Sun, H.X.; Kong, M.M.; Wang, J.J.; Li, C.; Li, Y.Q. The Origin of Soybean in China, Development of Breeding, and Cultivation Techniques. Mol. Plant Breed. 2024, 4, 1–9. [Google Scholar]
- Barabaschi, D.; Tondelli, A.; Desiderio, F.; Volante, A.; Vaccino, P.; Valè, G.; Cattivelli, L. Next generation breeding. Plant Sci. 2016, 242, 3–13. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, E.; Gong, W.; Xu, L.; Zhao, Z.; He, D.; Yang, F.; Wang, X.; Yong, T.; Liu, J.; et al. Soybean yield variations and the potential of intercropping to increase production in China. Field Crops Res. 2023, 291, 108771. [Google Scholar] [CrossRef]
- Wallace, J.G.; Rodgers-Melnick, E.; Buckler, E.S. On the road to breeding 4.0: Unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet. 2018, 52, 421–444. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Tian, Z.; Chong, K.; LI, J. Progress and perspective of molecular design breeding. Sci. Sin. Vitae 2021, 51, 1356–1365. [Google Scholar] [CrossRef]
- Hickey, L.T.; NHafeez, A.; Robinson, H.; Jackson, S.A.; Leal-Bertioli, S.C.; Tester, M.; Gao, C.; Godwin, I.D.; Hayes, B.J.; Wulff, B.B. Breeding crops to feed 10 billion. Nat. Biotechnol. 2019, 37, 744–754. [Google Scholar] [CrossRef]
- Lander, E.S.; Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989, 121, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Dou, T.; Wu, J.; Wu, Z.; Bai, L.; Li, X.; Han, X.; Qiao, R.; Wang, K.; Yang, F.; Wang, Y.; et al. Application of Genomic Selection and Mating Design Techniques in Pig Breeding. Acta Vet. Zootech. Sin. 2024, 55, 2795–2808. [Google Scholar]
- Desta, Z.A.; Ortiz, R. Genomic selection: Genome-wide prediction in plant improvement. Trends Plant Sci. 2014, 19, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Heffner, E.L.; Lorenz, A.J.; Jannink, J.; Sorrells, M.E. Plant breeding with genomic selection: Gain per unit time and cost. Crop Sci. 2010, 50, 1681–1690. [Google Scholar] [CrossRef]
- Jannink, J.-L.; Lorenz, A.J.; Iwata, H. Genomic selection in plant breeding: From theory to practice. Brief. Funct. Genom. 2010, 9, 166–177. [Google Scholar] [CrossRef]
- Millet, E.J.; Kruijer, W.; Coupel-Ledru, A.; Prado, S.A.; Cabrera-Bosquet, L.; Lacube, S.; Charcosset, A.; Welcker, C.; van Eeuwijk, F.; Tardieu, F. Genomic prediction of maize yield across European environmental conditions. Nat. Genet. 2019, 51, 952–956. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, X.; Guo, T.; Zhu, C.; Wu, Y.; Mitchell, S.E.; Roozeboom, K.L.; Wang, D.; Wang, M.L.; Pederson, G.A.; et al. Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat. Plants 2016, 2, 16150. [Google Scholar] [CrossRef]
- Bernardo, R.; Yu, J. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 2007, 47, 1082–1090. [Google Scholar] [CrossRef]
- Heffner, E.L.; Jannink, J.; Iwata, H.; Souza, E.; Sorrells, M.E. Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci. 2011, 51, 2597–2606. [Google Scholar] [CrossRef]
- Stewart-Brown, B.B.; Song, Q.; Vaughn, J.N.; Li, Z. Genomic selection for yield and seed composition traits within an applied soybean breeding program. G3 Genes|Genomes|Genet. 2019, 9, 2253–2265. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, A.J.; Smith, K.; Jannink, J. Potential and optimization of genomic selection for fusarium head blight resistance in six-row barley. Crop Sci. 2012, 52, 1609–1621. [Google Scholar] [CrossRef]
- Asoro, F.G.; Newell, M.A.; Beavis, W.D.; Scott, M.P.; Tinker, N.A.; Jannink, J.L. Genomic, marker-assisted, and pedigree-BLUP selection methods for β-glucan concentration in elite oat. Crop Sci. 2013, 53, 1894–1906. [Google Scholar] [CrossRef]
- Xu, L.Y.; Wang, L.M.; Ren, Z.P.; She, N.A.; Wang, L.M.; Liu, F.; Ma, X.C.; Li, H.L.; Cui, M.L. Current development and prospects for efficient application of maize haploid breeding technology. China Seed Ind. 2024, 9, 33–36. [Google Scholar]
- Larièpe, A.; Moreau, L.; Laborde, J.; Bauland, C.; Mezmouk, S.; Décousset, L.; Mary-Huard, T.; Fiévet, J.B.; Gallais, A.; Dubreuil, P.; et al. General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: Relative importance of population structure and genetic divergence between parents. Theor. Appl. Genet. 2017, 130, 403–417. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, S.; Cheng, Q.; Wang, X.; Yan, J.; Zhang, R.; Qiao, F.; Ma, C.; Luo, J.; Li, W.; et al. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol. 2021, 22, 148. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Xia, Z. Hyper-seq: A novel, effective, and flexible marker-assisted selection and genotyping approach. Innovation 2022, 3, 100254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jiang, S.; Tian, Y.; Dong, X.; Xiao, J.; Lu, Y.; Liang, T.; Zhou, H.; Xu, D.; Zhang, H.; et al. Smart breeding driven by advances in sequencing technology. Mod. Agric. 2023, 1, 43–56. [Google Scholar] [CrossRef]
- Habier, D.; Fernando, R.L.; Kizilkaya, K.; Garrick, D.J. Extension of the bayesian alphabet for genomic selection. BMC Bioinform. 2011, 12, 186. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, J.; Pérez-Elizalde, S.; Soberanis, V.; Pérez-Rodríguez, P.; Gianola, D.; Crossa, J. Bayesian genomic-enabled prediction as an inverse problem. G3 Genes|Genomes|Genet. 2014, 4, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Ceron-Rojas, J.J.; Crossa, J.; Arief, V.N.; Basford, K.; Rutkoski, J.; Jarquín, D.; Alvarado, G.; Beyene, Y.; Semagn, K.; DeLacy, I. A Genomic selection index applied to simulated and real data. G3 Genes|Genomes|Genet. 2015, 5, 2155–2164. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- VanRaden, P. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows—Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, X.; Zhang, P.; Feng, Y.; Mi, J.; Gao, S.; Sheng, L.; Ali, M.; Yang, Z.; Li, L.; et al. Smart Breeding Platform: A web-based tool for high-throughput population genetics, phenomics, and genomic selection. Mol. Plant 2024, 17, 677–681. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Fu, J.; Wang, H.; Wang, J.; Huang, C.; Prasanna, B.M.; Olsen, M.S.; Wang, G.; Zhang, A. Enhancing genetic gain through genomic selection: From livestock to plants. Plant Commun. 2020, 1, 100005. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Heslot, N.; Yang, H.P.; Sorrells, M.E.; Jannink, J.L. Genomic selection in plant breeding: A comparison of models. Crop Sci. 2012, 52, 146–160. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.Y.; Xu, Y.; Xu, C.W. Research Progress in Genomic Selection Breeding Technology for Crops. Biotechnol. Bull. 2024, 40, 1–13. [Google Scholar]
Mean Value | Standard Deviation | Variable Coefficient | Max | Min | |
---|---|---|---|---|---|
Number of main stem segments | 10.87 | 3.03 | 27.92 | 26.33 | 4 |
Model | GBLUP | RRBLUP | BAYES_A | BAYES_B | BAYES_C | BAYES_LASSO | BAYES_RKHS | BAYES_RR |
---|---|---|---|---|---|---|---|---|
Prediction accuracy | 56.05% | 51.04% | 57.24% | 56.46% | 55.21% | 56.49% | 56.08% | 55.21% |
Time | 6′21″ | 4 h 8′48″ | 4 h 55′26″ | 7 h 34′41″ | 7 h 3′24″ | 8 h 11″ | 7′22″ | 4 h 11′47″ |
Number (SNP) | Sample Size | GBLUP | RRBLUP | BAYES_A | BAYES_B | BAYES_C | BAYES_LASSO | BAYES_RKHS | BAYES_RR |
---|---|---|---|---|---|---|---|---|---|
1000-SNP | 420 | 0.318 | 0.2823 | 0.321 | 0.2881 | 0.3216 | 0.3229 | 0.3103 | 0.3178 |
5000-SNP | 420 | 0.4432 | 0.4387 | 0.4245 | 0.4156 | 0.4349 | 0.4505 | 0.4232 | 0.4327 |
10,000-SNP | 420 | 0.4638 | 0.4513 | 0.4803 | 0.4676 | 0.4727 | 0.4911 | 0.4629 | 0.4665 |
15,000-SNP | 420 | 0.5249 | 0.4756 | 0.5065 | 0.5213 | 0.5269 | 0.5186 | 0.5091 | 0.5187 |
20,000-SNP | 420 | 0.5323 | 0.4911 | 0.5427 | 0.5291 | 0.5561 | 0.5413 | 0.5251 | 0.5355 |
ALL-SNP | 420 | 0.5605 | 0.5104 | 0.5724 | 0.5646 | 0.5521 | 0.5649 | 0.5608 | 0.5521 |
ALL-SNP | 300 | 0.4774 | 0.4572 | 0.4702 | 0.4628 | 0.4846 | 0.4702 | 0.4688 | 0.4654 |
ALL-SNP | 200 | 0.4298 | 0.3855 | 0.3815 | 0.4116 | 0.3953 | 0.4182 | 0.4004 | 0.3887 |
ALL-SNP | 100 | 0.3421 | 0.2376 | 0.2906 | 0.2718 | 0.2391 | 0.3408 | 0.2888 | 0.2717 |
Data Set | GBLUP | RRBLUP | BAYES_A | BAYES_B | BAYES_C | BAYES_LASSO | BAYES_RKHS | BAYES_RR |
---|---|---|---|---|---|---|---|---|
Hyper-seq | 0.3960 | 0.3577 | 0.3879 | 0.3943 | 0.3793 | 0.3914 | 0.3733 | 0.3749 |
Whole Genome Resequencing | 0.4307 | 0.4031 | 0.4059 | 0.3987 | 0.3634 | 0.4321 | 0.3959 | 0.4195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; He, M.; Zhou, Y.; Xu, R.; Liang, T.; Pei, S.; Chen, J.; Yang, L.; Xia, Y.; Luo, X.; et al. Hyper-seq Technology and Genome-Wide Selection Breeding of Soybeans. Agronomy 2025, 15, 264. https://doi.org/10.3390/agronomy15020264
Wang Q, He M, Zhou Y, Xu R, Liang T, Pei S, Chen J, Yang L, Xia Y, Luo X, et al. Hyper-seq Technology and Genome-Wide Selection Breeding of Soybeans. Agronomy. 2025; 15(2):264. https://doi.org/10.3390/agronomy15020264
Chicago/Turabian StyleWang, Qingyu, Miaohua He, Yonggang Zhou, Rui Xu, Tiyun Liang, Shuangkang Pei, Jianyuan Chen, Lin Yang, Yu Xia, Xuan Luo, and et al. 2025. "Hyper-seq Technology and Genome-Wide Selection Breeding of Soybeans" Agronomy 15, no. 2: 264. https://doi.org/10.3390/agronomy15020264
APA StyleWang, Q., He, M., Zhou, Y., Xu, R., Liang, T., Pei, S., Chen, J., Yang, L., Xia, Y., Luo, X., Li, H., Xia, Z., & Zou, M. (2025). Hyper-seq Technology and Genome-Wide Selection Breeding of Soybeans. Agronomy, 15(2), 264. https://doi.org/10.3390/agronomy15020264