Evaluation of the Cultivation of Three Halophytic Plants Under Half-Strength Seawater Aquaponics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aquaponics System Design
2.2. Biological Material and System Management
2.3. HSW Aquaculture Rearing Water Sampling and Measurement
2.4. Plant Growth Measurements
2.5. Chlorophyll and Betalain Content
2.6. Measurement of Elements Concentrations in Plant Tissues
2.7. Statistical Analysis
3. Results
3.1. Half-Strength Seawater Aquaculture Rearing Water (HSW) Composition
3.2. Growth
3.3. Leaf Pigments Content
3.4. Elements Concentration
3.5. Comprehensive Outcomes
4. Discussion
4.1. HSW Aquaculture Rearing Water Quality
4.2. Leaf Pigments Reponse
4.3. Growth and Nutritional Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bijl, D.L.; Biemans, H.; Bogaart, P.W.; Dekker, S.C.; Doelman, J.C.; Stehfest, E.; Van Vuuren, D.P. A Global Analysis of Future Water Deficit Based on Different Allocation Mechanisms. Water Resour. Res. 2018, 54, 5803–5824. [Google Scholar] [CrossRef]
- Gaur, M.K.; Squires, V.R. Climate Variability Impacts on Land Use and Livelihoods in Drylands, 1st ed.; Springer: Cham, Switzerland, 2017; pp. 3–20. [Google Scholar] [CrossRef]
- Gaaloul, N.; Pliakas, F.; Kallioras, A.; Schuth, C.; Marinos, P. Simulation of seawater intrusion in coastal aquifers: Forty five-years exploitation in an eastern coast aquifer in NE Tunisia. Open Hydrol. J. 2012, 6, 31–44. [Google Scholar] [CrossRef]
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water Scarcity in Agriculture: An Overview of Causes, Impacts and Approaches for Reducing the Risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef]
- Glenn, E.P.; Brown, J.J.; Blumwald, E. Salt Tolerance and Crop Potential of Halophytes. Crit. Rev. Plant Sci. 1999, 18, 227–255. [Google Scholar] [CrossRef]
- Spradlin, A.; Saha, S. Saline aquaponics: A review of challenges, opportunities, components, and system design. Aquaculture 2022, 555, 738173. [Google Scholar] [CrossRef]
- Rakocy, J.E. Aquaponics-Integrating Fish and Plant Culture. In Aquaculture Production Systems; Tidwell, J.H., Ed.; John Wiley & Sons, Inc.: Ames, IA, USA, 2012; pp. 343–383. [Google Scholar] [CrossRef]
- Alshrouf, A. Hydroponics, aeroponic and aquaponic as compared with conventional farming. Am. Sci. Res. J. Eng. Technol. Sci. 2017, 27, 247–255. [Google Scholar]
- Spotte, S.H. Biological Process. In Captive Seawater Fishes; Spotte, S.H., Ed.; John Wiley & Sons: New York, NY, USA, 1993; pp. 79–91. [Google Scholar]
- Huguenin, J.E.; Colt, J. Design and Operating Guide for Aquaculture Seawater Systems, 2nd ed.; Elsevier Science B.V: Amsterdam, The Netherlands, 2002; pp. 20–24. [Google Scholar]
- Flowers, T.J.; Colmer, T.D. Salinity Tolerance in Halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Suresh, A.V.; Lin, C.K. Tilapia culture in saline waters: A review. Aquaculture 1992, 106, 201–226. [Google Scholar] [CrossRef]
- Millero, F.J.; Feistel, R.; Wright, D.; McDougall, T. The composition of standard seawater and the definition of the reference-composition salinity scale. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2008, 55, 50–72. [Google Scholar] [CrossRef]
- Haro, R.; Bañuelos, M.A.; Quintero, F.J.; Rubio, F.; Rodríguez-Navarro, A. Genetic Basis of Sodium Exclusion and Sodium Tolerance in Yeast. A Model for Plants. Physiol. Plant. 1993, 89, 868–874. [Google Scholar] [CrossRef]
- Flowers, T.J.; Muscolo, A. Introduction to the Special Issue: Halophytes in a Changing World. AoB Plants 2015, 7, plv020. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Jiang, P.; Chen, X.; Fan, P.; Wang, X.; Yinxin, L. Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiol. Biochem. 2012, 51, 47–52. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, M.D.C.; Garmendia, I. Optimum Growth and Quality of the Edible Ice Plant Under Saline Conditions. J. Sci. Food Agric. 2022, 102, 2686–2692. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wang, B. Using Euhalophytes to Understand Salt Tolerance and to Develop Saline Agriculture: Suaeda salsa as a Promising Model. Ann. Bot. 2015, 115, 541–553. [Google Scholar] [CrossRef]
- Xia, J.; Mattson, N. Response of Common Ice Plant (mesembryanthemum Crystallinum L.) to Sodium Chloride Concentration in Hydroponic Nutrient Solution. HortScience 2022, 57, 750–756. [Google Scholar] [CrossRef]
- Lennard, W.; Goddek, S. Aquaponics: The Basics. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future, 1st ed.; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 113–143. [Google Scholar] [CrossRef]
- Umamaheswari, S.; Preethi, A.; Pravin, E.; Dhanusha, R. Integrating scheduled hydroponic system. In Proceedings of the 2016 IEEE International Conference on Advances in Computer Applications (ICACA), Coimbatore, India, 24 October 2016. [Google Scholar] [CrossRef]
- Bugbee, B. Nutrient management in recirculating hydroponic culture. Acta Hortic. 2004, 648, 99–112. [Google Scholar] [CrossRef]
- Nikolic, M.; Pavlovic, J. Plant Responses to Iron Deficiency and Toxicity and Iron Use Efficiency in Plants. In Plant Micronutrient Use Efficiency Molecular and Genomic Perspectives in Crop Plants, 1st ed.; Hossain, M.A., Kamiya, T., Burritt, D., Tran, L.S.P., Fujiwara, T., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 55–69. [Google Scholar]
- Graber, A.; Junge, R. Aquaponics systems: Nutrient recycling from fish wastewater by vegetable production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Roosta, H.R.; Hamidpour, M. Effects of foliar application of some macro and micro-nutrients on tomato plants in aquaponic and hydroponic systems. Sci. Hortic. 2011, 129, 396–402. [Google Scholar] [CrossRef]
- Kaburagi, E.; Yamada, M.; Baba, T.; Fujiyama, H. Aquaponics using saline groundwater: Effect of adding microelements to fish wastewater on the growth of swiss chard (Beta vulgaris L. spp. cicla). Agric. Water Manag. 2020, 227, 105851. [Google Scholar] [CrossRef]
- Lobanov, V.P.; Combot, D.; Pelissier, P.; Labbé, L.; Joyce, A. Improving Plant Health Through Nutrient Remineralization in Aquaponic Systems. Front. Plant Sci. 2021, 12, 683690. [Google Scholar] [CrossRef]
- Rakocy, J.E.; Masser, M.P.; Losordo, T.M. Recirculating aquaculture tank production systems: Aquaponics-integrating fish and plant culture. SRAC Publ. 2006, 454, 344–386. [Google Scholar]
- Ebeling, J.M.; Timmons, M.B. Recirculating Aquaculture Systems. In Aquaculture Production System; Tidwell, J.H., Ed.; John Wiley & Sons, Inc.: Ames, IA, USA, 2012; pp. 245–277. [Google Scholar] [CrossRef]
- Suhl, J.; Dannehl, D.; Kloas, W.; Baganz, D.; Jobs, S.; Scheibe, G.; Schmidt, U. Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agric. Water Manag. 2016, 178, 335–344. [Google Scholar] [CrossRef]
- Doncato, K.B.; Costa, C.S.B. Micronutrient supplementation needs for halophytes in saline aquaponics with BFT system water. Aquaculture 2021, 531, 735815. [Google Scholar] [CrossRef]
- Tyson, R.V.; Simonne, E.H.; Davis, M.; Lamb, E.M.; White, J.M.; Treadwell, D.D. Effect of nutrient solution, nitrate-nitrogen concentration, and pH on nitrification rate in perlite medium. J. Plant Nutr. 2007, 30, 901–913. [Google Scholar] [CrossRef]
- Goddek, S.; Espinal, C.; Delaide, B.; Jijakli, M.; Schmautz, Z.; Wuertz, S.; Keesman, K. Navigating Towards Decoupled Aquaponic Systems: A System Dynamics Design Approach. Water 2016, 8, 303. [Google Scholar] [CrossRef]
- Ayipio, E.; Wells, D.E.; Mcquilling, A.; Wilson, A.E. Comparisons Between Aquaponic and Conventional Hydroponic Crop Yields: A Meta-analysis. Sustainability 2019, 11, 6511. [Google Scholar] [CrossRef]
- Rodgers, D.; Won, E.; Timmons, M.B.; Mattson, N. Complementary Nutrients in Decoupled Aquaponics Enhance Basil Performance. Horticulturae 2022, 8, 111. [Google Scholar] [CrossRef]
- Fimbres-Acedo, Y.E.; Traversari, S.; Cacini, S.; Costamagna, G.; Ginepro, M.; Massa, D. Testing the Effect of High Ph and Low Nutrient Concentration on Four Leafy Vegetables in Hydroponics. Agronomy 2022, 13, 41. [Google Scholar] [CrossRef]
- Wortman, S.E. Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hortic. 2015, 194, 34–42. [Google Scholar] [CrossRef]
- Kaburagi, E.; Morikawa, Y.; Yamada, M.; Fujiyama, H. Sodium Enhances Nitrate Uptake in Swiss Chard (Beta vulgaris var. cicla L.). Soil Sci. Plant Nutr. 2014, 60, 651–658. [Google Scholar] [CrossRef]
- Hiiro, K.; Kawahara, A.; Tanaka, T.; Wakida, S.-I.; Yamane, M.; Higashi, K. Ultraviolet Spectrophotometric Determination of Total Nitrogen in Sea Water Samples. Jpn. J. Water Pollut. Res. 1988, 11, 320–324. [Google Scholar] [CrossRef]
- Japanese Ministry of Economy, Trade, and Industry. Testing Methods for Industrial Wastewater. 2019. Available online: http://www.jisc.go.jp/index.html (accessed on 19 January 2023).
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Wintermans, J.F.; Mots, A. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys. Acta 1965, 109, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Santiago, E.; Yahia, E.M. Identification and quantification of betalains from the fruits of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. J. Agric. Food Chem. 2008, 56, 5451–5982. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.D.; Pratt, P.F. Methods of analysis for soils, plants, and waters. Soil Sci. 1962, 93, 68. [Google Scholar] [CrossRef]
- Kimera, F.; Mugwanya, M.; Dawood, M.; Sewilam, H. Growth Response of Kale (Brassica oleracea) and Nile Tilapia (Oreochromis niloticus) Under Saline Aqua-sandponics-vegeculture System. Sci. Rep. 2023, 13, 2427. [Google Scholar] [CrossRef]
- Thomas, R.M.; Verma, A.K.; Krishna, H.; Prakash, S.; Kumar, A.; Peter, R.M. Effect of salinity on growth of nile tilapia (Oreochromis niloticus) and spinach (Spinacia oleracea) in aquaponic system using inland saline groundwater. Aquac. Res. 2021, 52, 6288–6298. [Google Scholar] [CrossRef]
- Rafiee, G.; Saad, C.R. Nutrient cycle and sludge production during different stages of red tilapia (Oreochromis sp.) growth in a recirculating aquaculture system. Aquaculture 2005, 244, 109–118. [Google Scholar] [CrossRef]
- Cerozi, B.S.; Fitzsimmons, K. Phosphorus dynamics modeling and mass balance in an aquaponics system. Agric. Sysems 2017, 153, 94–100. [Google Scholar] [CrossRef]
- Duxbury, A.C.; Byrne, R.H.; Mackenzie, F.T. Seawater, Encyclopedia Britannica. 2024. Available online: https://www.britannica.com/science/seawater (accessed on 29 May 2024).
- Riley, D.; Barber, S.A. Bicarbonate accumulation and pH changes at the soybean (Glycine max (L.) Merr.) root-soil interface. Soil Sci. Soc. Am. J. 1969, 33, 905–908. [Google Scholar] [CrossRef]
- Riley, D.; Barber, S.A. Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Soil Sci. Soc. Am. J. 1971, 35, 301–306. [Google Scholar] [CrossRef]
- Raven, J.A. pH regulation in plants. Sci. Prog. 1985, 69, 495–509. [Google Scholar]
- Zayas, J.F. Foaming Properties of Proteins. In Functionality of Proteins in Food; Zayas, J.F., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 260–309. [Google Scholar] [CrossRef]
- Dill, K.A.; Shortle, D. Denatured states of proteins. Annu. Rev. Biochem. 1991, 60, 795–825. [Google Scholar] [CrossRef] [PubMed]
- SATREPS. Technical Manual of Aquaponics Combined with Open Culture Adapting to Arid Regions, 1st ed.; Fukui Print: Tottori, Japan, 2020; p. 58. [Google Scholar]
- Atzori, G.; de Vos, A.C.; van Rijsselberghe, M.; Vignolini, P.; Rozema, J.; Mancuso, S.; van Bodegom, P.M. Effects of increased seawater salinity irrigation on growth and quality of the edible halophyte Mesembryanthemum crystallinum L. under field conditions. Agric. Water Manag. 2017, 187, 37–46. [Google Scholar] [CrossRef]
- Cárdenas-Pérez, S.; Rajabi Dehnavi, A.; Leszczyński, K.; Lubińska-Mielińska, S.; Ludwiczak, A.; Piernik, A. Salicornia europaea L. Functional Traits Indicate Its Optimum Growth. Plants 2022, 11, 1051. [Google Scholar] [CrossRef]
- Behr, J.H.; Bouchereau, A.; Berardocco, S.; Seal, C.E.; Flowers, T.J.; Zörb, C. Metabolic and Physiological Adjustment of Suaeda maritimato Combined Salinity and Hypoxia. Ann. Bot. 2017, 119, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Savvas, D.; Gruda, N.S. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nishizawa, N.K. Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 2012, 63, 131–152. [Google Scholar] [CrossRef] [PubMed]
- Hörtensteiner, S. Chlorophyll degradation during senescense. Annu. Rev. Plant Biol. 2006, 57, 55–77. [Google Scholar] [CrossRef]
- Mabry, T.J. Betalains. In Encyclopedia of Plant Physiology. New Series. Volume 8. Secondary Plant Products; Pirson, A., Zimmerman, M.H., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany; New York, NY, USA, 1981; pp. 513–533. [Google Scholar]
- Bouftira, I.; Abdelly, C.; Sfar, S. Identification of a naturally ocurring 2, 6-bis (1.1-dimethylethyl)-4-methylphenol from purple leaves of the halophyte plant Mesembryanthemum crystallinum. Afr. J. Biotechnol. 2007, 6, 1136–1139. [Google Scholar]
- Ibraheem, F.; Al-Zahrani, A.; Mosa, A. Physiological Adaptation of Three Wild Halophytic Suaeda Species: Salt Tolerance Strategies and Metal Accumulation Capacity. Plants 2022, 11, 537. [Google Scholar] [CrossRef] [PubMed]
- Parida, A.K.; Kumari, A.; Panda, A.; Rangani, J.; Agarwal, P.K. Photosynthetic Pigments, Betalains, Proteins, Sugars, and Minerals During Salicornia brachiata Senescence. Biol. Plant. 2018, 62, 343–352. [Google Scholar] [CrossRef]
- Buhmann, A.K.; Waller, U.; Wecker, B.; Papenbrock, J. Optimization of culturing conditions and selection of species for the use of halophytes as biofilter for nutrient-rich saline water. Agric. Water Manag. 2015, 149, 102–114. [Google Scholar] [CrossRef]
- Nozzi, V.; Parisi, G.; Di Crescenzo, D.; Giordano, M.; Carnevali, O. Evaluation of Dicentrarchus labrax Meats and the Vegetable Quality of Beta vulgaris Var. Cicla farmed in Freshwater and Saltwater Aquaponic Systems. Water 2016, 8, 423. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- West, G.; Inzé, D.; Beemster, G.T.S. Cell Cycle Modulation in the Response of the Primary Root of Arabidopsis to Salt Stress. Plant Physiol. 2004, 135, 1050–1058. [Google Scholar] [CrossRef]
- Lynch, J. Root architecture and plant productivity. Plant Physiol. 1995, 109, 7–13. [Google Scholar] [CrossRef]
- Atta, A.A.; Morgan, K.T.; Hamido, S.A.; Kadyampakeni, D.M. Effect of essential nutrients on roots growth and lifespan of Huanglongbing affected citrus trees. Plants 2020, 9, 483. [Google Scholar] [CrossRef]
- Cao, Y.; Song, H.; Zhang, L. New Insight into Plant Saline-alkali Tolerance Mechanisms and Application to Breeding. Int. J. Mol. Sci. 2022, 23, 16048. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Associates, Inc., Publishers: Sunderland, MA, USA, 2002. [Google Scholar]
- Agarie, S.; Shimoda, T.; Shimizu, Y.; Baumann, K.; Sunagawa, H.; Kondo, A.; Ueno, O.; Nakahara, T.; Nose, A.; Cushman, J.C. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J. Exp. Bot. 2007, 58, 1957–1967. [Google Scholar] [CrossRef] [PubMed]
- Adams, P.; Nelson, D.E.; Yamada, S.; Chmara, W.; Jensen, R.G.; Bohnert, H.J.; Griffiths, H. Growth and Development of Mesembryanthemum crystallinum (aizoaceae). New Phytol. 1998, 138, 171–190. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, S.; An, L.; Chen, N. NADPH oxidase-dependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. J. Plant Physiol. 2007, 164, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Epstein, E. Mineral Nutrition of Plants: Principles and Perspectives; John Wiley and Sons, Inc.: New York, NY, USA, 1972. [Google Scholar]
- White, J.H. Long-Distance Transport in the Xylem and Phloem. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 49–70. [Google Scholar]
- Marschner, H.; Römfeld, V. Strategies of plants for acquisition of iron. Plant Soil 1994, 165, 261–274. [Google Scholar] [CrossRef]
- Costa-Becheleni, F.R.; Troyo-Diéguez, E.; Nieto-Garibay, A.; Bustamante-Salazar, L.A.; García-Galindo, H.S.; Murillo-Amador, B. Hydro-environmental Criteria for Introducing an Edible Halophyte from a Rainy Region to an Arid Zone: A Study Case of Suaeda Spp. as a New Crop in NW México. Plants 2021, 10, 1996. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, C.A.; Gutierrez Boem, F.H.; Lavado, R.S. The K/na and Ca/na Ratios and Rapeseed Yield, Under Soil Salinity or Sodicity. Plant Soil 1995, 175, 251–255. [Google Scholar] [CrossRef]
- Wakeel, A.; Farooq, M.; Qadir, M.; Schubert, S. Potassium substitution by sodium in plants. Crit. Rev. Plant Sci. 2011, 30, 401–413. [Google Scholar] [CrossRef]
- Maathuis, F. K+ nutrition and Na+ toxicity: The Basis of Cellular K+/Na+ ratios. Ann. Bot. 1999, 84, 123–133. [Google Scholar] [CrossRef]
- Zhu, J.-K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003, 6, 441–445. [Google Scholar] [CrossRef]
- Barbour, M.G. Is any angiosperm an obligate halophyte? Am. Midlan Nat. 1970, 84, 105–120. [Google Scholar] [CrossRef]
- Moghajeb, R.E.A.; Saneoka, H.; Fujita, K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant Sci. 2004, 166, 1345–1349. [Google Scholar] [CrossRef]
- Balnokin, Y.V.; Myasoedov, N.A.; Shamsutdinov, Z.S.; Shamsutdinov, N.Z. Significance of Na+ and K+ for Sustained Hydration of Organ Tissues in Ecologically Distinct Halophytes of the Family Chenopodiaceae. Russ. J. Plant Physiol. 2005, 52, 779–787. [Google Scholar] [CrossRef]
- Ozawa, T.; Wu, J.; Fujii, S. Effect of Inoculation with a Strain of Pseudomonas pseudoalcaligenes isolated from the Endorhizosphere of Salicornia europeaon Salt Tolerance of the Glasswort. Soil Sci. Plant Nutr. 2007, 53, 12–16. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Potential of Producing Salicornia bigelovii Hydroponically as a Vegetable at Moderate Nacl Salinity. HortScience 2014, 49, 1154–1157. [Google Scholar] [CrossRef]
- Khan, M.A.; Gul, B.; Weber, D.J. Effect of salinity on the growth and ion content of Salicornia rubra. Commun. Soil Sci. Plant Anal. 2001, 32, 2965–2977. [Google Scholar] [CrossRef]
- Ayala, F.; O’Leary, J.W. Growth and physiology of Salicornia bigelovii Torr. at suboptimal salinity. Int. J. Plant Sci. 1995, 156, 197–205. [Google Scholar] [CrossRef]
- Amiri, B.; Assareh, M.H.; Rasouli, B.; Jafari, M.; Arzani, H.; Jafari, A.A. Effect of salinity on growth, ion content and water status of glasswort (Salicornia herbacea L.). Casp. J. Environ. Sci. 2010, 8, 79–87. [Google Scholar]
- Katschnig, D.; Broekman, R.; Rozema, J. Salt tolerance in the halophyte Salicornia dolichostachya Moss: Growth, morphology and physiology. Environ. Exp. Bot. 2013, 92, 32–42. [Google Scholar] [CrossRef]
- Ranjbar, G.; Khademi, R.; Dehghanie, F.; Keshtkar, S.; Islam, K.R. Salicornia sinus-persica: A high-yielding species for fodder production with seawater. Arid. Land Res. Manag. 2023, 38, 97–108. [Google Scholar] [CrossRef]
- Ding, M.; Zhang, M.; Wang, Z.; Yu, X.; Kinoshita, T.; Zeng, H.; Zhu, Y. Overexpression of a Plasma Membrane H+-atpase Gene OSA1 Stimulates the Uptake of Primary Macronutrients in Rice Roots. Int. J. Mol. Sci. 2022, 23, 13904. [Google Scholar] [CrossRef] [PubMed]
- Kudo, N.; Sugino, T.; Oka, M.; Fujiyama, H. Sodium Tolerance of Plants in Relation to Ionic Balance and the Absorption Ability of Microelements. Soil Sci. Plant Nutr. 2010, 56, 225–233. [Google Scholar] [CrossRef]
- Haque, M.I.; Rathose, M.S.; Gupta, H.; Jha, B. Inorganic solutes contribute more than organic solutes to the osmotic adjustment in Salicornia brachiate (Roxb.) under natural saline conditions. Aquat. Bot. 2017, 142, 78–86. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.V. Effects of Salinity on Ion Transport, Water Relations and Oxidative Damage. In Ecophysiology and Responses of Plants Under Salt Stress; Ahmad, P., Azooz, M.M., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2013; pp. 89–114. [Google Scholar] [CrossRef]
- Alhaddad, F.A.; Abu-Dieyeh, M.H.; Elazazi, E.-S.M.; Ahmed, T.A. Salt Tolerance of Selected Halophytes at the Two Initial Growth Stages for Future Management Options. Sci. Rep. 2021, 11, 10194. [Google Scholar] [CrossRef] [PubMed]
- Petranich, E.; Acquavita, A.; Covelli, S.; Emili, A. Potential bioaccumulation of trace metals in halophytes from salt marshes of a northern adriatic coastal lagoon. J. Soils Sediments 2017, 17, 1986–1998. [Google Scholar] [CrossRef]
- Kovač, N.; Hauptman, Ž.; Dolenec, M.; Škornik, I.; Šmuc, N.R. Translocation Signatures of Major Elements in Halophytes from Hypersaline Environments: The Case Study from Sečovlje Salina (Republic of Slovenia). J. Soils Sediments 2023, 23, 4149–4162. [Google Scholar] [CrossRef]
- Badri, D.V.; Vivanco, J.M. Regulation and Function of Root Exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [CrossRef] [PubMed]
- Kochian, L.V. Mechanisms of Micronutrient Uptake and Translocation in Plants. In Micronutrients in Agriculture, 2nd ed.; Mortvedt, J.J., Ed.; SSSA Book Series; Wiley Online Library: Hoboken, NJ, USA, 1991; p. 8. [Google Scholar] [CrossRef]
- Wang, B.; Lüttge, U.; Ratajczak, R. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J. Exp. Bot. 2001, 52, 2355–2365. [Google Scholar] [CrossRef]
- Winter, K.; Holtum, J.A.M. The Effects of Salinity, Crassulacean Acid Metabolism and Plant Age on the Carbon Isotope Composition of Mesembryanthemum Crystallinum L., a Halophytic C3-CAM Species. Planta 2005, 222, 201–209. [Google Scholar] [CrossRef] [PubMed]
Parameters | Unit | Standard Nutrient Solution *1 | Coastal Groundwater *2 |
---|---|---|---|
pH | 5.5 | 7.57 | |
EC | dS m−1 | 0.149 | 48.1 |
T-N | mM | 4.0 | 0.45 |
-N | 4.0 | 0.01 | |
-N | - | N.D. | |
-N | - | N.D. | |
P | 0.4 | N.D. | |
K | 2.0 | 10.4 | |
Ca | 1.0 | 11.7 | |
Mg | 2.0 | 41.7 | |
Na | 5 | 454 | |
Cl | 5 | 542 | |
B | µM | 18 | 102 |
Fe | 35 | 15 | |
Mn | 9 | 0.09 | |
Zn | 1 | N.D. | |
Cu | 0.1 | 0.09 |
Activities | Aquaculture Start Date | Aquaculture Finish Date | Number of Fish | Average Body Weight (g) | Feeding Amount (g tank−1 day−1) |
---|---|---|---|---|---|
HSW * for ice plant cultivation | 13 October 2022 | 28 October 2022 | 91 | 348 | 228 |
HSW * for romeritos cultivation | 3 May 2023 | 23 May 2023 | 60 | 714 | 182 |
HSW * for sea asparagus cultivation | 10 June 2023 | 22 June 2023 | 55 | 801 | 167 |
Parameters | Unit | HSW * for Ice Plant | HSW * for Romeritos | HSW * for Sea Asparagus |
---|---|---|---|---|
T-N | mM | 5.9 | 6.6 | 4.6 |
-N | 4.9 | 4.2 | 3.7 | |
-N | N.D. | 0.1 | 0.1 | |
-N | 0.07 | 0.05 | 0.2 | |
P | 0.2 | 0.1 | 0.1 | |
K | 9.05 | 9.1 | 8.9 | |
Ca | 1.2 | 1.2 | 1.06 | |
Mg | 22.0 | 25.4 | 23.2 | |
Na | 262.4 | 263.6 | 250.6 | |
Cl | 311.6 | 307.5 | 297.2 | |
B | µM | 216.4 | 213.8 | 209.8 |
Fe | N.D. | N.D. | N.D. | |
Mn | 0.6 | 0.5 | 0.6 | |
Zn | N.D. | N.D. | N.D. | |
Cu | N.D. | N.D. | N.D. |
Ice Plant | Romeritos | Sea Asparagus | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | MH *1 | RS *2 | RT *3 | Total | MH *1 | RS *2 | RT *3 | Total | MH *1 | RS *2 | RT *3 | Total |
FW (g plant−1) | ||||||||||||
C | 49.16 (7.16) b | 225.83 (9.80) b | 11.94 (0.31) c | 286.94 (16.66) c | 100.55 (8.01) ab | 127.40 (2.78) | 57.85 (2.57) | 285.80 (10.24) | 25.75 (5.88) | 34.55 (4.21) | 6.31 (0.81) | 66.63 (10.56) |
pH | 69.00 (3.89) ab | 264.25 (11.82) b | 22.43 (0.81) b | 355.68 (9.20) b | 122.05 (10.78) a | 106.67 (12.09) | 52.78 (4.12) | 281.52 (20.08) | 27.86 (1.94) | 38.94 (3.28) | 8.82 (0.69) | 75.62 (4.64) |
pH+S | 68.08 (8.63) ab | 271.50 (12.30) b | 26.06 (1.44) b | 362.65 (19.44) b | 125.45 (8.81) a | 102.30 (10.07) | 49.15 (4.30) | 276.90 (22.30) | 27.18 (4.13) | 39.03 (3.38) | 8.50 (0.80) | 74.72 (7.97) |
NS | 84.66 (5.31) a | 360.50 (9.96) a | 31.10 (1.94) a | 476.27 (16.16) a | 70.05 (9.55) b | 99.05 (13.80) | 44.00 (4.33) | 213.10 (26.52) | 15.62 (2.51) | 24.89 (3.75) | 6.80 (1.46) | 47.32 (7.41) |
* | *** | *** | *** | ** | ns | ns | ns | ns | ns | ns | ns | |
DW (g plant−1) | ||||||||||||
C | 2.10 (0.30) | 15.04 (0.84) b | 1.03 (0.05) c | 18.18 (0.79) b | 9.32 (0.89) ab | 13.82 (0.22) | 4.13 (0.31) | 27.28 (0.83) | 3.19 (0.68) | 5.45 (0.35) | 0.91 (0.09) | 9.56 (1.03) |
pH | 3.04 (0.19) | 20.07 (2.39) ab | 1.37 (0.08) b | 24.49 (2.34) a | 11.24 (0.73) a | 13.89 (1.23) | 4.12 (0.13) | 29.26 (0.79) | 3.47 (0.16) | 6.51 (0.50) | 1.45 (0.03) | 11.43 (0.42) |
pH+S | 2.68 (0.31) | 23.09 (1.06) a | 1.39 (0.07) b | 27.17 (1.28) a | 11.14 (0.66) a | 11.54 (0.83) | 3.37 (0.27) | 26.07 (1.61) | 3.32 (0.39) | 6.73 (0.47) | 1.30 (0.09) | 11.36 (0.87) |
NS | 2.40 (0.14) | 17.82 (0.45) ab | 1.69 (0.04) a | 21.91 (0.59) ab | 6.30 (0.68) b | 11.89 (1.85) | 3.37 (0.30) | 21.57 (2.99) | 2.08 (0.26) | 5.22 (0.85) | 1.24 (0.25) | 8.55 (1.32) |
ns | ** | *** | ** | ** | ns | ns | ns | ns | ns | ns | ns | |
WC (g g−1 DW−1) | ||||||||||||
C | 22.57 (1.51) b | 14.15 (1.06) b | 10.65 (0.44) b | 14.82 (0.89) b | 9.77 (0.23) | 8.21 (0.07) | 13.10 (0.51) | 9.47 (0.12) | 7.08 (0.53) | 5.26 (0.41) | 5.84 (0.22) a | 5.86 (0.40) |
pH | 21.72 (0.61) b | 12.58 (1.25) b | 15.37 (0.51) a | 13.86 (1.23) b | 9.79 (0.32) | 6.71 (0.68) | 11.82 (1.03) | 8.61 (0.60) | 7.00 (0.26) | 5.01 (0.47) | 5.08 (0.42) ab | 5.61 (0.33) |
pH+S | 24.26 (0.93) b | 10.76 (0.18) b | 15.55 (1.06) a | 12.33 (0.20) b | 10.23 (0.14) | 6.71 (0.68) | 13.56 (0.56) | 9.59 (0.34) | 7.07 (0.31) | 4.77 (0.15) | 5.49 (0.17) ab | 5.53 (0.22) |
NS | 34.44 (1.86) a | 19.26 (0.75) a | 17.43 (1.27) a | 20.76 (0.83) a | 10.20 (0.71) | 7.39 (0.25) | 12.08 (0.79) | 8.97 (0.44) | 6.40 (0.41) | 3.81 (0.38) | 4.46 (0.33) b | 4.54 (0.35) |
*** | *** | ** | *** | ns | ns | ns | ns | ns | ns | * | ns |
Treatment | Ice Plant | Romeritos | Sea Asparagus |
---|---|---|---|
RL *1 (m plant−1) | |||
C | 227.45 (14.711) b | 2123.65 (62.53) | 94.58 (22.16) |
pH | 499.20 (65.85) a | 1859.39 (369.16) | 136.03 (6.77) |
pH+S | 492.86 (29.00) a | 1801.78 (360.06) | 140.94 (16.06) |
NS | 343.50 (13.41) ab | 1222.39 (109.12) | 90.50 (18.92) |
*** | ns | ns | |
SRL *2 (m g−1 DW) | |||
C | 221.63 (14.80) b | 526.11 (56.80) | 100.15 (15.10) |
pH | 359.62 (29.76) a | 451.89 (87.35) | 94.05 (6.36) |
pH+S | 353.37 (17.01) a | 525.78 (76.67) | 107.89 (8.35) |
NS | 203.68 (11.33) b | 362.18 (2.99) | 72.37 (4.5) |
*** | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosales-Nieblas, A.C.; Yamada, M.; Murillo-Amador, B.; Endo, M.; Yamada, S. Evaluation of the Cultivation of Three Halophytic Plants Under Half-Strength Seawater Aquaponics. Agronomy 2025, 15, 277. https://doi.org/10.3390/agronomy15020277
Rosales-Nieblas AC, Yamada M, Murillo-Amador B, Endo M, Yamada S. Evaluation of the Cultivation of Three Halophytic Plants Under Half-Strength Seawater Aquaponics. Agronomy. 2025; 15(2):277. https://doi.org/10.3390/agronomy15020277
Chicago/Turabian StyleRosales-Nieblas, Ayenia Carolina, Mina Yamada, Bernardo Murillo-Amador, Masato Endo, and Satoshi Yamada. 2025. "Evaluation of the Cultivation of Three Halophytic Plants Under Half-Strength Seawater Aquaponics" Agronomy 15, no. 2: 277. https://doi.org/10.3390/agronomy15020277
APA StyleRosales-Nieblas, A. C., Yamada, M., Murillo-Amador, B., Endo, M., & Yamada, S. (2025). Evaluation of the Cultivation of Three Halophytic Plants Under Half-Strength Seawater Aquaponics. Agronomy, 15(2), 277. https://doi.org/10.3390/agronomy15020277