Evaluation of Insecticide Toxicity and Field Performance Against Myzus persicae (Hemiptera: Aphididae) in Laboratory and Greenhouse Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Myzus persicae
2.2. Chemicals
2.3. Toxicity Bioassays
2.4. Greenhouse Insecticide Efficacy Trials
2.5. Data Analyses
3. Results
3.1. Insecticide Toxicity Against M. persicae
3.2. Greenhouse Insecticide Efficacy
4. Discussion
4.1. Insecticide Toxicity Against M. persicae
4.2. Greenhouse Insecticide Efficacy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frantz, J.D.; Gardner, J.; Hoffmann, M.P.; Jahn, M.M. Greenhouse screening of Capsicum accessions for resistance to green peach aphid (Myzus persicae). HortScience 2004, 39, 1332–1335. [Google Scholar] [CrossRef]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Ali, J.; Bayram, A.; Mukarram, M.; Zhou, F.; Karim, M.F.; Hafez, M.M.A.; Mahamood, M.; Yusuf, A.A.; King, P.J.H.; Adil, M.F. Peach–potato aphid Myzus persicae: Current management strategies, challenges, and proposed solutions. Sustainability 2023, 15, 11150. [Google Scholar] [CrossRef]
- Ali, J. The Peach Potato Aphid (Myzus persicae): Ecology and Management; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Nault, L. Arthropod transmission of plant viruses: A new synthesis. Ann. Entomol. Soc. Am. 1997, 90, 521–541. [Google Scholar] [CrossRef]
- Bass, C.; Puinean, A.M.; Zimmer, C.T.; Denholm, I.; Field, L.M.; Foster, S.P.; Gutbrod, O.; Nauen, R.; Slater, R.; Williamson, M.S. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 2014, 51, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Joshi, N. Management of the aphid, Myzus persicae (Sulzer) and the whitefly, Bemisia tabaci (Gennadius), using biorational on capsicum under protected cultivation in India. Egypt. J. Biol. Pest Control. 2020, 30, 67. [Google Scholar] [CrossRef]
- Cai, H.; Yang, L.; Zuo, Z.; Liao, W.; Yang, Z. Resistance status of Myzus persicae to pesticide and its relationship with enzymes. Agron. J. 2021, 113, 806–819. [Google Scholar] [CrossRef]
- Umina, P.A.; Bass, C.; van Rooyen, A.; Chirgwin, E.; Arthur, A.L.; Pym, A.; Mackisack, J.; Mathews, A.; Kirkland, L. Spirotetramat resistance in Myzus persicae (Sulzer) (Hemiptera: Aphididae) and its association with the presence of the A2666V mutation. Pest Manag. Sci. 2022, 78, 4822–4831. [Google Scholar] [CrossRef]
- Bass, C.; Denholm, I.; Williamson, M.S.; Nauen, R. The global status of insect resistance to neonicotinoid insecticides. Pestic. Biochem. Physiol. 2015, 121, 78–87. [Google Scholar] [CrossRef]
- Voudouris, C.C.; Williamson, M.S.; Skouras, P.J.; Kati, A.N.; Sahinoglou, A.J.; Margaritopoulos, J.T. Evolution of imidacloprid resistance in Myzus persicae in Greece and susceptibility data for spirotetramat. Pest Manag. Sci. 2017, 73, 1804–1812. [Google Scholar] [CrossRef]
- Hu, J.; Chen, F.; Wang, J.; Rao, W.; Lin, L.; Fan, G. Multiple insecticide resistance and associated metabolic-based mechanisms in a Myzus persicae (Sulzer) population. Agronomy 2023, 13, 2276. [Google Scholar] [CrossRef]
- Stará, J.; Hovorka, T.; Horská, T.; Zusková, E.; Kocourek, F. Pyrethroid and carbamate resistance in Czech populations of Myzus persicae (Sulzer) from oilseed rape. Pest Manag. Sci. 2024, 80, 2342–2352. [Google Scholar] [CrossRef]
- Tang, Q.-L.; Ma, K.-S.; Hou, Y.-M.; Gao, X.-W. Monitoring insecticide resistance and diagnostics of resistance mechanisms in the green peach aphid, Myzus persicae (Sulzer)(Hemiptera: Aphididae) in China. Pestic. Biochem. Physiol. 2017, 143, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Mota-Sanchez, D.; Wise, J.C. The Arthropod Pesticide Resistance Database; Michigan State University: East Lansing, MI, USA, 2021. [Google Scholar]
- Voudouris, C.C.; Kati, A.N.; Sadikoglou, E.; Williamson, M.; Skouras, P.J.; Dimotsiou, O.; Georgiou, S.; Fenton, B.; Skavdis, G.; Margaritopoulos, J.T. Insecticide resistance status of Myzus persicae in Greece: Long-term surveys and new diagnostics for resistance mechanisms. Pest Manag. Sci. 2016, 72, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Egel, D.; Laura, I.; Stephen, M.; Sushila, C.; Fred, W. Midwest Vegetable Production Guide for Commercial Growers 2023; Extension Publications (MU); University of Missouri: Columbia, MO, USA, 2023. [Google Scholar]
- MEWA. Ministry of Environment, Water and Agriculture. 2023. Available online: https://www.mewa.gov.sa/en/Pages/default.aspx (accessed on 10 March 2023).
- Pohanish, R.P. Sittig’s Handbook of Pesticides and Agricultural Chemicals, 2nd ed.; Pohanish, R.P., Ed.; William Andrew Publishing: Oxford, UK, 2015; pp. 383–457. [Google Scholar]
- Karpouzas, D.G.; Pantelelis, I.; Menkissoglu-Spiroudi, U.; Golia, E.; Tsiropoulos, N.G. Leaching of the organophosphorus nematicide fosthiazate. Chemosphere 2007, 68, 1359–1364. [Google Scholar] [CrossRef]
- Jeschke, P.; Nauen, R. Neonicotinoid Insecticides. In Comprehensive Molecular Insect Science; Gilbert, L.I., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 53–105. [Google Scholar]
- Brück, E.; Elbert, A.; Fischer, R.; Krueger, S.; Kühnhold, J.; Klueken, A.M.; Nauen, R.; Niebes, J.-F.; Reckmann, U.; Schnorbach, H.-J. Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: Biological profile and field performance. Crop Prot. 2009, 28, 838–844. [Google Scholar] [CrossRef]
- Nauen, R.; Reckmann, U.; Thomzik, J.; Thielert, W. Biological profile of spirotetramat (Movento®)–a new two-way systemic (ambimobile) insecticide against sucking pest species. Bayer Crop. J. 2008, 61, 245–278. [Google Scholar]
- Norma-Julieta, S.-L.; María-Lourdes, A.-M.; María-Isabel, S.-G.; José-Luis, A. Spirotetramat—An Alternative for the Control of Parasitic Sucking Insects and its Fate in the Environment. In Insecticides Resistance; Stanislav, T., Ed.; IntechOpen: Rijeka, Croatia, 2016; p. 3. [Google Scholar]
- Goto, K.; Horikoshi, R.; Nakamura, S.; Mitomi, M.; Oyama, K.; Hirose, T.; Sunazuka, T.; Ōmura, S. Synthesis of pyripyropene derivatives and their pest-control efficacy. J. Pestic. Sci. 2019, 44, 255–263. [Google Scholar] [CrossRef]
- Koch, R.L.; da Silva Queiroz, O.; Aita, R.C.; Hodgson, E.W.; Potter, B.D.; Nyoike, T.; Ellers-Kirk, C.D. Efficacy of afidopyropen against soybean aphid (Hemiptera: Aphididae) and toxicity to natural enemies. Pest Manag. Sci. 2020, 76, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ban, N.; Fu, Z.; Gao, X.; Liu, T.-X.; Liang, P. Persistent toxicity and dissipation dynamics of afidopyropen against the green peach aphid Myzus persicae (Sulzer) in cabbage and chili. Ecotoxicol. Environ. Saf. 2023, 252, 114584. [Google Scholar] [CrossRef]
- Morita, M.; Ueda, T.; Yoneda, T.; Koyanagi, T.; Haga, T. Flonicamid, a novel insecticide with a rapid inhibitory effect on aphid feeding. Pest Manag. Sci. 2007, 63, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Sabra, S.G.; Abbas, N.; Hafez, A.M. First monitoring of resistance and corresponding mechanisms in the green peach aphid, Myzus persicae (Sulzer), to registered and unregistered insecticides in Saudi Arabia. Pestic. Biochem. Physiol. 2023, 194, 105504. [Google Scholar] [CrossRef] [PubMed]
- Saeed, R.; Abbas, N. Realized heritability, inheritance and cross-resistance patterns in imidacloprid-resistant strain of Dysdercus koenigii (Fabricius) (Hemiptera: Pyrrhocoridae). Pest Manag. Sci. 2020, 76, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- IRAC. IRAC Susceptibility Test Method 019, Version 3.4. 2016. Available online: http://www.irac-online.org/methods/aphids-adultnymphs (accessed on 15 January 2022).
- Finney, D.J. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve; Cambridge University Press: Cambridge, UK, 1964; p. 25. [Google Scholar]
- LeOra, S. Poloplus, a User’s Guide to Probit or Logit Analysis; LeOra Software: Berkeley, CA, USA, 2003. [Google Scholar]
- Robertson, J.L.; Jones, M.M.; Olguin, E.; Alberts, B. Bioassays with Arthropods; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Li, Y.; Xu, Z.; Shi, L.; Shen, G.; He, L. Insecticide resistance monitoring and metabolic mechanism study of the green peach aphid, Myzus persicae (Sulzer)(Hemiptera: Aphididae), in Chongqing, China. Pestic. Biochem. Physiol. 2016, 132, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Software, L. POLO for Windows; LeOra Software: Petaluma, CA, USA, 2005. [Google Scholar]
- Henderson, C.F.; Tilton, E.W. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 1955, 48, 157–161. [Google Scholar] [CrossRef]
- Saeed, R.; Razaq, M.; Abbas, N.; Jan, M.T.; Naveed, M. Toxicity and resistance of the cotton leaf hopper, Amrasca devastans (Distant) to neonicotinoid insecticides in Punjab, Pakistan. Crop Prot. 2017, 93, 143–147. [Google Scholar] [CrossRef]
- Singab, M.; Mansour, M.R.; Rasha, I.A.M. Relationship between enzyme activity and resistance to insecticides in the tested field strains of Aphis gossypii (Hemipetra: Aphididae). Egypt. J. Plant Prot. Res. Inst. 2019, 2, 165–175. [Google Scholar]
- Fouad, E.A.; Abou-Yousef, H.M.; Abdallah, I.S.; Kandil, M.A. Resistance monitoring and enzyme activity in three field populations of cowpea aphid (Aphis craccivora) from Egypt. Crop Prot. 2016, 81, 163–167. [Google Scholar] [CrossRef]
- Amad, M.; Arif, M.I.; Denholm, I. High resistance of field populations of the cotton aphid Aphis gossypii Glover (Homoptera: Aphididae) to pyrethroid insecticides in Pakistan. J. Econ. Entomol. 2003, 96, 875–878. [Google Scholar] [CrossRef]
- Ahmad, M.; Akhtar, S. Development of insecticide resistance in field populations of Brevicoryne brassicae (Hemiptera: Aphididae) in Pakistan. J. Econ. Entomol. 2013, 106, 954–958. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Q.; Liu, X.; Liang, G. Differences in the sublethal effects of sulfoxaflor and acetamiprid on the Aphis gossypii Glover (Homoptera: Aphididae) are related to its basic sensitivity level. Insects 2022, 13, 498. [Google Scholar] [CrossRef]
- Bielza, P.; Moreno, I.; Belando, A.; Grávalos, C.; Izquierdo, J.; Nauen, R. Spiromesifen and spirotetramat resistance in field populations of Bemisia tabaci Gennadius in Spain. Pest Manag. Sci. 2019, 75, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Abbas, N.; Abbas, N.; Ejaz, M.; Shad, S.A.; Asghar, I.; Irum, A.; Binyameen, M. Resistance in field populations of Amrasca devastans (Hemiptera: Cicadellidae) to new insecticides in Southern Punjab, Pakistan. Phytoparasitica 2018, 46, 533–539. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, C.; Gao, X.; Peng, T.; Bi, R.; Xi, J.; Xin, X.; Zhu, E.; Wu, Y.; Shang, Q. Spirotetramat resistance adaption analysis of Aphis gossypii Glover by transcriptomic survey. Pestic. Biochem. Physiol. 2015, 124, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, L.S.; Chirgwin, E.; Ward, S.E.; Congdon, B.S.; van Rooyen, A.; Umina, P.A. P450-mediated resistance in Myzus persicae (Sulzer) (Hemiptera: Aphididae) reduces the efficacy of neonicotinoid seed treatments in Brassica napus. Pest Manag. Sci. 2023, 79, 1851–1859. [Google Scholar] [CrossRef]
- Mottet, C.; Caddoux, L.; Fontaine, S.; Plantamp, C.; Bass, C.; Barrès, B. Myzus persicae resistance to neonicotinoids—Unravelling the contribution of different mechanisms to phenotype. Pest Manag. Sci. 2024, 80, 5852–5863. [Google Scholar] [CrossRef]
- Hlaoui, A.; Chiesa, O.; Figueroa, C.C.; Souissi, R.; Mazzoni, E.; Boukhris-Bouhachem, S. Target site mutations underlying insecticide resistance in Tunisian populations of Myzus persicae (Sulzer) on peach orchards and potato crops. Pest Manag. Sci. 2022, 78, 1594–1604. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, R.; Goto, K.; Mitomi, M.; Oyama, K.; Hirose, T.; Sunazuka, T.; Ōmura, S. Afidopyropen, a novel insecticide originating from microbial secondary extracts. Sci. Rep. 2022, 12, 2827. [Google Scholar] [CrossRef]
- Li, R.; Cheng, S.; Liang, P.; Chen, Z.; Zhang, Y.; Liang, P.; Zhang, L.; Gao, X. Status of the resistance of Aphis gossypii Glover, 1877 (Hemiptera: Aphididae) to afidopyropen originating from microbial secondary metabolites in China. Toxins 2022, 14, 750. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Q.; Zhou, X.; Zhang, M.; Yang, Q.; Su, Q.; Luo, C. Characterization of field-evolved resistance to afidopyropen, a novel insecticidal toxin developed from microbial secondary metabolites, in Bemisia tabaci. Toxins 2022, 14, 453. [Google Scholar] [CrossRef]
- Gul, H.; Haq, I.u.; Güncan, A.; Ullah, F.; Desneux, N.; Liu, X. Laboratory-induced bifenthrin, flonicamid, and thiamethoxam resistance and fitness costs in Rhopalosiphum padi. Toxics 2023, 11, 806. [Google Scholar] [CrossRef]
- Ullah, I.; Wazir, S.; Abbas, N.; Naeem, M.; Abdullah, K.; Mahmood, Z.; Rashid, M.-U.; Hafez, A.M. Monitoring of field-evolved resistance to flonicamid, neonicotinoid, and conventional insecticides in the Oxycarenus hyalinipennis costa. Environ. Monit. Assess. 2021, 193, 382. [Google Scholar] [CrossRef] [PubMed]
- Bessin, R.; Gauthier, N.; Fealko, E.; Rudolph, R.; Wright, S. Vegetable Production Guide for Commercial Growers, 2022–23; University of Kentucky Cooperative Extension Service: London, UK, 2023. [Google Scholar]
- Kashyap, L.; Sharma, D.C. Efficacy of insecticides and bio-pesticides for control of greenhouse whitefly on tomatoes in greenhouses in India. J. Agric. Urban Entomol. 2016, 32, 40–49. [Google Scholar] [CrossRef]
- McClanahan, R.J.; Founk, J. Toxicity of insecticides to the green peach aphid (Homoptera: Aphididae) in laboratory and field tests, 1971–1982. J. Econ. Entomol. 1983, 76, 899–905. [Google Scholar] [CrossRef]
- Hill, B.D.; Butts, R.A.; Schaalje, G.B. Reduced rates of foliar insecticides for control of Russian wheat aphid (Homoptera: Aphididae) in western Canada. J. Econ. Entomol. 1993, 86, 1259–1265. [Google Scholar] [CrossRef]
- Hill, B.D.; Butts, R.A.; Schaalje, G.B. Factors affecting chlorpyrifos activity against Russian wheat aphid (Homoptera: Aphididae) in wheat. J. Econ. Entomol. 1996, 89, 1004–1009. [Google Scholar] [CrossRef]
- Marčić, D.; Perić, P.; Prijović, M.; Ogurlić, I. Field and greenhouse evaluation of rapeseed spray oil against spider mites, green peach aphid and pear psylla in Serbia. Bull. Insectol. 2009, 62, 159–167. [Google Scholar]
- Shafiei, F.; Ahmadi, K.; Asadi, M. Evaluation of systemic effects of four plant extracts compared with two systemic pesticides, acetamiprid and pirimicarb through leaf spraying against Brevicoryne brassicae L. (Hemiptera: Aphididae). J. Plant Prot. Res. 2018, 58, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.V.; Kuttalam, S.; Srinivasan, T. Bioefficacy of a new insecticide spirotetramat 150 OD against cotton aphid Aphis gossypii (Glover). Madras Agric. J. 2008, 95, 1. [Google Scholar]
- Kumar, B.V.; Kuttalam, S.; Chandrasekaran, S. Efficacy of a new insecticide spirotetramat against cotton whitefly. Pestic. Res. J. 2009, 21, 45–48. [Google Scholar]
- Kuhar, T.P.; Hélène, D. Evaluation of foliar insecticides for the control of green peach aphids in cabbage in virginia, 2009. Arthropod Manag. Tests 2010, 35, E4. [Google Scholar] [CrossRef]
- Arnaudov, V.; Petkova, R. Spirotetramat (Movento®): New systemic insecticide for control of green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphidae) on peach. Bulg. J. Agric. Sci. 2020, 26, 431–434. [Google Scholar]
- Palumbo, J.C. Evaluation of flonicamid and acetamiprid for aphid control in head lettuce, spring 2005. Arthropod Manag. Tests 2006, 31, E31. [Google Scholar] [CrossRef]
- Jiang, H.; Tian, Y.; Yan, W.; Chen, J.; Zhang, Z.; Xu, H. Drip chemigation of flonicamid effectively controls cotton aphid (Aphis gossypii) and is benign to lady beetle (Coccinella septempunctata) and lacewing larva (Chrysoperla sinica). Crop Prot. 2020, 129, 105039. [Google Scholar] [CrossRef]
Population | Site of Collection | Coordinates | Date of Collection | Host Plants |
---|---|---|---|---|
DHB | Al-Dhabia | 24.104548° N, 47.157080° E | 30 February 2022 | Cabbage |
RAF | Al-Rafaa | 24.322324° N, 47.113050° E | 30 February 2022 | Pepper |
DWS | Wadi Al-Dawasir | 20.392839° N, 44.828053° E | 6 February 2022 | Mallow |
DRH | Diriyah | 24.744491° N, 46.573820° E | 24 February 2022 | Spinach |
HAY | Al-Hayer | 24.395558° N, 46.757219° E | 27 February 2022 | Mallow |
WSH | Al-Washlah | 24.397439° N, 46.665039° E | 10 March 2022 | Eggplant |
NKL | Al-Nakhil | 24.724732° N, 46.616787° E | 25 March 2022 | Eggplant |
Common Name | Trade Name (%F) | Field Rate | Manufacturer | IRAC Group | IRAC Mode of Action |
---|---|---|---|---|---|
Fosthiazate | Thiafos (50EC) | 200 mL/100 L | Astrachem, Dammam, Saudi Arabia | 1B, Organophosphates | Acetylcholinesterase (ACHE) inhibitors |
Fenitrothion | Fentrol (50EC) | 100 mL/100 L | Pioneers Chemicals Factory Co., Riyadh, Saudi Arabia | 1B, Organophosphates | Acetylcholinesterase (ACHE) inhibitors |
Bifenthrin | Bytop (10EC) | 50 mL/100 L | Montajat Veterinary pharmaceutical Co., Dammam, Saudi Arabia | 3A, Pyrethroids | Sodium channel modulators |
Spirotetramat | Movento (10SC) | 60 mL/100 L | Bayer Crop Sciences, Leverkusen, Germany | 23, Tetramic Acids | Inhibitors of acetyl COA carboxylase |
Afidopyropen | Sefina (4.89DC) | 22.2 mL/100 L | BASF Corporation, Florham Park, NJ, USA | 9D, Pyropenes | Chordotonal organ TRPV channel modulators |
Flonicamid | Flonicamid (50WG) | 30 g/100 L | ISK Biosciences, Painesville, OH, USA | 29, Flonicamids | Chordotonal organ nicotinamidase inhibitors |
Acetamiprid | Acetaplan (20SL) | 50 mL/100 L | Astrachem, Dammam, Saudi Arabia | 4A, Neonicotinoids | Nicotinic acetylcholine receptor (NACHR) competitive modulators |
Insecticide | Population | N | Conc. (mg/L) | LC50 (95% FL) (mg/L) | Fit of Probit Line | RR (95% CL) | |||
---|---|---|---|---|---|---|---|---|---|
Slope ± SE | χ2 | df | p | ||||||
Bifenthrin | SS | 350 | 0.03–1 | 0.04 (0.03–0.06) | 1.54 ± 0.22 | 2.40 | 4 | 0.66 | 1.00 |
DHB | 350 | 0.25–8 | 0.86 (0.54–1.25) * | 1.62 ± 0.18 | 5.42 | 4 | 0.25 | 21.50 (13.00–32.43) ǂ | |
RAF | 350 | 0.25–8 | 0.60 (0.38–0.86) * | 1.56 ± 0.19 | 4.04 | 4 | 0.40 | 15.00 (9.03–23.37) ǂ | |
DWS | 350 | 0.25–8 | 0.82 (0.49–1.22) * | 1.74 ± 0.21 | 4.98 | 4 | 0.29 | 20.50 (12.25–31.62) ǂ | |
DRH | 350 | 0.13–4 | 0.41 (0.19–0.69) * | 1.65 ± 0.20 | 8.51 | 4 | 0.07 | 10.25 (6.12–15.80) ǂ | |
HAY | 350 | 0.06–2 | 0.20 (0.15–0.25) * | 1.68 ± 0.19 | 3.72 | 4 | 0.45 | 5.00 (2.99–7.46) ǂ | |
WSH | 350 | 0.03–1 | 0.12 (0.08–0.16) * | 1.83 ± 0.24 | 3.80 | 4 | 0.43 | 3.00 (1.73–4.64) ǂ | |
NKL | 350 | 0.06–2 | 0.20 (0.11–0.31) * | 1.67 ± 0.22 | 4.16 | 4 | 0.38 | 5.00 (2.94–8.06) ǂ | |
Fenitrothion | SS | 350 | 0.01–0.31 | 0.024 (0.02–0.03) | 1.82± 0.21 | 3.06 | 4 | 0.55 | 1.00 |
DHB | 350 | 0.16–5 | 0.60 (0.11–0.33) * | 1.70 ± 0.19 | 3.26 | 4 | 0.52 | 25.31 (17.87–35.85) ǂ | |
RAF | 350 | 0.16–5 | 0.41 (0.30–0.53) * | 2.03 ± 0.25 | 3.09 | 4 | 0.54 | 17.38 (12.04–25.10) ǂ | |
DWS | 350 | 0.08–2.50 | 0.27 (0.11–0.47) * | 1.79 ± 0.23 | 8.23 | 4 | 0.08 | 11.63 (7.94–17.03) ǂ | |
DRH | 350 | 0.04–1.25 | 0.10 (0.06–0.15) * | 1.56 ± 0.18 | 4.69 | 4 | 0.32 | 4.34 (3.03–6.21) ǂ | |
HAY | 350 | 0.08–2.50 | 0.16 (0.11–0.22) * | 1.62 ± 0.21 | 3.55 | 4 | 0.47 | 6.92 (4.64–10.32) ǂ | |
WSH | 350 | 0.04–1.25 | 0.13 (0.10–0.16) * | 2.01 ± 0.22 | 2.92 | 4 | 0.57 | 5.39 (3.87–7.50) ǂ | |
NKL | 350 | 0.04–1.25 | 0.07 (0.05–0.10) * | 1.62 ± 0.22 | 2.66 | 4 | 0.62 | 3.13 (2.05–4.79) ǂ | |
Fosthiazate | SS | 350 | 0.01–0.125 | 0.01 (0.006–0.012) | 1.75 ± 0.27 | 3.33 | 4 | 0.50 | 1.00 |
DHB | 350 | 0.06–2 | 0.20 (0.11–0.33) * | 1.59 ± 0.18 | 8.00 | 4 | 0.09 | 20.00 (14.26–31.62) ǂ | |
RAF | 350 | 0.06–2 | 0.15 (0.09–0.21) * | 1.66 ± 0.20 | 4.86 | 4 | 0.30 | 15.00 (10.20–22.97) ǂ | |
DWS | 350 | 0.06–2 | 0.17 (0.07–0.30) * | 1.42 ± 0.18 | 9.77 | 4 | 0.04 | 17.00 (11.57–26.97) ǂ | |
DRH | 350 | 0.03–1 | 0.07 (0.04–0.11) * | 1.43 ± 0.18 | 5.27 | 4 | 0.26 | 7.00 (4.67–11.16) ǂ | |
HAY | 350 | 0.06–2 | 0.14 (0.08–0.21) * | 1.77 ± 0.20 | 5.86 | 4 | 0.21 | 14.00 (9.49–21.54) ǂ | |
WSH | 350 | 0.01–0.25 | 0.03 (0.02–0.05) * | 1.92 ± 0.23 | 5.66 | 4 | 0.23 | 3.00 (2.16–4.74) ǂ | |
NKL | 350 | 0.01–0.25 | 0.03 (0.02–0.04) * | 1.75 ± 0.21 | 4.40 | 4 | 0.35 | 3.00 (1.80–3.90) ǂ |
Insecticide | Population | N | Conc. (mg/L) | LC50 (95% FL) (mg/L) | Fit of Probit Line | RR (95% CL) | |||
---|---|---|---|---|---|---|---|---|---|
Slope ± SE | χ2 | df | p | ||||||
Acetamiprid | SS | 350 | 0.01–0.10 | 0.02 (0.01–0.02) | 2.38 ± 0.29 | 5.14 | 4 | 0.27 | 1.00 |
DHB | 350 | 0.09–3 | 0.29 (0.16–0.46) * | 1.46 ± 0.18 | 6.15 | 4 | 0.19 | 14.50 (14.23–6.78) ǂ | |
RAF | 350 | 0.09–3 | 0.20 (0.08–0.34) * | 1.38 ± 0.18 | 7.34 | 4 | 0.12 | 10.00 (9.51–19.50) ǂ | |
DWS | 350 | 0.09–3 | 0.18 (0.09–0.29) * | 1.43 ± 0.18 | 5.68 | 4 | 0.22 | 9.00 (8.61–17.74) ǂ | |
DRH | 350 | 0.05–1.5 | 0.11 (0.07–0.16) * | 1.68 ± 0.20 | 4.29 | 4 | 0.37 | 5.50 (5.72–10.49) ǂ | |
HAY | 350 | 0.05–1.5 | 0.13 (0.09–0.19) * | 1.63 ± 0.19 | 4.61 | 4 | 0.33 | 6.50 (6.71–12.23) ǂ | |
WSH | 350 | 0.01–0.38 | 0.04 (0.03–0.05) * | 1.80 ± 0.21 | 3.22 | 4 | 0.52 | 2.00 (1.82–3.47) ǂ | |
NKL | 350 | 0.02–0.75 | 0.07 (0.05–0.09) * | 1.84 ± 0.21 | 3.17 | 4 | 0.53 | 3.50 (3.57–6.58) ǂ | |
Spirotetramat | SS | 350 | 0.04–1.25 | 0.08 (0.06–0.11) | 1.46 ± 0.19 | 3.86 | 4 | 0.43 | 1.00 |
DHB | 350 | 0.16–5 | 0.53 (0.23–0.95) * | 1.42 ± 0.17 | 9.93 | 4 | 0.04 | 6.63 (4.20–9.53) ǂ | |
RAF | 350 | 0.16–5 | 0.43 (0.33–0.54) * | 1.66 ± 0.19 | 3.46 | 4 | 0.48 | 5.38 (3.48–7.69) ǂ | |
DWS | 350 | 0.16–5 | 0.36 (0.15–0.60) * | 1.34 ± 0.18 | 7.13 | 4 | 0.13 | 4.50 (2.77–6.74) ǂ | |
DRH | 350 | 0.04–1.25 | 0.10 (0.06–0.16) | 1.47 ± 0.19 | 4.99 | 4 | 0.29 | 1.25 (0.80–1.91) | |
HAY | 350 | 0.04–1.25 | 0.12 (0.07–0.18) | 1.61 ± 0.19 | 6.14 | 4 | 0.19 | 1.50 (0.95–2.10) | |
WSH | 350 | 0.02–0.63 | 0.06 (0.03–0.10) | 1.49 ± 0.20 | 5.75 | 4 | 0.22 | 0.75 (0.46–1.16) | |
NKL | 350 | 0.04–1.25 | 0.11 (0.07–0.15) | 1.62 ± 0.19 | 4.79 | 4 | 0.31 | 1.38 (0.85–1.90) | |
Afidopyropen | SS | 350 | 0.01–0.25 | 0.03 (0.02–0.04) | 1.66 ± 0.20 | 4.92 | 4 | 0.30 | 1.00 |
DHB | 350 | 0.02–0.50 | 0.06 (0.04–0.08) | 1.89 ± 0.20 | 6.65 | 4 | 0.16 | 2.00 (1.59–3.01) ǂ | |
RAF | 350 | 0.02–0.50 | 0.05 (0.03–0.08) | 1.79 ± 0.22 | 6.18 | 4 | 0.19 | 1.67 (1.36–2.84) | |
DWS | 350 | 0.02–0.50 | 0.05 (0.03–0.07) | 1.72 ± 0.20 | 5.36 | 4 | 0.25 | 1.67 (1.33–2.60) | |
DRH | 350 | 0.01–0.25 | 0.02 (0.01–0.04) | 1.37 ± 0.19 | 6.86 | 4 | 0.14 | 0.67 (0.57–1.24) | |
HAY | 350 | 0.02–0.50 | 0.06 (0.04–0.08) | 1.96 ± 0.21 | 5.51 | 4 | 0.24 | 2.00 (1.61–3.11) ǂ | |
WSH | 350 | 0.01–0.25 | 0.02 (0.01–0.03) | 1.48 ± 0.20 | 4.81 | 4 | 0.31 | 0.67 (0.53–1.12) | |
NKL | 350 | 0.01–0.25 | 0.03 (0.02–0.04) | 1.71 ± 0.20 | 4.96 | 4 | 0.29 | 1.00 (0.74–1.45) | |
Flonicamid | SS | 350 | 0.05–1.50 | 0.16 (0.07–0.27) | 1.48 ± 0.19 | 7.41 | 4 | 0.12 | 1.00 |
DHB | 350 | 0.09–3 | 0.27 (0.16–0.40) | 1.49 ± 0.18 | 5.14 | 4 | 0.27 | 1.72 (1.13–2.62) | |
RAF | 350 | 0.09–3 | 0.22 (0.13–0.31) | 1.66 ± 0.19 | 4.73 | 4 | 0.32 | 1.40 (0.92–2.12) | |
DWS | 350 | 0.09–3 | 0.17 (0.11–0.22) | 1.61 ± 0.21 | 3.49 | 4 | 0.48 | 1.06 (0.67–1.70) | |
DRH | 350 | 0.05–1.50 | 0.24 (0.15–0.29) | 2.15 ± 0.28 | 4.82 | 4 | 0.31 | 1.54 (1.01–2.33) | |
HAY | 350 | 0.05–1.50 | 0.18 (0.10–0.27) | 1.60 ± 0.20 | 4.73 | 4 | 0.32 | 1.13 (0.73–1.74) | |
WSH | 350 | 0.02–0.75 | 0.06(0.03–0.08) | 1.33 ± 0.17 | 6.18 | 4 | 0.19 | 0.38 (0.22–0.55) | |
NKL | 350 | 0.02–0.75 | 0.05 (0.03–0.06) | 1.52 ± 0.18 | 3.14 | 4 | 0.53 | 0.31 (0.20–0.48) |
Treatments | Pre-Application | 1 Day Post-Application | 3 Days Post-Application | 7 Days Post-Application | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | CPD % | EF % | N | CPD % | EF % | N | CPD % | EF % | ||
Control | 283.75 a | 328.25 a | 15.68 | 0 | 364.17 a | 28.34 | 0 | 448 a | 57.89 | 0 |
Spirotetramat | 267.83 abc | 265.08 b | −1.03 | 14.44 | 47.50 d | −82.27 | 86.18 | 12 cd | −95.52 | 97.16 |
Flonicamid | 274.33 ab | 287.33 b | 4.74 | 9.46 | 67.67 c | −75.33 | 80.78 | 60.83 b | −77.83 | 85.96 |
Afidopyropen | 263.67 abc | 286.42 b | 8.63 | 6.10 | 43.33 d | −83.57 | 87.19 | 0 d | −100 | 100 |
Acetamiprid | 246.25 bc | 181 d | −26.50 | 36.46 | 1.42 f | −99.42 | 99.55 | 0 d | −100 | 100 |
Bifenthrin | 260.67 abc | 214.92 c | −17.55 | 28.73 | 21.67 e | −91.69 | 93.52 | 20.08 c | −92.30 | 95.12 |
Fenitrothion | 242.25 c | 115.58 e | −52.29 | 58.76 | 3.67 f | −98.49 | 98.82 | 0 d | −100 | 100 |
Fosthiazate (IA) | 283.58 a | 256.92 b | −9.40 | 21.69 | 95.92 b | −66.18 | 73.65 | 0 d | −100 | 100 |
Fosthiazate (FA) | 286.08 a | 174.17 d | −39.19 | 47.37 | 1.67 f | −99.42 | 99.55 | 0 d | −100 | 100 |
Significance Level | F = 2.53; df = 8; p = 0.015 | F = 34.27; df = 8; p ≤ 0.00001 | F = 333.35; df = 8; p ≤ 0.00001 | F = 611.47; df = 8; p ≤ 0.00001 | ||||||
Treatments | Pre-Application | 10 days post-application | 14 days post-application | 21 days post-application | ||||||
Control | 283.75 a | 517.92 a | 82.53 | 0 | 821.08 a | 189.37 | 0 | 1148.42 a | 304.73 | 0 |
Spirotetramat | 267.83 abc | 1.67 c | −99.38 | 99.66 | 0 c | −100 | 100 | 0 c | −100 | 100 |
Flonicamid | 274.33 ab | 3 c | −98.91 | 99.40 | 0 c | −100 | 100 | 0 c | −100 | 100 |
Afidopyropen | 263.67 abc | 0 c | −100 | 100 | 0 c | −100 | 100 | 0 c | −100 | 100 |
Acetamiprid | 246.25 bc | 0 c | −100 | 100 | 0 c | −100 | 100 | 0 c | −100 | 100 |
Bifenthrin | 260.67 abc | 47.92 b | −81.62 | 89.93 | 87.75 b | −66.34 | 88.37 | 143 b | −45.14 | 86.45 |
Fenitrothion | 242.25 c | 0 c | −100 | 100 | 0 c | −100 | 100 | 0 c | −100 | 100 |
Fosthiazate (IA) | 283.58 a | 0 c | −100 | 100 | 0 c | −100 | 100 | 0 c | −100 | 100 |
Fosthiazate (FA) | 286.08 a | 0 c | −100 | 100 | 0 c | −100 | 100 | 0 c | −100 | 100 |
Significance Level | F = 2.53; df = 8; p = 0.015 | F = 1403.38; df = 8; p ≤ 0.00001 | F = 751.94; df = 8; p ≤ 0.00001 | F = 714.71; df = 8; p ≤ 0.00001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabra, S.G.; Abbas, N.; Hafez, A.M. Evaluation of Insecticide Toxicity and Field Performance Against Myzus persicae (Hemiptera: Aphididae) in Laboratory and Greenhouse Conditions. Agronomy 2025, 15, 280. https://doi.org/10.3390/agronomy15020280
Sabra SG, Abbas N, Hafez AM. Evaluation of Insecticide Toxicity and Field Performance Against Myzus persicae (Hemiptera: Aphididae) in Laboratory and Greenhouse Conditions. Agronomy. 2025; 15(2):280. https://doi.org/10.3390/agronomy15020280
Chicago/Turabian StyleSabra, Safwat G., Naeem Abbas, and Abdulwahab M. Hafez. 2025. "Evaluation of Insecticide Toxicity and Field Performance Against Myzus persicae (Hemiptera: Aphididae) in Laboratory and Greenhouse Conditions" Agronomy 15, no. 2: 280. https://doi.org/10.3390/agronomy15020280
APA StyleSabra, S. G., Abbas, N., & Hafez, A. M. (2025). Evaluation of Insecticide Toxicity and Field Performance Against Myzus persicae (Hemiptera: Aphididae) in Laboratory and Greenhouse Conditions. Agronomy, 15(2), 280. https://doi.org/10.3390/agronomy15020280