Sugar Metabolism and Transport in Response to Drought–Rehydration in Poa pratensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth Conditions and Treatments
2.2. Treatments and Sampling
2.3. Determination of RWC and EL of the Leaves
2.4. Measurement of Sugar Contents
2.5. Determination of Starch Content
2.6. Determination of Enzyme Activity
2.7. Gene Expression Analysis
2.8. Study on the Complementary Absorption of Sugar Substrates by Yeasts PpSWEET1b, -12, and -15 in Poa pratensis
2.9. Yeast Recombinant Vector Plasmids pDRTXa-PpSWEETs for Transport and Absorption of Different Sugar Substrates
2.10. Data Analysis
3. Results
3.1. Physiology Characterization of Poa pratensis Under Drought–Rehydration Treatment
3.2. Physiological Response of Sugar Metabolism of Poa pratensis Under Drought–Rehydration Treatment
3.3. Expression Patterns of Sucrose Metabolism and Transport Genes in Poa pratensis Under Drought–Rehydration Treatment
3.4. Functional Verification of PpSWEET1b, -12, and -15 in Yeast Substrate Absorption Complementarity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Sheen, J. Dynamic and diverse sugar signaling. Curr. Opin. Plant Biol. 2016, 33, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Hennion, N.; Durand, M.; Vriet, C.; Doidy, J.; Maurousset, L.; Lemoine, R.; Pourtau, N. Sugars en route to the roots. transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiol. Plantarum. 2019, 165, 44–57. [Google Scholar] [CrossRef]
- Salmon, Y.; Lintunen, A.; Dayet, A.; Chan, T.; Dewar, R.; Vesala, T.; Holtta, T. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. New Phytol. 2020, 226, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.Y.; Shi, Z.G.; Zhang, Z.B.; Zhang, Y.J.; Li, H. Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regul. 2012, 68, 177–188. [Google Scholar] [CrossRef]
- Ahmad, I.Z. Role of sugars in abiotic stress signaling in plants. In Plant Signaling Molecules; Khan, M.I.R., Reddy, P.S., Ferrante, A., Khan, N.A., Eds.; Woodhead Publishing: Sawston, UK; Elsevier: Amsterdam, The Netherlands, 2019; pp. 207–217. [Google Scholar] [CrossRef]
- Slama, I.; Abdelly, C.; Bouchereau, A.; Flowers, T.; Savoure, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot.-Lond. 2015, 115, 433–447. [Google Scholar] [CrossRef]
- Ayako, N.Y.; Yukinori, Y.; Shigeru, S. The contribution of carbohydrates including raffinose family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage. Plant Signal 2008, 3, 1016–1018. [Google Scholar] [CrossRef]
- Hoermiller, I.I.; Naegele, T.; Augustin, H.; Stutz, S.; Weckwerth, W.; Heyer, A.G. Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana. Plant Physiol. 2017, 40, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sreenivasulu, N.; Harshavardhan, V.T.; Seiler, C.; Sharma, S.; Khalil, Z.N.; Akhunov, E.; Sehgal, S.K.; Roeder, M.S. Delineating the structural, functional and evolutionary relationships of sucrose phosphate synthase gene family II in wheat and related grasses. BMC Plant Biol. 2010, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Turhan, E.; Ergin, S. Soluble sugars and sucrose-metabolizing enzymes related to cold acclimation of sweet cherry cultivars grafted on different rootstocks. Sci. World J. 2012, 2012, 979682. [Google Scholar] [CrossRef] [PubMed]
- Roitsch, T.; Balibrea, M.E.; Hofmann, M.; Proels, R.; Sinha, A.K. Extracellular invertase: Key metabolic enzyme and PR protein. J. Exp. Bot. 2003, 54, 513–524. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Akram, N.A.; Ashraf, M. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 2020, 251, 3. [Google Scholar] [CrossRef]
- Iordachescu, M.; Imai, R. Trehalose biosynthesis in response to abiotic stresses. J. Integr. Plant Biol. 2009, 50, 1223–1229. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Bush, D.R. Carbohydrate export from the leaf: A highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol. 2011, 155, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Q.; Qu, X.Q.; Hou, B.H.; Sosso, D.; Osorio, S.; Fernie, A.R.; Frommer, W.B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 2012, 335, 207–211. [Google Scholar] [CrossRef]
- Jeena, G.S.; Kumar, S.; Shukla, R.K. Structure, evolution and diverse physiological roles of sweet sugar transporters in plants. Plant Mol. Biol. 2019, 100, 351–365. [Google Scholar] [CrossRef]
- Yue, C.; Cao, H.L.; Wang, L.; Zhou, Y.H.; Huang, Y.T.; Hao, X.Y.; Wang, C.; Wang, B.; Yang, Y.J.; Wang, X.C. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Mol. Biol. 2015, 88, 591–608. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.Y.; Han, J.X.; Han, X.X.; Jiang, J. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene 2015, 573, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.J.; Nagy, R.; Chen, H.Y.; Pfrunder, S.; Yu, Y.C.; Santelia, D.; Frommer, W.B.; Martinoia, E. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiol. 2014, 164, 777–789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, J.J.; Wang, M.; Ji, L.H.; Hou, X.; Ma, X.; Ma, H.L. Physiological responses to drought stress in 11 different kentucky bluegrass germplasm and the evaluation of their drought tolerance. Grassl. Turf 2021, 41, 113–121. [Google Scholar] [CrossRef]
- Zhang, R.; Niu, K.J.; Ma, H.L. Identification and expression analysis of the SWEET gene family from Poa pratensis under abiotic stresses. DNA Cell Biol. 2020, 39, 1606–1620. [Google Scholar] [CrossRef]
- Xu, W.; Cui, K.H.; Xu, A.H.; Nie, L.X.; Huang, J.L.; Peng, S.B. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiol. Plant 2015, 37, 9. [Google Scholar] [CrossRef]
- Niu, K.J. The Role of 5-Aminolevulinic Acid on Regulation Mechanism of Photosynthesis in Kentucky Bluegrass Seedlings Under Drought Stress; Gansu Agricultural University: Lanzhou, China, 2018; Available online: https://kns-cnki-net-443.webvpn.las.ac.cn/kns8s/defaultresult/index?crossids=YSTT4HG0%2CLSTPFY1C%2CJUP3MUPD%2CMPMFIG1A%2CWQ0UVIAA%2CBLZOG7CK%2CPWFIRAGL%2CEMRPGLPA%2CNLBO1Z6R%2CNN3FJMUV&korder=SU&kw=The+Role+of+5-Aminolevulinic+Acid+on+Regulation+Mechanism+of+Photosynthesis+in+Kentucky+Bluegrass+Se (accessed on 20 January 2025).
- Li, Y.P. Determination of fructose, glucose and sucrose in tea by high performance liquid chromatography-differential refraction detector. Guangdong Chem. Ind. 2016, 43, 187–188. [Google Scholar]
- Kuai, J.; Liu, Z.; Wang, Y.; Meng, Y.; Chen, B.; Zhao, W.; Zhou, Z.; Oosterhuis, D.M. Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight. Plant Sci. 2014, 223, 79–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Jia, Z.F.; Ma, X.; Ma, H.L.; Zhao, Y.W. Characterising the morphological characters and carbohydrate metabolism of oat culms and their association with lodging resistance. Plant Biol. 2020, 22, 267–276. [Google Scholar] [CrossRef]
- Niu, K.J.; Shi, Y.; Ma, H.L. Selection of candidate reference genes for gene expression analysis in Kentucky bluegrass (Poa pratensis L.) under abiotic stress. Front. Plant Sci. 2017, 8, 193. [Google Scholar] [CrossRef]
- Fuhrmeister, R.; Streubel, J. Functional Analysis of Plant Monosaccharide Transporters Using a Simple Growth Complementation Assay in Yeast. Bio-Protocol 2023, 13, e4733. [Google Scholar] [CrossRef]
- Niu, K.J.; Ma, X.; Liang, G.L.; Ma, H.L.; Jia, Z.F.; Liu, W.H.; Yu, Q.Q. 5-Aminolevulinic acid modulates antioxidant defense systems and miti-gates drought-induced damage in Kentucky bluegrass seedlings. Protoplasma 2017, 254, 2083–2094. [Google Scholar] [CrossRef] [PubMed]
- Muller, B.; Pantin, F.; Gnard, M.; Turc, O.; Freixes, S.; Piques, M.; Gibon, Y. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 2011, 62, 1715–1729. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.L.; Zhao, Q.; Chen, L.R.; Yao, X.D.; Zhang, W.; Zhang, B.; Xie, F.T. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol. Bioch. 2020, 146, 1–12. [Google Scholar] [CrossRef]
- Cuellar-Ortiz, S.M.; Arrieta-Montiel, M.D.; Acosta-Gallegos, J.; Covarrubias, A.A. Relationship between carbohydrate partitioning and drought resistance in common bean. Plant Cell Environ. 2008, 31, 1399–1409. [Google Scholar] [CrossRef]
- Asensi-Fabado, M.A.; Ammon, A.; Sonnewald, U.; Munne-Bosch, S.; Voll, L.M. Tocopherol deficiency reduces sucrose export from salt-stressed potato leaves independently of oxidative stress and symplastic obstruction by callose. J. Exp. Bot. 2015, 66, 957–971. [Google Scholar] [CrossRef]
- Chen, L.Q.; Hou, B.H.; Lalonde, S.; Takanaga, H.; Hartung, M.L.; Qu, X.Q.; Guo, W.J.; Kim, J.G.; Underwood, W.; Chaudhuri, B.; et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 2010, 468, 527–532. [Google Scholar] [CrossRef]
- Valerio, C.; Costa, A.; Marri, L.; Issakidis-Bourguet, E.; Pupillo, P.; Trost, P.; Sparla, F. Thioredoxin-regulated β-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J. Exp. Bot. 2010, 62, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Zanella, M.; Borghi, G.L.; Pirone, C.; Thalmann, M.; Pazmino, D.; Costa, A.; Santelia, D.; Trost, P.; Sparla, F. β-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress. J. Exp. Bot. 2016, 67, 1819–1826. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Sharkey, T.D. The importance of maltose in transitory starch breakdown. Plant Cell Environ. 2006, 29, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, F.; Guy, C.L. β-amylase induction and the protective role of maltose during temperature shock. Plant Physiol. 2004, 135, 1674–1684. [Google Scholar] [CrossRef]
- Crowe, J.H. Trehalose as a “chemical chaperone”: Fact and fantasy. In Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks; Csermely, P., Vigh, L., Eds.; Springer: Cham, Switzerland, 2007. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Song, X.M.; Bartels, D. Sugar metabolism in the desiccation tolerant grass Oropetium thomaeum in response to environmental stresses. Plant Sci. 2018, 270, 30–36. [Google Scholar] [CrossRef]
- Zhang, X.B.; Lei, L.; Lai, J.S.; Zhao, H.M.; Song, W.B. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biol. 2018, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Wu, H.; Huang, W.F.; Song, J.B.; Zhou, Y.; Lin, Y.J. SWEET gene family in Medicago truncatula: Genome-wide identification, expression and substrate specificity analysis. Plants 2019, 8, 338. [Google Scholar] [CrossRef]
- Xuan, Y.H.; Hu, Y.B.; Chen, L.Q.; Sosso, D.; Ducat, D.C.; Hou, B.H.; Frommer, W.B. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proc. Natl. Acad. Sci. USA 2013, 110, E3685–E3694. [Google Scholar] [CrossRef]
- Chandran, D. Co-Option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life 2015, 67, 461–471. [Google Scholar] [CrossRef]
- Yuan, M.; Zhao, J.; Huang, R.; Li, X.; Xiao, J.; Wang, S. Rice MtN3/saliva/SWEET gene family: Evolution, expression profiling, and sugar transport. J. Integr. Plant Biol. 2014, 56, 559–570. [Google Scholar] [CrossRef] [PubMed]
Sugar | The Peak Time (min) | Regression Equation | Correlation Coefficient |
---|---|---|---|
fructose | 6.977 | Y = 153131X + 6412.4 | 0.9941 |
glucose | 8.073 | Y = 244296X + 1171.9 | 0.9965 |
sucrose | 10.758 | Y = 186365X − 6125.6 | 0.9952 |
maltose | 12.353 | Y = 141191X + 1959.7 | 0.9967 |
trehalose | 13.309 | Y = 176065X + 2595.7 | 0.9946 |
Indicators | Treatment | 6 d | 12 d | R1 d | R5 d |
---|---|---|---|---|---|
RWC | BM-CK | 0.93 ± 0.016 a | 0.93 ± 0.013 a | 0.86 ± 0.011 a | 0.88 ± 0.04 ab |
BM-T | 0.80 ± 0.015 b | 0.31 ± 0.013 c | 0.72 ± 0.013 b | 0.81 ± 0.01 b | |
10-202-CK | 0.89 ± 0.008 a | 0.88 ± 0.039 a | 0.86 ± 0.001 a | 0.89 ± 0.015 a | |
10-202-T | 0.88 ± 0.027 a | 0.52 ± 0.023 b | 0.70 ± 0.039 b | 0.82 ± 0.005 ab | |
EL | BM-CK | 0.08 ± 0.005 c | 0.08 ± 0.004 c | 0.07 ± 0.002 d | 0.09 ± 0.002 c |
BM-T | 0.17 ± 0.004 a | 0.29 ± 0.017 a | 0.18 ± 0.01 a | 0.12 ± 0.005 a | |
10-202-CK | 0.09 ± 0.006 c | 0.09 ± 0.008 c | 0.09 ± 0.007 c | 0.09 ± 0.003 c | |
10-202-T | 0.13 ± 0.004 b | 0.18 ± 0.006 b | 0.15 ± 0.005 b | 0.10 ± 0.001 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Zhang, R.; Li, X.; Dong, D.; Wang, S. Sugar Metabolism and Transport in Response to Drought–Rehydration in Poa pratensis. Agronomy 2025, 15, 320. https://doi.org/10.3390/agronomy15020320
Yu J, Zhang R, Li X, Dong D, Wang S. Sugar Metabolism and Transport in Response to Drought–Rehydration in Poa pratensis. Agronomy. 2025; 15(2):320. https://doi.org/10.3390/agronomy15020320
Chicago/Turabian StyleYu, Jiangdi, Ran Zhang, Xiaoxia Li, Di Dong, and Sining Wang. 2025. "Sugar Metabolism and Transport in Response to Drought–Rehydration in Poa pratensis" Agronomy 15, no. 2: 320. https://doi.org/10.3390/agronomy15020320
APA StyleYu, J., Zhang, R., Li, X., Dong, D., & Wang, S. (2025). Sugar Metabolism and Transport in Response to Drought–Rehydration in Poa pratensis. Agronomy, 15(2), 320. https://doi.org/10.3390/agronomy15020320