Effect of Peanut Intercropping on Arsenic Uptake and Remediation Efficiency of Plants in Arsenic-Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site and Basic Physical and Chemical Properties of Soil
2.2. Field Trial Design and Yield Measurement
2.3. Sample Collection and Analysis
2.3.1. Plant Sample Analysis
2.3.2. Soil Sample Analysis
2.4. Data Calculation and Statistical Analysis
2.4.1. Data Calculation
- (1)
- Total As accumulation
- (2)
- Bioaccumulation Factor (BCF)
- (3)
- Transfer factor (TF)
- (4)
- Land equivalent ratio (LER)
- (5)
- Metal removal equivalent ratio (MRER)
2.4.2. Statistics and Analysis
3. Results
3.1. Biomass and Yield
3.2. Arsenic Content in Various Parts of Crops
3.3. Total Arsenic Accumulation in Plants
3.4. TF and BCF
3.5. The pH and Eh of Rhizosphere Soil
3.6. Different As Species of Rhizosphere Soil
3.7. Correlation Analysis
4. Discussion
4.1. Effects of Intercropping on Plant Growth and Arsenic Accumulation
4.2. Impact of Soil Physicochemical Properties on Arsenic Uptake by Plants
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pawar, A.; Singh, S.; Ramamurthy, P.C.; Anil, A.G.; Shehata, N.; Dhanjal, D.S.; Naik, T.S.S.K.; Parihar, P.; Prasad, R.; Singh, J. Toxicity, Environmental Monitoring and Removal Strategies of Arsenic. Int. J. Environ. Res. 2022, 16, 66. [Google Scholar] [CrossRef]
- Mohammed Abdul, K.S.; Jayasinghe, S.S.; Chandana, E.P.S.; Jayasumana, C.; De Silva, P.M.C.S. Arsenic and human health effects: A review. Environ. Toxicol. Pharmacol. 2015, 40, 828–846. [Google Scholar] [CrossRef]
- Tang, Z.; Zhao, F.-J. The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2449–2484. [Google Scholar] [CrossRef]
- Sevak, P.; Pushkar, B. Arsenic pollution cycle, toxicity and sustainable remediation technologies: A comprehensive review and bibliometric analysis. J. Environ. Manag. 2024, 349, 119504. [Google Scholar] [CrossRef]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.S.; Salve, A.R.; Chauhan, S. Peanuts as functional food: A review. J. Food Sci. Technol. 2016, 53, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Liu, Y.; Zhao, M.; Ren, J.; Yang, B. Enzymatic hydrolysis and their effects on conformational and functional properties of peanut protein isolate. Food Chem. 2011, 127, 1438–1443. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Ramprasath, V.R.; Jones, P.J. Anticancer effects of phytosterols. Eur. J. Clin. Nutr. 2009, 63, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wang, B.; Hu, Z.; Yang, H. Mechanism and Experiment of Full-Feeding Tangential-Flow Picking for Peanut Harvesting. Agriculture 2022, 12, 1448. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, L.; Cai, D.; Zhang, C.; Zhao, S. Risk assessment on dietary exposure to aflatoxin B1, heavy metals and phthalates in peanuts, a case study of Shandong province, China. J. Food Compos. Anal. 2023, 120, 105359. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Li, X.; Zhang, Z.; Chen, Z.; Ren, D.; Zhang, S. Ecological and health risk assessments of heavy metals and their accumulation in a peanut-soil system. Environ. Res. 2024, 252, 118946. [Google Scholar] [CrossRef] [PubMed]
- Onakpa, M.M.; Njan, A.A.; Kalu, O.C. A Review of Heavy Metal Contamination of Food Crops in Nigeria. Ann. Glob. Health 2018, 84, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Su, M.-Y.; Chen, Y.-H.; Lin, F.-F.; Luo, D.; Gao, S.-F. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environ. Pollut. 2006, 144, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhang, C.; Zhang, X.; Wang, G.; Li, L.; Geng, H.; Liu, Y.; Nie, C. Survey of aflatoxin B1 and heavy metal contamination in peanut and peanut soil in China during 2017–2018. Food Control 2020, 118, 107372. [Google Scholar] [CrossRef]
- Wan, X.; Lei, M.; Chen, T. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci. Total Environ. 2016, 563–564, 796–802. [Google Scholar] [CrossRef]
- Miszczak, E.; Stefaniak, S.; Cembrowska-Lech, D.; Skuza, L.; Twardowska, I. Effect of Adaptation to High Concentrations of Cadmium on Soil Phytoremediation Potential of the Middle European Ecotype of a Cosmopolitan Cadmium Hyperaccumulator Solanum nigrum L. Appl. Sci. 2024, 14, 11808. [Google Scholar] [CrossRef]
- Pan, G.; Wei, Y.; Zhao, N.; Gu, M.; He, B.; Wang, X. Effects of Claroideoglomus etunicatum Fungi Inoculation on Arsenic Uptake by Maize and Pteris vittata L. Toxics 2022, 10, 574. [Google Scholar] [CrossRef]
- Zeng, P.; Guo, Z.; Xiao, X.; Peng, C.; Feng, W.; Xin, L.; Xu, Z. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Sci. Total Environ. 2019, 650, 594–603. [Google Scholar] [CrossRef]
- Chauhan, P.; Mathur, J. Phytoremediation efficiency of Helianthus annuus L. for reclamation of heavy metals-contaminated industrial soil. Environ. Sci. Pollut. Res. Int. 2020, 27, 29954–29966. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Rizvi, H.; Rinklebe, J.; Tsang, D.C.W.; Meers, E.; Ok, Y.S.; Ishaque, W. Phytomanagement of heavy metals in contaminated soils using sunflower: A review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1498–1528. [Google Scholar] [CrossRef]
- Zou, J.; Song, F.; Lu, Y.; Zhuge, Y.; Niu, Y.; Lou, Y.; Pan, H.; Zhang, P.; Pang, L. Phytoremediation potential of wheat intercropped with different densities of Sedum plumbizincicola in soil contaminated with cadmium and zinc. Chemosphere 2021, 276, 130223. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Dai, H.; Skuza, L.; Wei, S. Strengthening role and the mechanism of optimum nitrogen addition in relation to Solanum nigrum L. Cd hyperaccumulation in soil. Ecotoxicol. Environ. Saf. 2019, 182, 109444. [Google Scholar] [CrossRef] [PubMed]
- GB15618-2018; Soil Environmental Quality Risk Management and Control Standards for Soil Pollution on Agricultural Land. Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection: Nanjing, China, 2018.
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D.C. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 2001, 436, 309–323. [Google Scholar] [CrossRef]
- GB2762-2022; National Food Safety Standard Limits for Contaminants in Food. State Administration for Market Regulation: Beijing, China, 2022.
- Jiang, Y.; Khan, M.U.; Lin, X.; Lin, Z.; Lin, S.; Lin, W. Evaluation of maize/peanut intercropping effects on microbial assembly, root exudates and peanut nitrogen uptake. Plant Physiol. Biochem. 2022, 171, 75–83. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, L.; Li, W.; Van Der Werf, W.; Sun, J.; Spiertz, H.; Li, L. Yield advantage and water saving in maize/pea intercrop. Field Crops Res. 2012, 138, 11–20. [Google Scholar] [CrossRef]
- Wevar Oller, A.L.; Vezza, M.E.; Talano, M.A.; Agostini, E. Grain and Forage Legumes in an Arsenic-Polluted Agricultural Scenario. J. Plant Growth Regul. 2023, 42, 5332–5353. [Google Scholar] [CrossRef]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2013, 2, 587. [Google Scholar] [CrossRef] [PubMed]
- Ndayisaba, P.C.; Kuyah, S.; Midega, C.a.O.; Mwangi, P.N.; Khan, Z.R. Intercropping desmodium and maize improves nitrogen and phosphorus availability and performance of maize in Kenya. Field Crops Res. 2021, 263, 108067. [Google Scholar] [CrossRef]
- Ma, L.; Li, Y.; Wu, P.; Zhao, X.; Gao, X.; Chen, X. Recovery growth and water use of intercropped maize following wheat harvest in wheat/maize relay strip intercropping. Field Crops Res. 2020, 256, 107924. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Wu, L.; Luo, X.; Li, N.; Arafat, Y.; Lin, S.; Lin, W. Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems. Int. J. Mol. Sci. 2018, 19, 622. [Google Scholar] [CrossRef]
- Tang, X.; Lim, M.P.; Mcbride, M.B. Arsenic uptake by arugula (Eruca vesicaria L.) cultivars as affected by phosphate availability. Chemosphere 2018, 195, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liang, D.; Li, B.; Wang, W.; Li, H. Remediation effect and mechanism of low-As-accumulating maize and peanut intercropping for safe-utilization of As-contaminated soil. Int. J. Phytoremediation 2023, 25, 1956–1966. [Google Scholar] [CrossRef] [PubMed]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Ghasemi, Z.; Ghaderian, S.M.; Rodríguez-Garrido, B.; Prieto-Fernández, Á.; Kidd, P.S. Plant species-specificity and effects of bioinoculants and fertilization on plant performance for nickel phytomining. Plant Soil. 2018, 425, 265–285. [Google Scholar] [CrossRef]
- Chen, W.; Yang, Y.; Meng, D.; Ying, J.; Huang, H.; Li, H. Luffa cylindrica Intercropping with Semen cassiae-A Production Practice of Improving Land Use in Soil Contaminated with Arsenic. Plants 2022, 11, 3398. [Google Scholar] [CrossRef] [PubMed]
- Duchene, O.; Vian, J.-F.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Amossé, C.; Jeuffroy, M.-H.; David, C. Relay intercropping of legume cover crops in organic winter wheat: Effects on performance and resource availability. Field Crops Res. 2013, 145, 78–87. [Google Scholar] [CrossRef]
- Li, H.; Shen, J.; Zhang, F.; Clairotte, M.; Drevon, J.J.; Le Cadre, E.; Hinsinger, P. Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems. Plant Soil. 2008, 312, 139–150. [Google Scholar] [CrossRef]
- Kang, Z.; Gong, M.; Li, Y.; Chen, W.; Yang, Y.; Qin, J.; Li, H. Low Cd-accumulating rice intercropping with Sesbania cannabina L. reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. Sci. Total Environ. 2021, 800, 149600. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Awan, S.A.; Rizwan, M.; Ali, S.; Zhang, X.; Huang, L. Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: A review. Environ. Pollut. 2021, 286, 117389. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, X.; Mo, Q.; Li, Y.; Meng, D.; Li, H. Intercropping efficiency of Pteris vittata with two legume plants: Impacts of soil arsenic concentrations. Ecotoxicol. Environ. Saf. 2023, 259, 115004. [Google Scholar] [CrossRef]
- Burton, E.D.; Johnston, S.G.; Bush, R.T. Microbial sulfidogenesis in ferrihydrite-rich environments: Effects on iron mineralogy and arsenic mobility. Geochim. Cosmochim. Acta 2011, 75, 3072–3087. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Kanke, Y. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations. Environ. Pollut. 2018, 238, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-S.; Park, J.-H.; Kim, S.-J.; Jeong, H.Y.; Ahn, J.S. Redox transformation of soil minerals and arsenic in arsenic-contaminated soil under cycling redox conditions. J. Hazard. Mater. 2019, 378, 120745. [Google Scholar] [CrossRef] [PubMed]
- Brackhage, C.; Huang, J.H.; Schaller, J.; Elzinga, E.J.; Dudel, E.G. Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.). Sci. Rep. 2014, 4, 4944. [Google Scholar] [CrossRef]
- Pigna, M.; Cozzolino, V.; Caporale, A.G.; Mora, M.D.L.L.; Meo, V.D.; Jara, A.A.; Violante, A. Effects of phosphorus fertilization on arsenic uptake by wheat grown in polluted soils. Soil. Sci. Plant Nutr. 2010, 10, 428–442. [Google Scholar] [CrossRef]
- Várallyay, S.; Bódi, É.; Balla Kovács, A.; Soós, Á.; Mukarram, S.A.; Kovács, B. Arsenic Uptake and Distribution in Green Pea Plants Under Arsenite and Arsenate Treatments. Horticulturae 2024, 10, 1127. [Google Scholar] [CrossRef]
- Ma, J.; Guo, H.; Lei, M.; Zhou, X.; Li, F.; Yu, T.; Wei, R.; Zhang, H.; Zhang, X.; Wu, Y. Arsenic Adsorption and its Fractions on Aquifer Sediment: Effect of pH, Arsenic Species, and Iron/Manganese Minerals. Water Air Soil Pollut. 2015, 226, 260. [Google Scholar] [CrossRef]
- Ke, T.; Zhang, D.; Guo, H.; Xiu, W.; Zhao, Y. Geogenic arsenic and arsenotrophic microbiome in groundwater from the Hetao Basin. Sci. Total Environ. 2022, 852, 158549. [Google Scholar] [CrossRef]
- Xing, M.; Yan, D.; Hai, M.; Zhang, Y.; Zhang, Z.; Li, F. Arsenic Contamination in Sludge and Sediment and Relationship with Microbial Resistance Genes: Interactions and Remediation. Water 2024, 16, 3633. [Google Scholar] [CrossRef]
- Shah, V.; Daverey, A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innovation 2020, 18, 100774. [Google Scholar] [CrossRef]
Treatment | Biomass of Different Parts (g·plant−1) | Yield (g·plot−1) | LER | MRER | ||||
---|---|---|---|---|---|---|---|---|
Root | Stem | Leave | Seed/Fruit | Shell/Flower | ||||
MA | 1.08 ± 0.1 b | 10 ± 0.65 c | 4.94 ± 0.34 c | 28.27 ± 3.12 b | 10.95 ± 1.22 bc | 1130.93 ± 124.88 a | - | - |
AH-A | 1.4 ± 0.11 a | 21.41 ± 2.38 a | 11.36 ± 1.29 a | 25.36 ± 1.78 b | 12.65 ± 2.05 b | 507.2 ± 35.55 c | 1.03 | 1.30 |
AL-A | 1.17 ± 0.11 b | 11.53 ± 1.7 c | 5.56 ± 0.84 ab | 23.9 ± 4.57 b | 9.03 ± 0.83 c | 382.4 ± 73.17 c | 1.70 | 2.11 |
AC-A | 1.39 ± 0.09 a | 17.52 ± 1.05 b | 7.11 ± 1.13 b | 41.52 ± 4.15 a | 18.21 ± 1.54 a | 664.27 ± 66.47 b | 1.17 | 2.26 |
MH | 5.48 ± 0.93 a | 16.14 ± 1.07 a | 11.85 ± 1.67 a | 29.79 ± 5.8 a | 15.93 ± 2.03 a | 1191.47 ± 232.17 a | - | - |
AH-H | 2.96 ± 0.27 b | 10.42 ± 0.79 b | 9.6 ± 1.58 a | 34.48 ± 6.43 a | 9.82 ± 1.5 b | 689.53 ± 128.59 b | - | - |
ML | 0.73 ± 0.16 b | 32.79 ± 1.73 b | 43.62 ± 8.3 a | 9.17 ± 0.6 b | - | 293.5 ± 19.24 b | - | - |
AL-L | 1.06 ± 0.09 a | 42.14 ± 2.29 a | 54.19 ± 9.52 a | 25.02 ± 1.44 a | - | 400.25 ± 22.98 a | - | - |
MC | 7.07 ± 0.91 a | 29.67 ± 4.27 a | 6.41 ± 0.51 a | - | - | 205.01 ± 16.42 a | - | - |
AC-C | 8.44 ± 0.97 a | 26.34 ± 0.99 a | 7.42 ± 1.33 a | - | - | 118.77 ± 21.34 b | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Huang, X.; Li, W.; Huang, P.; Kou, Z.; Li, H. Effect of Peanut Intercropping on Arsenic Uptake and Remediation Efficiency of Plants in Arsenic-Contaminated Soil. Agronomy 2025, 15, 321. https://doi.org/10.3390/agronomy15020321
Li M, Huang X, Li W, Huang P, Kou Z, Li H. Effect of Peanut Intercropping on Arsenic Uptake and Remediation Efficiency of Plants in Arsenic-Contaminated Soil. Agronomy. 2025; 15(2):321. https://doi.org/10.3390/agronomy15020321
Chicago/Turabian StyleLi, Miao, Xingxiu Huang, Wanlin Li, Peiyi Huang, Zhansheng Kou, and Huashou Li. 2025. "Effect of Peanut Intercropping on Arsenic Uptake and Remediation Efficiency of Plants in Arsenic-Contaminated Soil" Agronomy 15, no. 2: 321. https://doi.org/10.3390/agronomy15020321
APA StyleLi, M., Huang, X., Li, W., Huang, P., Kou, Z., & Li, H. (2025). Effect of Peanut Intercropping on Arsenic Uptake and Remediation Efficiency of Plants in Arsenic-Contaminated Soil. Agronomy, 15(2), 321. https://doi.org/10.3390/agronomy15020321