Potential of Manure and Urea Fertilizer on Maize (Zea mays L.) Productivity and Soil Quality in the Northern Highlands of Tanzania
Abstract
:1. Introduction
2. Material and Methods
2.1. Characteristics of the Study Site
2.2. Site Selection, Soil Sampling, and Analysis
2.3. Experimental Layout, Fertilization Treatments, and Field Management
2.4. Plant Data Acquisition and Analysis
2.4.1. Plant Height and Leaf Area per Plant
2.4.2. Plant Yield and Yield Components
2.4.3. Economic Analysis of the Fertilizer Use from Experimental Site
2.5. Soil Analysis After N Fertilization Trial
2.6. Statistical Analysis
3. Results
3.1. Soil Properties After N Fertilizer Amendments
3.2. Effect of N Fertilization on Maize Plant Growth Parameters
3.2.1. Plant Height
3.2.2. Leaf Area
3.3. Effect N Fertilization on Maize Yield
3.3.1. Yield Components
3.3.2. Maize Grain and Stover Yields
3.4. Economic Analysis
4. Discussion
4.1. Soil Properties After N Fertilizer Amendments
4.2. Agronomic Benefits of N Fertilization
4.3. Economic Benefits of N Fertilization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mugi-Ngenga, E.; Zingore, S.; Bastiaans, L.; Anten, N.P.R.; Giller, K.E. Farm-scale assessment of maize–pigeonpea productivity in Northern Tanzania. Nutr. Cycl. Agroecosystems 2021, 120, 177–191. [Google Scholar] [CrossRef]
- Tandzi, L.N.; Mutengwa, C.S. Estimation of Maize (Zea mays L.) Yield Per Harvest Area: Appropriate methods. Agronomy 2020, 10, 29. [Google Scholar] [CrossRef]
- Gebre, G.G.; Mawia, H.; Makumbi, D.; Rahut, D.B. The impact of adopting stress-tolerant maize on maize yield, maize income, and food security in Tanzania. Food Energy Secur. 2021, 10, e313. [Google Scholar] [CrossRef] [PubMed]
- Saidia, P.S.; Asch, F.; Semoka, J.M.; Kimaro, A.A.; Germer, J.; Graef, F.; Lagweni, P.; Kahimba, F.; Chilagane, E.A. Effects of Nitrogen and Phosphorus Micro-Doses on Maize Growth and Yield in a Sub-Humid Tropical Climate. Ann. Biol. Res. 2018, 9, 20–35. [Google Scholar]
- Adamu, U.K.; Mrema, J.P.; Msaky, J.J. Growth Response of Maize (Zea mays L.) to Different Rates of Nitrogen, Phosphorus and Farm Yard Manure in Morogoro Urban District, Tanzania. Am. J. Exp. Agric. 2015, 9, 1–8. [Google Scholar] [CrossRef]
- Baijukya, F.P.; Sabula, L.; Mruma, S.; Mzee, F.; Mtoka, E.; Masigo, J.; Ndunguru, A.; Swai, E. Maize production manual for smallholder farmers in Tanzania. Int. Inst. Trop. Agric. 2020, 32, 1–25. [Google Scholar]
- Munishi, L.K.; Lema, A.A.; Ndakidemi, P.A. Decline in maize and beans production in the face of climate change at Hai District in Kilimanjaro region, Tanzania. Int. J. Clim. Chang. Strateg. Manag. 2015, 7, 17–26. [Google Scholar]
- Mng’ong’o, M.; Munishi, L.K.; Blake, W.; Comber, S.; Hutchinson, T.H.; Ndakidemi, P.A. Soil fertility and land sustainability in Usangu Basin-Tanzania. Heliyon 2021, 7, e07745. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Delaune, T.; Silva, J.V.; van Wijk, M.; Hammond, J.; Descheemaeker, K.; van de Ven, G.; Schut, A.G.; Taulya, G.; Chikowo, R.; et al. Small farms and development in sub-Saharan Africa: Farming for food, for income or for lack of better options? Food Secur. 2021, 13, 1431–1454. [Google Scholar] [CrossRef]
- Ghorbani, M.; Konvalina, P.; Neugschwandtner, R.W.; Kopecký, M.; Amirahmadi, E.; Bucur, D.; Walkiewicz, A. Interaction of Biochar with Chemical, Green and Biological Nitrogen Fertilizers on Nitrogen Use Efficiency Indices. Agronomy 2022, 12, 2106. [Google Scholar] [CrossRef]
- Mdlambuzi, T.; Muchaonyerwa, P.; Tsubo, M.; Moshia, M.E. Nitrogen fertiliser value of biogas slurry and cattle manure for maize (Zea mays L.) production. Heliyon 2021, 7, e07077. [Google Scholar] [CrossRef]
- Jjagwe, J.; Chelimo, K.; Karungi, J.; Komakech, A.J.; Lederer, J. Comparative performance of organic fertilizers in maize (Zea mays L.) growth, yield, and economic results. Agronomy 2020, 10, 69. [Google Scholar] [CrossRef]
- Suntoro, S.; Widijanto, H.; Syamsiyah, J.; Afinda, D.W.; Dimasyuri, N.R.; Triyas, V. Effect of cow manure and dolomite on nutrient uptake and growth of corn (Zea mays L.). Bulg. J. Agric. Sci. 2018, 24, 1020–1026. [Google Scholar]
- Ogunboye, O.I.; Adekiya, A.O.S.; Ewulo, B.; Olayanju, A. Effects of Split Application of Urea Fertilizer on Soil Chemical Properties, Maize Performance and Profitability in Southwest Nigeria. Open Agric. J. 2020, 14, 36–42. [Google Scholar] [CrossRef]
- Aleminew, A.; Alemayehu, M. Soil Fertility Depletion and Its Management Options under Crop Production Perspectives in Ethiopia: A Review. Agric. Rev. 2020, 41, 91–105. [Google Scholar] [CrossRef]
- Ai, Z.; Wang, G.; Liang, C.; Liu, H.; Zhang, J.; Xue, S.; Liu, G.Z. The effects of nitrogen addition on the uptake and allocation of macroand micronutrients in Bothriochloa ischaemum on loess plateau in China. Front. Plant Sci. 2017, 8, 1476. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Sawatzky, S.K.; Thomas, M.; Akin, S.; Zhang, H.; Raun, W.; Arnall, D.B. Nitrogen, Phosphorus, and Potassium Uptake in Rain-Fed Corn as Affected by NPK Fertilization. Agronomy 2023, 13, 1913. [Google Scholar] [CrossRef]
- Kandil, E.E.; Abdelsalam, N.R.; Mansour, M.A.; Ali, H.M.; Siddiqui, M.H. Potentials of organic manure and potassium forms on maize (Zea mays L.) growth and production. Sci. Rep. 2020, 10, 8752. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Liang, L.; Yang, B.; Ding, R.; Nie, J.; Wang, J. Impacts of manure application on soil environment, rainfall use efficiency and crop biomass under dryland farming. Sci. Rep. 2016, 6, 20994. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J.; Pu, S.; Blagodatskaya, E.; Kuzyakov, Y.; Razavi, B.S. Impact of manure on soil biochemical properties: A global synthesis. Sci. Total Environ. 2020, 745, 141003. [Google Scholar] [CrossRef]
- Kimaro, J.; Bogner, C. Water management under traditional farming systems: Practices and limitations of the Mfongo system around Mt. Kilimanjaro. Water Util. J. 2019, 22, 53–64. [Google Scholar]
- Ichinose, Y.; Nishigaki, T.; Kilasara, M.; Shinjo, H.; Funakawa, S. Carbon and nutrient budgets of the Chagga home garden system in the Kilimanjaro highlands, Tanzania. Soil Use Manag. 2023, 39, 1155–1171. [Google Scholar] [CrossRef]
- Ichinose, Y.; Nishigaki, T.; Kilasara, M.; Funakawa, S. Central roles of livestock and land-use in soil fertility of traditional homegardens on Mount Kilimanjaro. Agrofor. Syst. 2020, 94, 1–14. [Google Scholar] [CrossRef]
- Maghimbi, S. Recent Changes in Crop Patterns in the Kilimanjaro Region of Tanzania: The Decline of Coffee and the Rise of Maize and Rice. Afr. Study Monogr. 2007, 35, 73–83. [Google Scholar]
- Lema, A.A.; Munishi, L.K.; Ndakidemi, P.A. Assessing Vulnerability of Food Availability to Climate Change in Hai District, Kilimanjaro Region, Tanzania. Am. J. Clim. Chang. 2014, 3, 261–271. [Google Scholar] [CrossRef]
- Meya Akida, I.; Swennen, R.; Ndakidemi, P.A.; Mtei, K.M.; Merckx, R. Maize stover transfers from maize fields to banana-based agroforestry homegardens and the corresponding nutrient flows in central-northern Tanzania. Front. For. Glob. Chang. 2023, 6, 1131328. [Google Scholar]
- Kangalawe, R.Y.M.; Noe, C.; Tungaraza, F.S.K.; Naimani, G.; Mlele, M. Understanding of Traditional Knowledge and Indigenous Institutions on Sustainable Land Management in Kilimanjaro Region, Tanzania. Open J. Soil Sci. 2014, 4, 469–493. [Google Scholar] [CrossRef]
- Wilson, R.T.; Lewis, J. The Maize Value Chain in Tanzania. A Report from the Southern Highlands Food Systems Programme; FAO: Rome, Italy, 2015; pp. 1–60. [Google Scholar]
- Wang, J.; Liu, G.; Cui, N.; Liu, E.; Zhang, Y.; Liu, D.; Ren, X.; Jia, Z.; Zhang, P. Suitable fertilization can improve maize growth and nutrient utilization in ridge-furrow rainfall harvesting cropland in semiarid area. Front. Plant Sci. 2023, 14, 1198366. [Google Scholar] [CrossRef] [PubMed]
- Cimmyt. Yield and yield components a practical guide for comparing crop managenet practices. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar]
- Cimmyt. From Agronomic Data to Farmers Recommendations. An Economics Training Manual; CIMMYT: México-Veracruz, Mexico, 1988; pp. 1–79. [Google Scholar]
- Otinga, A.N.; Pypers, P.; Okalebo, J.R.; Njoroge, R.; Emong, M.; Six, L.; Vanlauwe, B.; Merckx, R. Partial substitution of phosphorus fertiliser by farmyard manure and its localised application increases agronomic efficiency and profitability of maize production. Field Crops Res. 2013, 140, 32–43. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, F.; Liu, X.; He, Y.; Xu, J.; Brookes, P.C. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China. J. Soils Sediments 2014, 14, 415–422. [Google Scholar] [CrossRef]
- Shetty, P.; Acharya, C.; Veeresh, N. Effect of Urea Fertilizer on the Biochemical Characteristics of Soil. Int. J. Appl. Sci. Biotechnol. 2019, 7, 414–420. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, J.; Vogt, R.D.; Mulder, J.; Wang, Y.; Qian, C.; Wang, J.; Zhang, X. Soil acidification as an additional driver to organic carbon accumulation in major Chinese croplands. Geoderma 2020, 366, 114234. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock manure and the impacts on soil health: A review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Lemke, R.L.; VandenBygaart, A.J.; Campbell, C.A.; Lafond, G.P.; Grant, B. Crop residue removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. Agric. Ecosyst. Environ. 2010, 135, 42–51. [Google Scholar] [CrossRef]
- Christopher, S.F.; Lal, R. Nitrogen management affects carbon sequestration in North American cropland soils. CRC Crit. Rev. Plant Sci. 2007, 26, 45–64. [Google Scholar] [CrossRef]
- Ren, T.; Wang, J.; Chen, Q.; Zhang, F.; Lu, S. The effects of manure and nitrogen fertilizer applications on soil organic carbon and nitrogen in a high-input cropping system. PLoS ONE 2014, 9, e97732. [Google Scholar] [CrossRef]
- Manna, M.C.; Swarup, A.; Wanjari, R.H.; Ravankar, H.N.; Mishra, B.; Saha, M.N.; Singh, Y.V.; Sahi, D.K.; Sarap, P.A. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crops Res. 2005, 93, 264–280. [Google Scholar] [CrossRef]
- Khan, A.U.H.; Iqbal, M.; Islam, K.R. Dairy manure and tillage effects on soil fertility and corn yields. Bioresour. Technol. 2007, 98, 1972–1979. [Google Scholar] [CrossRef]
- Mahmood, F.; Khan, I.; Ashraf, U.; Shahzad, T.; Hussain, S.; Shahid, M.; Ullah, S. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J. Soil Sci. Plant Nutr. 2017, 17, 22–32. [Google Scholar] [CrossRef]
- Butler, T.J.; Han, K.J.; Muir, J.P.; Weindorf, D.C.; Lastly, L. Dairy manure compost effects on corn silage production and soil properties. Agron. J. 2008, 100, 1541–1545. [Google Scholar] [CrossRef]
- Zhao, S.; He, P.; Qiu, S.; Jia, L.; Liu, M.; Jin, J.; Johnston, A.M. Lo ng-term effects of potassium fertilization and straw return on soil potassium levels and crop yields in north-central China. Field Crops Res. 2014, 169, 116–122. [Google Scholar] [CrossRef]
- Du, Y.; Cui, B.; Wang, Z.; Sun, J.; Niu, W. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 2020, 193, 104617. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Fernandez, J.; Tamagno, S.; Zhao, B.; Lemaire, G.; Makowski, D. Does the critical N dilution curve for maize crop vary across genotype x environment x management scenarios?—A Bayesian analysis. Eur. J. Agron. 2021, 123, 126202. [Google Scholar] [CrossRef]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Lashari, A.A. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 209–218. [Google Scholar]
- Gupta, A.; Hussain, N. A critical study on the use, application and effectiveness of organic and inorganic fertilizer. J. Ind. Pollut. Control 2014, 30, 191–193. [Google Scholar]
- Amanullah, H.; Marwat, K.B.; Shah, P.; Maula, N.; Arifullah, S. Nitrogen levels and its time of application influence leaf area, height and biomass of maize planted at low and high density. Pak. J. Bot. 2009, 41, 761–768. [Google Scholar]
- Meya Akida, I.; Swennen, R.; Ndakidemi, P.A.; Mtei, K.M.; Merckx, R. Better Nitrogen Fertilizer Management Improved Mchare Banana Productivity and Profitability in Northern Highlands, Tanzania. Agronomy 2023, 13, 1418. [Google Scholar] [CrossRef]
Parameter | Location | |
---|---|---|
Kwa Sadala | Mungushi | |
Geographical coordinates | 03°18′930″ S 037°10′972″ E | 03°17′935″ S 037°09′279″ E |
Altitudes (m.a.s.l.) | 998 | 1004 |
Soil property | ||
Sand (%) | 32.5 | 34.8 |
Silt (%) | 12.8 | 19.7 |
Clay (%) | 54.7 | 45.5 |
Textural class | Clay | Clay |
Soil pH (1:2.5, water:soil) | 6.67 | 6.62 |
Total N (%) | 0.112 | 0.244 |
OC (%) | 1.19 | 1.93 |
Ext. P (mg kg−1) | 12.6 | 23.2 |
Exch. K cmol+ kg−1 | 0.609 | 0.738 |
Cattle Manure property | Season 1 | Season 2 |
Total N (%) | 1.07 | 1.03 |
Total P (%) | 0.187 | 0.242 |
Total K (%) | 0.563 | 0.625 |
Treatment | Treatment Description |
---|---|
T1 | 0 kg N (control) |
T2 | 25 kg N ha−1 from urea [50% below the recommended N rate (farmers’ practice)] |
T3 | 50 kg N ha−1 from urea (recommended N rate) |
T4 | 75 kg N ha−1 from urea (50% above recommended N rate) |
T5 | 12.5 kg N ha−1 from cattle manure + 12.5 kg N ha−1 from urea (50% below recommended N rate) |
T6 | 25 kg N ha−1 from cattle manure (50%) + 25 kg N ha−1 from urea (50%) (recommended N rate) |
T7 | 50 kg N ha−1 from cattle manure only (recommended N rate), equivalent to 5 t of cattle manure ha−1 |
T8 | 75 kg N ha−1 from cattle manure only (50% above recommended N rate), equivalent to 7.5 t of cattle manure ha−1 |
Treatment | Kwa Sadala | Mungushi | ||||||
---|---|---|---|---|---|---|---|---|
2021 Cropping Season | 2023 Cropping Season | 2021 Cropping Season | 2023 Cropping Season | |||||
Kernels per Cob | 1000 Kernel Weight (kg) | Kernels per Cob | 1000 Kernel Weight (kg) | Kernels per Cob | 1000 Kernel Weight (kg) | Kernels per Cob | 1000 Kernel Weight (kg) | |
T1 | 321 f | 0.281 d | 310 d | 0.272 c | 330 e | 0.280 d | 312 f | 0.272 c |
T2 | 483 b | 0.314 bc | 453 b | 0.291 bc | 433 d | 0.334 bc | 414 e | 0.301 bc |
T3 | 509 a | 0.332 b | 479 ab | 0.310 ab | 537 b | 0.342 ab | 508 bc | 0.321 ab |
T4 | 522 a | 0.363 a | 505 a | 0.333 a | 586 a | 0.361 a | 557 a | 0.343 a |
T5 | 438 c | 0.301 c | 457 b | 0.311 ab | 464 cd | 0.291 d | 481 cd | 0.302 bc |
T6 | 491 b | 0.311 bc | 506 a | 0.322 ab | 498 c | 0.330 bc | 524 b | 0.341 a |
T7 | 345 e | 0.291 c | 376 c | 0.311 ab | 439 d | 0.292 d | 457 d | 0.311 ab |
T8 | 412 d | 0.292 c | 479 ab | 0.310 ab | 460 d | 0.303 d | 474 d | 0.324 ab |
Mean | 438 | 0.309 | 445 | 0.309 | 468 | 0.311 | 466 | 0.311 |
CV | 1.47 | 3.03 | 5.12 | 3.58 | 2.46 | 3.38 | 2.31 | 3.84 |
SED | 5.28 *** | 0.010 *** | 18.6 *** | 0.008 *** | 9.74 *** | 0.011 *** | 8.74 *** | 0.010 *** |
Treatment | Kwa Sadala | Mungushi | ||||||
---|---|---|---|---|---|---|---|---|
2021 Cropping Season | 2023 Cropping Season | 2021 Cropping Season | 2023 Cropping Season | |||||
Grain Yield (t ha−1) | Stover Yield (t ha−1) | Grain Yield (t ha−1) | Stover Yield (t ha−1) | Grain Yield (t ha−1) | Stover Yield (t ha−1) | Grain Yield (t ha−1) | Stover Yield (t ha−1) | |
T1 | 0.923 f | 1.94 d | 0.814 f | 1.85 f | 1.09 e | 2.07 e | 0.961 f | 1.96 f |
T2 | 2.13 de | 3.84 c | 2.00 e | 3.56 e | 2.25 d | 3.97 d | 2.07 e | 4.32 de |
T3 | 3.63 b | 5.30 b | 3.47 b | 5.05 b | 3.85 b | 5.80 b | 3.56 b | 5.22 c |
T4 | 4.21 a | 6.45 a | 4.09 a | 5.98 a | 4.32 a | 6.61 a | 4.04 a | 6.40 a |
T5 | 2.05 e | 3.65 c | 2.40 d | 4.01 cd | 2.64 d | 4.72 d | 2.69 c | 4.91 c |
T6 | 3.47 b | 5.13 b | 3.76 ab | 5.79 ab | 3.62 b | 5.57 bc | 3.95 a | 5.94 b |
T7 | 2.25 d | 3.94 c | 2.63 cd | 3.95 d | 2.37 d | 3.75 d | 2.54 d | 4.04 e |
T8 | 2.58 c | 4.08 c | 2.96 c | 4.29 c | 2.74 c | 4.16 cd | 2.91 c | 4.72 d |
Mean | 2.66 | 4.29 | 2.77 | 4.31 | 2.86 | 4.58 | 2.84 | 4.69 |
CV | 2.41 | 5.70 | 3.78 | 6.49 | 3.71 | 2.74 | 3.47 | 2.28 |
SED | 0.061 *** | 0.208 *** | 0.086 *** | 0.232 *** | 0.104 *** | 0.113 *** | 0.107 *** | 0.112 *** |
N Fertilization Treatment | Total Cost (USD ha−1) | Gross Benefits (USD ha−1) | Net Benefits (USD ha−1) | Benefit–Cost Ratio (USD/USD) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 2023 | Mean | 2021 | 2023 | Mean | 2021 | 2023 | Mean | 2021 | 2023 | Mean | |
T1 | 245 | 245 | 245 | 229 | 283 | 256 | −16 | 38 | 11 | 0.935 | 1.15 | 1.04 |
T2 | 297 | 318 | 308 | 554 | 684 | 619 | 257 | 366 | 311 | 1.87 | 2.15 | 2.01 |
T3 | 331 | 375 | 353 | 1028 | 1271 | 1149 | 697 | 896 | 697 | 3.11 | 3.39 | 3.25 |
T4 | 366 | 431 | 399 | 1197 | 1478 | 1337 | 831 | 1047 | 831 | 3.27 | 3.43 | 3.35 |
T5 | 373 | 383 | 378 | 488 | 587 | 538 | 116 | 204 | 160 | 1.31 | 1.53 | 1.42 |
T6 | 444 | 466 | 455 | 987 | 1201 | 1094 | 544 | 735 | 640 | 2.22 | 2.58 | 2.40 |
T7 | 444 | 444 | 444 | 681 | 822 | 751 | 237 | 378 | 307 | 1.53 | 1.85 | 1.69 |
T8 | 563 | 563 | 563 | 805 | 975 | 890 | 242 | 412 | 327 | 1.43 | 1.73 | 1.58 |
Mean | 829 | 436 | 2.09 | |||||||||
SED (T) | 17.3 *** | 17.3 *** | 0.046 *** | |||||||||
SED (S) | 8.73 *** | 8.68 *** | 0.031 *** | |||||||||
SED (T × S) | 24.5 *** | 24.5 *** | 0.067 ns |
N Fertilization Treatment | Total Cost (USD ha−1) | Gross Benefits (USD ha−1) | Net Benefits (USD ha−1) | Benefit–Cost Ratio (USD/USD) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 2023 | Mean | 2021 | 2023 | Mean | 2021 | 2023 | Mean | 2021 | 2023 | Mean | |
T1 | 253 | 253 | 253 | 273 | 262 | 267 | 20.0 | 9.00 | 14.5 | 1.07 | 1.04 | 1.06 |
T2 | 305 | 336 | 321 | 653 | 755 | 704 | 347 | 420 | 384 | 2.14 | 2.25 | 2.20 |
T3 | 340 | 388 | 364 | 1026 | 1241 | 1134 | 686 | 854 | 770 | 3.02 | 3.20 | 3.11 |
T4 | 375 | 440 | 407 | 1224 | 1417 | 1321 | 850 | 977 | 913 | 3.26 | 3.22 | 3.24 |
T5 | 381 | 392 | 387 | 734 | 941 | 837 | 353 | 549 | 451 | 1.93 | 2.40 | 2.17 |
T6 | 453 | 461 | 457 | 1085 | 1397 | 1241 | 632 | 935 | 784 | 2.40 | 3.03 | 2.72 |
T7 | 453 | 453 | 453 | 687 | 893 | 791 | 235 | 442 | 338 | 1.52 | 1.97 | 1.75 |
T8 | 572 | 572 | 572 | 929 | 1224 | 1077 | 358 | 653 | 505 | 1.62 | 2.14 | 1.88 |
Mean | 921 | 520 | 2.3 | |||||||||
SED (T) | 16.8 *** | 16.8 *** | 0.041 *** | |||||||||
SED (S) | 8.38 *** | 8.38 *** | 0.018 *** | |||||||||
SED (T × S) | 23.8 *** | 23.8 *** | 0.057 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mhoro, L.; Meya, A.I.; Amuri, N.A.; Ndakidemi, P.A.; Njau, K.N.; Mtei, K.M. Potential of Manure and Urea Fertilizer on Maize (Zea mays L.) Productivity and Soil Quality in the Northern Highlands of Tanzania. Agronomy 2025, 15, 333. https://doi.org/10.3390/agronomy15020333
Mhoro L, Meya AI, Amuri NA, Ndakidemi PA, Njau KN, Mtei KM. Potential of Manure and Urea Fertilizer on Maize (Zea mays L.) Productivity and Soil Quality in the Northern Highlands of Tanzania. Agronomy. 2025; 15(2):333. https://doi.org/10.3390/agronomy15020333
Chicago/Turabian StyleMhoro, Lydia, Akida Ignas Meya, Nyambilila Abdallah Amuri, Patrick Alois Ndakidemi, Karoli Nicholas Njau, and Kelvin Mark Mtei. 2025. "Potential of Manure and Urea Fertilizer on Maize (Zea mays L.) Productivity and Soil Quality in the Northern Highlands of Tanzania" Agronomy 15, no. 2: 333. https://doi.org/10.3390/agronomy15020333
APA StyleMhoro, L., Meya, A. I., Amuri, N. A., Ndakidemi, P. A., Njau, K. N., & Mtei, K. M. (2025). Potential of Manure and Urea Fertilizer on Maize (Zea mays L.) Productivity and Soil Quality in the Northern Highlands of Tanzania. Agronomy, 15(2), 333. https://doi.org/10.3390/agronomy15020333