Remote Sensing-Assisted Estimation of Water Use in Apple Orchards with Permanent Living Mulch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Moisture and Groundwater
2.3. Weather Station, Reference, and Actual Evapotranspiration Through the FAO-56 Methodology
2.4. Actual Evapotranspiration from METRIC
2.5. Satellite and UAV Acquisition, Processing, and Ground Measurements for the NDVI
2.6. Model Performance Evaluation: BIAS, RMSE, and Linear Regression Analysis
3. Results
3.1. Meteorological Data
3.2. Soil Water Dynamics
3.3. Crop Coefficients and Growing Period Stages
3.4. Evapotranspiration and Crop Water Use
3.5. NDVI
3.6. Calibration of the RS-Assisted Kc-NDVI Relationship
3.7. Assessment of ETa from RS-Assisted FAO-56
3.8. Crop Yield and Water Productivity
4. Discussion
4.1. Evapotranspiration and Irrigation Water Applied
4.2. Crop Coefficient
4.3. Water Productivity and Crop Yield
4.4. Management of Permanent Living Mulch
4.5. Potential and Challenges of RS for Improving Crop Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 15 September 2024).
- INE. Agricultural Statistics; INE: Lisbon, Portugal, 2021; Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_publicacoes&PUBLICACOESpub_boui=439500127&PUBLICACOESmodo=2 (accessed on 11 October 2024).
- APMA. Specifications—Alcobaça Apple. 2014. Available online: https://tradicional.dgadr.gov.pt/images/prod_imagens/frescos/docs/CE_maca_alcoba%C3%A7a_2021.pdf (accessed on 15 September 2024).
- Paušič, A.; Tojnko, S.; Lešnik, M. Permanent, undisturbed, in-row living mulch: A realistic option to replace glyphosate-dominated chemical weed control in intensive pear orchards. Agric. Ecosyst. Environ. 2021, 318, 107502. [Google Scholar] [CrossRef]
- Tu, A.; Xie, S.; Zheng, H.; Li, H.; Li, Y.; Mo, M. Long-term effects of living grass mulching on soil and water conservation and fruit yield of citrus orchard in south China. Agric. Water Manag. 2021, 252, 106897. [Google Scholar] [CrossRef]
- Hartwig, N.L.; Ammon, H.U. Cover crops and living mulches. Weed Sci. 2002, 50, 688–699. [Google Scholar] [CrossRef]
- Cougnon, M.; Durand, J.-L.; Julier, B.; Barre, P.; Litrico, I. Using perennial plant varieties for use as living mulch for winter cereals: A review. Agron. Sustain. Dev. 2022, 42, 110. [Google Scholar] [CrossRef]
- Brunetto, G.; Oliveira, B.S.; Ambrosini, V.G.; Couto, R.D.R.; Sete, P.B.; dos Santos Junior, E.; Loss, A.; Stefanello da Silva, L.O.; Gatiboni, L.C. Nitrogen availability in an apple orchard with weed management. Cienc. Rural 2018, 48. [Google Scholar] [CrossRef]
- Granatstein, D.; Sanchez, E. Research knowledge and needs for orchard floor management in organic tree fruit systems. Int. J. Fruit Sci. 2009, 9, 257–281. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Y.; Zhao, W. Effects of Living Mulch on Soil Nutrient Leaching and Soil Erosion in Agroecosystems. J. Environ. Manag. 2020, 256, 109963. [Google Scholar]
- Polverigiani, S.; Franzina, M.; Neri, D. Effect of soil condition on apple root development and plant resilience in intensive orchards. Appl. Soil Ecol. 2018, 123, 787–792. [Google Scholar] [CrossRef]
- Tang, M.; Gao, X.; Wu, P.; Li, H.; Zhang, C. Effects of Living Mulch and Branches Mulching on Soil Moisture, Temperature and Growth of Rain-Fed Jujube Trees. Plants 2022, 11, 2654. [Google Scholar] [CrossRef]
- Teasdale, J.R. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric. 1996, 9, 475–479. [Google Scholar] [CrossRef]
- Balmer, O.; Pfiffner, L.; Schied, J.; Willareth, M.; Leimgruber, A.; Luka, H.; Traugott, M. Noncrop flowering plants restore top-down herbivore control in agricultural fields. Ecol. Evol. 2013, 3, 2634–2646. [Google Scholar] [CrossRef]
- Simon, S.; Lesueur-Jannoyer, M.; Plénet, D.; Lauri, P.-É.; Le Bellec, F. Methodology to design agroecological orchards: Learnings from on-station and on-farm experiences. Eur. J. Agron. 2017, 82, 320–330. [Google Scholar] [CrossRef]
- Lipecki, J. Weeds in orchards—Pros and contras. J. Fruit Ornam. Plant Res. 2006, 14, 13–18. [Google Scholar]
- Yvoz, S.; Cordeau, S.; Ploteau, A.; Petit, S. A framework to estimate the contribution of weeds to the delivery of ecosystem (dis)services in agricultural landscapes. Ecol. Indic. 2021, 132, 108321. [Google Scholar] [CrossRef]
- Hammermeister, A.M. Organic Weed Management in Perennial Fruits. Sci. Hortic. 2016, 208, 28–42. [Google Scholar] [CrossRef]
- Licznar-Małańczuk, M. Occurrence of Weeds in an Orchard Due to Cultivation of Long-Term Perennial Living Mulches. Acta Agrobot. 2020, 73, 7326. [Google Scholar] [CrossRef]
- European Commission. Common Agricultural Policy. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/income-support/greening_en (accessed on 11 May 2024).
- Sha, J.; Wang, F.; Xu, X.; Chen, Q.; Zhu, Z.; Jiang, Y.; Ge, S. Studies on the translocation characteristics of 13C-photoassimilates to fruit during the fruit development stage in ‘Fuji’ apple. Plant Physiol. Biochem. 2020, 154, 636–645. [Google Scholar] [CrossRef]
- Lanauskas, J.; Kviklys, D.; Kviklienė, N.; Uselis, N.; Viškelis, P.; Rubauskis, E. Effect of Soil Management on Tree Nutrition and Yield in Apple Organic Orchards. Acta Hortic. 2014, 1058, 175–180. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, X.; Sun, Y.; Zhang, J.; Wu, W.; Liao, Y. Mulching practices altered soil bacterial community structure and improved orchard productivity and apple quality after five growing seasons. Sci. Hortic. 2014, 172, 248–257. [Google Scholar] [CrossRef]
- Ren, J.; Li, F.; Yin, C. Orchard grass safeguards development of fruit industry in China. J. Clean. Prod. 2023, 382, 135291. [Google Scholar] [CrossRef]
- Han, S.; Zhao, J.; Liu, Y.; Xi, L.; Liao, J.; Liu, X.; Su, G. Effects of green manure planting mode on the quality of Korla fragrant pears (Pyrus sinkiangensis Yu). Front. Plant Sci. 2022, 13, 1027595. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Liu, J.; Huang, W. Effects of natural grass on soil microbiology, nutrient and fruit quality of Nanfeng tangerine yard. Acta Hortic. Sin. 2015, 49, 1404–1414. [Google Scholar]
- Muscas, E.; Cocco, A.; Mercenaro, L.; Cabras, M.; Lentini, A.; Porqueddu, C.; Nieddu, G. Effects of vineyard floor cover crops on grapevine vigor, yield, and fruit quality and the development of the vine mealybug under a Mediterranean climate. Agric. Ecosyst. Environ. 2017, 237, 203–212. [Google Scholar] [CrossRef]
- Goyal, S.; Mishra, M.M.; Hooda, I.S.; Singh, R. Organic matter-microbial biomass relationships in field experiments under tropical conditions: Effects of inorganic fertilization and organic amendments. Soil Biol. Biochem. 1992, 24, 1081–1084. [Google Scholar] [CrossRef]
- Bałuszyńska, U.B.; Rowińska, M.; Licznar-Małańczuk, M. Grass Species as Living Mulches—Comparison of Weed Populations and Their Biodiversity in Apple Tree Rows and Tractor Alleys. Acta Agrobot. 2022, 75, 758. [Google Scholar] [CrossRef]
- Graham, P.H.; Vance, C.P. Legumes: Importance and Constraints to Greater Use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Ma, L.; Feng, Q.; Luo, H.; Chen, C.; Wang, S.; Yuan, Y.; Liu, C.; Cao, X.; Li, N. Influence and Role of Fungi, Bacteria, and Mixed Microbial Populations on Phosphorus Acquisition in Plants. Agriculture 2024, 14, 358. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization: Rome, Italy, 1998; ISBN 92-5-104219-5. [Google Scholar]
- Yang, Y.; Feng, Z.; Huang, H.Q.; Lin, Y. Climate-Induced Changes in Crop Water Balance during 1960–2001 in Northwest China. Agric. Ecosyst. Environ. 2008, 127, 107–118. [Google Scholar] [CrossRef]
- Girona, J.; del Campo, J.; Lopez, G.; Mata, M.; Marsal, J. Water Consumption in Lysimeter-Grown Apple and Pear Trees with Different Training Systems. Acta Hortic. 2011, 903, 1181–1186. [Google Scholar] [CrossRef]
- Zanotelli, D.; Montagnani, L.; Andreotti, C.; Tagliavini, M. Evapotranspiration and Crop Coefficient Patterns of an Apple Orchard in a Sub-Humid Environment. Agric. Water Manag. 2019, 226, 105756. [Google Scholar] [CrossRef]
- Moran, M.S.; Jackson, R.D. Assessing the Spatial Distribution of Evapotranspiration Using Remotely Sensed Inputs. J. Environ. Qual. 1991, 20, 725–737. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration Information Reporting: I. Factors Governing Measurement Accuracy. Agric. Water Manag. 2011, 23, 899–920. [Google Scholar] [CrossRef]
- De la Fuente-Sáiz, D.; Ortega-Farías, S.; Fonseca, D.; Ortega-Salazar, S.; Kilic, A.; Allen, R. Calibration of METRIC Model to Estimate Energy Balance over a Drip-Irrigated Apple Orchard. Remote Sens. 2017, 9, 670. [Google Scholar] [CrossRef]
- Raeini-Sarjaz, M.; Rostami, A. Remotely Sensed Measurements of Apple Orchard Actual Evapotranspiration and Plant Coefficient Using MODIS Images and SEBAL Algorithm (Case Study: Ahar Plain, Iran). J. Agric. Meteorol. 2016, 4, 32–43. [Google Scholar]
- Pokorny, J. Evapotranspiration. In Encyclopedia of Ecology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 292–303. [Google Scholar]
- Odhiambo, L.O.; Irmak, S. Evaluation of the Impact of Surface Residue Cover on Single and Dual Crop Coefficient for Estimating Soybean Actual Evapotranspiration. Agric. Water Manag. 2012, 104, 221–234. [Google Scholar] [CrossRef]
- Xing, N.; Huang, W.; Xie, Q.; Shi, Y.; Ye, H.; Dong, Y.; Wu, M.; Sun, G.; Jiao, Q. A Transformed Triangular Vegetation Index for Estimating Winter Wheat Leaf Area Index. Remote Sens. 2020, 12, 16. [Google Scholar] [CrossRef]
- Gupta, H.; Kaur, L.; Asra, M.; Avtar, R.; Reddy, C.S. MODIS NDVI Multi-Temporal Analysis Confirms Farmer Perceptions on Seasonality Variations Affecting Apple Orchards in Kinnaur, Himachal Pradesh. Agriculture 2021, 11, 724. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, G.; Yang, H.; Wu, J.; Lei, L.; Zhao, F.; Fan, L.; Zhao, C. Identification of Apple Orchard Planting Year Based on Spatiotemporally Fused Satellite Images and Clustering Analysis of Foliage Phenophase. Remote Sens. 2020, 12, 1199. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Imran, H.A.; Gianelle, D.; Rocchini, D.; Dalponte, M.; Martín, M.P.; Sakowska, K.; Wohlfahrt, G.; Vescovo, L. VIS-NIR, Red-Edge and NIR-Shoulder Based Normalized Vegetation Indices Response to Co-Varying Leaf and Canopy Structural Traits in Heterogeneous Grasslands. Remote Sens. 2020, 12, 2254. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Li, D.; Zhou, X.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of RGB, Color-Infrared and Multispectral Images Acquired from Unmanned Aerial Systems for the Estimation of Nitrogen Accumulation in Rice. Remote Sens. 2018, 10, 824. [Google Scholar] [CrossRef]
- Rabatel, G.; Gorretta, N.; Labbé, S. Getting Simultaneous Red and Near-Infrared Band Data from a Single Digital Camera for Plant Monitoring Applications: Theoretical and Practical Study. Biosyst. Eng. 2014, 117, 2–14. [Google Scholar] [CrossRef]
- Mirzaee, S.; Mirzakhani Nafchi, A. Monitoring Spatiotemporal Vegetation Response to Drought Using Remote Sensing Data. Sensors 2023, 23, 2134. [Google Scholar] [CrossRef] [PubMed]
- Panek, E.; Gozdowski, D. Analysis of Relationship Between Cereal Yield and NDVI for Selected Regions of Central Europe based on MODIS Satellite Data. Remote Sens. Appl. Soc. Environ. 2020, 17, 100286. [Google Scholar] [CrossRef]
- Ferreira, S.; Sánchez, J.M.; Gonçalves, J.M. A Remote-Sensing-Assisted Estimation of Water Use in Rice Paddy Fields: A Study on Lis Valley, Portugal. Agronomy 2023, 13, 1357. [Google Scholar] [CrossRef]
- Park, J.; Baik, J.; Choi, M. Satellite-Based Crop Coefficient and Evapotranspiration Using Surface Soil Moisture and Vegetation Indices in Northeast Asia. CATENA 2017, 156, 305–314. [Google Scholar] [CrossRef]
- Lei, H.; Yang, D. Combining the Crop Coefficient of Winter Wheat and Summer Maize with a Remotely Sensed Vegetation Index for Estimating Evapotranspiration in the North China Plain. J. Hydrol. Eng. 2014, 19, 243–251. [Google Scholar] [CrossRef]
- Lima, J. Water Requirement and Crop Coefficients of Sorghum in Apodi Plateau. Rev. Bras. Eng. Agríc. Ambient. 2021, 25, 684–688. [Google Scholar] [CrossRef]
- Campos, I.; Neale, C.M.U.; Calera, A.; Balbontín, C.; González-Piqueras, J. Assessing Satellite-Based Basal Crop Coefficients for Irrigated Grapes (Vitis vinifera L.). Agric. Water Manag. 2010, 98, 45–54. [Google Scholar] [CrossRef]
- Moreno, R.; Arias, E.; Sánchez, J.L.; Cazorla, D.; Garrido, J.; Gonzalez-Piqueras, J. HidroMORE 2: An Optimized and Parallel Version of HidroMORE. In Proceedings of the 2017 8th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 4–6 April 2017; pp. 1–6. [Google Scholar]
- Sánchez, N.; Martínez-Fernández, J.; Calera, A.; Torres, E.; Pérez-Gutiérrez, C. Combining Remote Sensing and In Situ Soil Moisture Data for the Application and Validation of a Distributed Water Balance Model (HIDROMORE). Agric. Water Manag. 2010, 98, 69–78. [Google Scholar] [CrossRef]
- Garrido-Rubio, J.; Sanz, D.; González-Piqueras, J. Application of a Remote Sensing-Based Soil Water Balance for the Accounting of Groundwater Abstractions in Large Irrigation Areas. Irrig. Sci. 2019, 37, 709–724. [Google Scholar] [CrossRef]
- Garrido-Rubio, J.; Calera, A.; Arellano, I.; Belmonte, M.; Fraile, L.; Ortega, T.; Bravo, R.; González-Piqueras, J. Evaluation of Remote Sensing-Based Irrigation Water Accounting at River Basin District Management Scale. Remote Sens. 2020, 12, 3187. [Google Scholar] [CrossRef]
- Garrido-Rubio, J.; González-Piqueras, J.; Campos, I.; Osann, A.; González-Gómez, L.; Calera, A. Remote Sensing–Based Soil Water Balance for Irrigation Water Accounting at plot and Water User Association Management Scale. Agric. Water Manag. 2020, 238, 106236. [Google Scholar] [CrossRef]
- Garrido-Rubio, J.; González-Piqueras, J.; Calera, A.; Osann, A. Remote Sensing-Based Green and Blue Agricultural Water Footprint Estimation at the River Basin Scale. Ecol. Indic. 2024, 167, 112643. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Campar, A.; Gama, A.; Cunha, L.; Jacinto, R.; Boura, I.; Medeiros, J.; Brandão, J. The Lis River Watershed—Contribution to the Study of Territory Organization and Environmental Problems; Câmara Municipal de Leiria, CCDR-Centro: Coimbra, Portugal, 1989. (In Portuguese) [Google Scholar]
- Ferreira, S.; Oliveira, F.; Gomes da Silva, F.; Teixeira, M.; Gonçalves, M.; Eugénio, R.; Damásio, H.; Gonçalves, J.M. Assessment of Factors Constraining Organic Farming Expansion in Lis Valley, Portugal. AgriEngineering 2020, 2, 111–127. [Google Scholar] [CrossRef]
- CLIMATE-DATA.ORG. Clima Leiria. Available online: https://pt.climate-data.org/europa/portugal/leiria/leiria-140/ (accessed on 27 November 2024).
- Gonçalves, J.M.; Ferreira, S.; Nunes, M.; Eugénio, R.; Amador, P.; Filipe, O.; Duarte, I.M.; Teixeira, M.; Vasconcelos, T.; Oliveira, F.; et al. Developing Irrigation Management at District Scale Based on Water Monitoring: Study on Lis Valley, Portugal. AgriEngineering 2020, 2, 78–95. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Nunes, M.; Ferreira, S.; Jordão, A.; Paixão, J.; Eugénio, R.; Russo, A.; Damásio, H.; Duarte, I.M.; Bahcevandziev, K. Alternate Wetting and Drying in the Center of Portugal: Effects on Water and Rice Productivity and Contribution to Development. Sensors 2022, 22, 3632. [Google Scholar] [CrossRef] [PubMed]
- Doorenbos, J.; Pruitt, W.O. Crop Water Requirements; Irrigation and Drainage Paper No. 24; FAO: Rome, Italy, 1997. [Google Scholar]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. J. Irrig. Drain. Eng. 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Laounia, N.; Abderrahmane, H.; Abdelkader, K.; Zahira, S.; Mansour, Z. Evapotranspiration and Surface Energy Fluxes Estimation Using the Landsat-7 Enhanced Thematic Mapper Plus Image over a Semiarid Agrosystem in the North-West of Algeria. Rev. Bras. Meteorol. 2017, 32, 691–702. [Google Scholar] [CrossRef]
- IPMA. Resumo Climatológico, Ano 2019; IPMA: Lisbon, Portugal, 2019; Available online: https://www.ipma.pt/pt/publicacoes/boletins.jsp?cmbDep=cli&cmbTema=pcl&cmbAno=2019&idDep=cli&idTema=pcl&curAno=20 (accessed on 15 May 2024). (In Portuguese)
- IPMA. Resumo Climatológico, Ano 2020; IPMA: Lisbon, Portugal, 2020; Available online: https://www.ipma.pt/pt/publicacoes/boletins.jsp?cmbDep=cli&cmbTema=pcl&cmbAno=2020&idDep=cli&idTema=pcl&curAno=20 (accessed on 15 May 2024). (In Portuguese)
- IPMA. Resumo Climatológico, Ano 2021; IPMA: Lisbon, Portugal, 2021; Available online: https://www.ipma.pt/pt/publicacoes/boletins.jsp?cmbDep=cli&cmbTema=pcl&cmbAno=2021&idDep=cli&idTema=pcl&curAno=20 (accessed on 15 May 2024). (In Portuguese)
- Maas, E.V.; Hoffman, G.J. Crop Salt Tolerance–Current Assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Ucar, Y.; Kocięcka, J.; Liberacki, D.; Rolbiecki, R. Analysis of crop water requirements for apple using dependable rainfall. Atmosphere 2023, 14, 99. [Google Scholar] [CrossRef]
- Dragoni, D.; Lakso, A.N.; Piccioni, R.M. Transpiration of apple trees in a humid climate using heat pulse sap flow gauges calibrated with whole-canopy gas exchange chambers. Agric. For. Meteorol. 2005, 130, 85–94. [Google Scholar] [CrossRef]
- Ebel, R.C.; Proebsting, E.L.; Evans, R.G. Deficit irrigation to control vegetative growth in apple and its effect on yield and fruit quality. J. Am. Soc. Hortic. Sci. 1995, 120, 571–578. [Google Scholar]
- Naor, A. Irrigation and crop load influence fruit size and water relations in field-grown ‘Golden Delicious’ apple. J. Am. Soc. Hortic. Sci. 2001, 126, 546–550. [Google Scholar]
- Cao, H.; Wang, H.; Li, Y.; Hamani, A.K.M.; Zhang, N.; Wang, X.; Gao, Y. Evapotranspiration Partition and Dual Crop Coefficients in Apple Orchard with Dwarf Stocks and Dense Planting in Arid Region, Aksu Oasis, Southern Xinjiang. Agriculture 2021, 11, 1167. [Google Scholar] [CrossRef]
- Liu, C.; Sun, G.; McNulty, S.G.; Kang, S. An Improved Evapotranspiration Model for an Apple Orchard in Northwestern China. Trans. ASABE 2015, 58, 1253–1264. [Google Scholar] [CrossRef]
- Rubauskis, E.; Berlands, V.; Jansons, V. Total evapotranspiration of apple trees with drip irrigation in high-density orchard. Acta Hortic. 2022, 1335, 153–162. [Google Scholar] [CrossRef]
- Odi-Lara, M.; Campos, I.; Neale, C.M.U.; Ortega-Farías, S.; Poblete-Echeverría, C.; Balbontín, C.; Calera, A. Estimating Evapotranspiration of an Apple Orchard Using a Remote Sensing-Based Soil Water Balance. Remote Sens. 2016, 8, 253. [Google Scholar] [CrossRef]
- Monaco, F.; Guido, S. How water amounts and management options drive Irrigation Water Productivity of rice. A multivariate analysis based on field experiment data. Agric. Water Manag. 2018, 195, 47–57. [Google Scholar] [CrossRef]
- Gong, D.; Kang, S.; Yao, L.; Zhang, L. Estimation of evapotranspiration and its components from an apple orchard in northwest China using sap flow and water balance methods. Hydrol. Process. 2006, 20, 3173–3184. [Google Scholar] [CrossRef]
- Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menenti, M. Remote sensing for crop water management: From ET modelling to services for the end users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef]
- Blatchford, M.L.; Karimi, P.; Bastiaanssen, W.G.M.; Nouri, H. From Global Goals to Local Gains—A Framework for Crop Water Productivity. ISPRS Int. J. Geo. Inf. 2018, 7, 414. [Google Scholar] [CrossRef]
- Pouladi, P.; Badiezadeh, S.; Pouladi, M.; Yousefi, P.; Farahmand, H.; Kalantari, Z.; Yu, D.J.; Sivapalan, M. Interconnected governance and social barriers impeding the restoration process of Lake Urmia. J. Hydrol. 2021, 598, 126489. [Google Scholar] [CrossRef]
- Diário da República. Presidency of the Council of Ministers No.77/2018. Republic Diary, 1st Series—No. 197—12 October 2018. Available online: https://files.dre.pt/1s/2018/10/19700/0494804957.pdf (accessed on 15 January 2024).
- Licznar-Malanczuk, M.; Baluszynska, U.B. Do Living Mulches or Environmental Conditions Have a Greater Impact on the External Quality of the Apple Fruit ‘Chopin’ Cultivar? Agriculture 2024, 14, 610. [Google Scholar] [CrossRef]
- Bhaskar, V.; Bellinder, R.R.; Reiners, S.; DiTommaso, A. Reduced Herbicide Rates for Control of Living Mulch and Weeds in Fresh Market Tomato. Weed Technol. 2020, 34, 55–63. [Google Scholar] [CrossRef]
- Thorsted, M.D.; Olesen, J.E.; Weiner, J. Mechanical Control of Clover Improves Nitrogen Supply and Growth of Wheat in Winter Wheat/White Clover Intercropping. Eur. J. Agron. 2006, 24, 149–155. [Google Scholar] [CrossRef]
- Association of Apple Producers of Alcobaça. ECOPOMAR Project: Sustainability in Apple Orchards. Available online: https://akisportugal.pt/grupos/ecopomar/documents/ (accessed on 29 November 2024).
2019 | 2020 | 2021 | |||
---|---|---|---|---|---|
IAD | AGS | IAD | AGS | IAD | AGS |
18 Apr. | II | 19 Mar. | I | 22 Mar. | I |
04 May | II | 6 May | II | 7 Apr. | II |
21 Jun. | III | 22 May | II | 23 Apr. | II |
24 Aug. | III | 7 Jun. | II | 25 May | II |
9 Sep. | III | 9 Jul. | III | 10 Jun. | II |
25 Sep. | IV | 26 Aug. | III | 26 Jun. | III |
11 Oct. | IV | 11 Sep. | III | 12 Jul. | III |
27 Oct. | IV | 13 Oct. | IV | 28 Jul. | III |
29 Oct. | IV | 13 Aug. | III | ||
29 Aug. | III |
Season Month | Tmean (°C) | RHmean (%) | u2 (m s−1) | ||||||
2019 | 2020 | 2021 | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 | |
Mid-March | 14.2 | 11.2 | 12.0 | 65.0 | 84.4 | 75.1 | 2.6 | 1.8 | 1.8 |
April | 13.8 | 13.8 | 14.5 | 86.4 | 87.3 | 87.0 | 2.5 | 1.8 | 1.6 |
May | 17.3 | 17.4 | 14.8 | 78.1 | 84.2 | 83.3 | 2.4 | 1.8 | 2.0 |
June | 16.5 | 17.6 | 17.1 | 78.4 | 83.0 | 85.3 | 2.1 | 2.1 | 2.1 |
July | 19.2 | 19.7 | 18.6 | 83.1 | 82.6 | 84.1 | 2.2 | 2.0 | 2.2 |
August | 19.4 | 19.5 | 18.6 | 83.4 | 86.4 | 87.1 | 2.1 | 2.1 | 1.9 |
September | 17.9 | 18.4 | 18.9 | 81.2 | 84.3 | 86.2 | 1.6 | 1.6 | 1.6 |
October | 15.5 | 14.4 | 16.1 | 86.5 | 87.8 | 88.2 | 1.7 | 1.6 | 1.4 |
Season Month | Rs (MJ m−2 day−1) | P (mm) | ETo (mm day−1) | ||||||
2019 | 2020 | 2021 | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 | |
Mid-March | 19.2 | 13.8 | 17.8 | 1.0 | 24.0 | 0 | 3.3 | 2.0 | 2.8 |
April | 19.4 | 15.8 | 16.7 | 158.0 | 96.0 | 111.4 | 2.9 | 2.5 | 2.6 |
May | 26.9 | 22.1 | 22.9 | 20.4 | 45.8 | 46.8 | 4.4 | 3.8 | 3.5 |
June | 23.8 | 23.7 | 23.0 | 20.6 | 10.2 | 28.2 | 4.0 | 3.9 | 3.7 |
July | 20.5 | 26.0 | 23.2 | 10.8 | 0.2 | 8.0 | 3.8 | 4.6 | 4.0 |
August | 20.9 | 21.4 | 22.4 | 17.0 | 18.4 | 4.0 | 3.8 | 3.7 | 3.7 |
September | 16.8 | 16.9 | 16.6 | 29.4 | 49.8 | 55.6 | 3.1 | 3.1 | 2.9 |
October | 11.0 | 12.0 | 12.3 | 83.2 | 89.8 | 116.2 | 1.8 | 1.8 | 2.0 |
2019 | EC (dS m−1) | 2020 | EC (dS m−1) | ||||
---|---|---|---|---|---|---|---|
50 cm | 30 cm | 20 cm | 50 cm | 30 cm | 20 cm | ||
22 Jul. | 3.2 | 3.1 | 2.2 | 18 Jun. | 3.2 | 2.9 | 3.2 |
14 Aug. | 3.9 | 2.7 | 2.4 | 24 Jun. | 3.3 | 3.5 | 3.2 |
5 Sep. | 3.0 | 2.7 | 2.3 | 02 Jul. | 3.3 | 3.3 | 2.3 |
Average | 3.4 | 2.8 | 2.3 | 09 Jul. | 3.3 | 2.4 | 2.5 |
22 Jul. | 4.2 | 3.4 | 3.3 | ||||
06 Aug. | 3.7 | 3.3 | 3.3 | ||||
13 Aug. | 3.7 | 3.3 | 2.5 | ||||
Average | 3.5 | 3.2 | 2.9 |
CGS | Irrigation | Precipitation | ETo (mm) | Season CGS | ETa (mm) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mm) | (mm) | Daily (mm Day−1) | Period (mm) | Daily (mm Day−1) | Period (mm) | ||||||||||||||||||||
2019 | 2020 | 2021 | Average | 2019 | 2020 | 2021 | Average | 2019 | 2020 | 2021 | Average | 2019 | 2020 | 2021 | Average | 2019 | 2020 | 2021 | Average | 2019 | 2020 | 2021 | Average | ||
I | n.d. | n.d. | n.d. | --- | 18 | 32.6 | 7.6 | 19.4 | 3 | 2.1 | 2.7 | 2.6 | 60 | 42 | 53 | 52 | I | 2.4 | 1.7 | 2.1 | 2.1 | 48 | 33 | 43 | 41 |
II | n.d. | n.d. | n.d. | --- | 171.4 | 139.8 | 154.2 | 155.1 | 3.7 | 3.3 | 3.2 | 3.4 | 256 | 229 | 226 | 237 | II | 3.7 | 3.3 | 3.2 | 3.4 | 263 | 234 | 228 | 242 |
III | n.d. | n.d. | n.d. | --- | 67.6 | 70.6 | 92.2 | 76.8 | 3.6 | 3.9 | 3.6 | 3.7 | 380 | 410 | 382 | 391 | III | 4.2 | 4.5 | 4.2 | 4.3 | 456 | 492 | 458 | 469 |
IV | n.d. | n.d. | n.d. | --- | 83.4 | 91.2 | 116.2 | 96.9 | 1.9 | 1.9 | 2.1 | 2 | 70 | 68 | 75 | 71 | IV | 1.9 | 1.9 | 2.1 | 2.0 | 71 | 69 | 76 | 72 |
FCS | 400 | 450 | 350 | 400 | 340.4 | 334.2 | 370.2 | 340 | --- | --- | --- | --- | 766 | 749 | 736 | 750 | FCS | --- | --- | --- | --- | 838 | 828 | 805 | 824 |
Apple Crop Season | ETa FAO-56 (mm) | ETa RS-A (mm) | Var. ETa (%) | Y (t ha−1) | WP (kg m−3) | WUE FAO-56 (kg m−3) | WUE RS-A (kg m−3) | Var. WUE (%) |
---|---|---|---|---|---|---|---|---|
2019 | 838 | 925 | +10.4 | 32 ± 2.5 | 4.32 | 1.13 | 1.25 | +10.6 |
2020 | 828 | 845 | +2.0 | 24 ± 3.8 | 3.06 | 1.06 | 1.08 | +1.9 |
2021 | 805 | 785 | −2.5 | 33 ± 3.1 | 4.58 | 1.12 | 1.09 | −2.7 |
Average | 824 | 852 | +3.3 | 30 | 3.99 | 1.10 | 1.14 | +3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, S.; Sánchez, J.M.; Gonçalves, J.M.; Eugénio, R.; Damásio, H. Remote Sensing-Assisted Estimation of Water Use in Apple Orchards with Permanent Living Mulch. Agronomy 2025, 15, 338. https://doi.org/10.3390/agronomy15020338
Ferreira S, Sánchez JM, Gonçalves JM, Eugénio R, Damásio H. Remote Sensing-Assisted Estimation of Water Use in Apple Orchards with Permanent Living Mulch. Agronomy. 2025; 15(2):338. https://doi.org/10.3390/agronomy15020338
Chicago/Turabian StyleFerreira, Susana, Juan Manuel Sánchez, José Manuel Gonçalves, Rui Eugénio, and Henrique Damásio. 2025. "Remote Sensing-Assisted Estimation of Water Use in Apple Orchards with Permanent Living Mulch" Agronomy 15, no. 2: 338. https://doi.org/10.3390/agronomy15020338
APA StyleFerreira, S., Sánchez, J. M., Gonçalves, J. M., Eugénio, R., & Damásio, H. (2025). Remote Sensing-Assisted Estimation of Water Use in Apple Orchards with Permanent Living Mulch. Agronomy, 15(2), 338. https://doi.org/10.3390/agronomy15020338