Linking Soil Fertility and Production Constraints with Local Knowledge and Practices for Two Different Mangrove Swamp Rice Agroecologies, Guinea-Bissau, West Africa
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site Characterization
2.1.1. Location and Climatic Conditions
2.1.2. Soil Management
2.1.3. Plant Material and Nursery Management
2.2. Participatory Trials
2.2.1. Experimental Design
2.2.2. Soil Sampling
2.2.3. Plant Growth Sampling and Measurements
2.3. Soil Physicochemical Analyses
2.4. Data Analyses
- In total, 283 soil samples (following the database clean-up and harmonization) across 19 soil properties. To eliminate the nursery differences between the regions, the soil database was harmonized by considering only the soil samples for T2 (transplant period) and T3 (flowering/grain formation period). To fill in missing values for specific variables like textures and Fe and Al oxides, we utilized the mean of the corresponding agroecology for imputation, leading to enhanced performance in dealing with missing data;
- In total, 6500 records on rice growth properties and final production (5 growth properties) for 25 rice varieties in order to understand the correlation between final yields and growing parameters.
3. Results
3.1. Soil Fertility Characterization
3.2. Growth and Yields Characterization (GY)
3.3. Yields in Response to Soil Fertility Status (SFS)
- I.
- Prediction of yields based on soil properties
- II.
- Performance of the farmers’ preferred varieties per agroecology in relation to Soil Fertility Status
- III.
- Yields among regions and specific cases identified
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- FAO. Agricultural Growth in West Africa. Markt and Policy Drivers; FAO: Rome, Italy, 2015. [Google Scholar]
- FAO. GIEWS Country Briefs: Guinea-Bissau; FAO: Rome, Italy, 2023. [Google Scholar]
- FAO. Climate-Smart Agriculture in Guinea-Bissau Country Profile; FAO: Rome, Italy, 2019. [Google Scholar]
- Baggie, I.; Sumah, F.; Zwart, J.S.; Sawyerr, P.; Bandab, T.; Kamara, S.C. Characterization of the mangrove swamp rice soils along the Great Scarcies River in Sierra Leone using principal component analysis. Catena 2018, 163, 54–62. [Google Scholar] [CrossRef]
- Van Gent, P.A.M.; Ukkerman, H.R. The Balanta Rice Farming System in Guinea-Bissau. In Selected Papers of the Ho Chi Minh City Symposium on Acid Sulphate Soils. March 1992. Ho Chi Minh City, Vietnam; ILRI Publication 52; Dent, D.L., van Mensvoort, M.E.F., Eds.; International Institute for Land Reclamation and Improvement: Wageningen, the Netherlands, 1992; pp. 103–122. [Google Scholar]
- Dent, D.L.; Pons, L.J. A world perspective on acid sulphate soils. Geoderma 1992, 67, 263–276. [Google Scholar] [CrossRef]
- Andreetta, A.; Fusi, M.; Cameldi, I.; Cimò, F.; Carnicelli, S.; Cannicci, S. Mangrove carbon sink. Do burrowing crabs contribute to sediment carbon storage? Evidence from a Kenyan mangrove system. J. Sea Res. 2014, 85, 524–533. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Survey Staff—Keys to Soil Taxonomy, 11th ed.; USDA-NRCS: Washington, DC, USA, 2010.
- van Oort, P.A.J. Mapping abiotic stresses for rice in Africa: Drought, cold, iron toxicity, salinity and sodicity. Field Crop. Res. 2018, 219, 55–75. [Google Scholar] [CrossRef]
- Kögel-Knabner, I. Biogeochemistry of paddy soils. Geoderma 2010, 157, 1–14. [Google Scholar] [CrossRef]
- Olk, C.D.; Cassman, G.K.; Randall, W.E.; Kinchesh, P.; Sanger, J.L.; Anderson, M.J. Changes in chemical properties of organic matter with intensified rice cropping in tropical lowland soil. Eur. J. Soil Sci. 1996, 47, 293–303. [Google Scholar] [CrossRef]
- Andreetta, A.; Huertas, D.A.; Lotti, M.; Cerise, S. Land use changes affecting soil organic carbon storage along a mangrove swamp rice chronosequence in the Cacheu and Oio regions (northern Guinea-Bissau). Agric. Ecosyst. Environ. 2016, 216, 314–321. [Google Scholar] [CrossRef]
- Sahrawat, L.K. Fertility and organic matter in submerged rice soils. Curr. Sci. 2005, 88, 735–739. [Google Scholar]
- van Keulen, H. Nitrogen Requirements of Rice with Special Reference to Java. Contr. Cent. Res. Inst. Agric. Bogor. 1977, 30, 1–67. [Google Scholar]
- Merkohasanaj, M.; Cortez, N.; Goulão, L.F.; Andreetta, A. Caracterização das dinâmicas físico-químicas e da fertilidade de solos de mangal da Guiné-Bissau em diferentes condições agroecológicas subjacentes ao cultivo do arroz. Rev. Ciênc. Agr. 2023, 45, 267–271. [Google Scholar] [CrossRef]
- Nuijten, E. Evidence for the emergence of new rice types of interspecific hybrid origin in West African farmers’ fields. PLoS ONE 2009, 4, e7335. [Google Scholar] [CrossRef] [PubMed]
- Temudo, P.M. Planting Knowledge, Harvesting Agro-Biodiversity: A Case Study of Southern Guinea-Bissau Rice Farming. Hum. Ecol. 2011, 39, 309–321. [Google Scholar] [CrossRef]
- Ndjiondjop, N.M.; Wambugu, P.; Sangare, R.J.; Dro, T.; Kpeki, B.; Gnikoua, K. Oryza glaberrima Steud. In The Wild Oryza Genomes; Springer: Berlin/Heidelberg, Germany, 2018; pp. 105–126. [Google Scholar] [CrossRef]
- Montcho, D.; Gbenou, P.; Missihounc, A.A.; Futakuchi, K.; Ahanhanzo, C.; Agbangla, C. Comparative study of two rice cultivars (Oryza glaberrima and O. sativa) under different cultural conditions. J. Exp. Biol. Agric. Sci. 2017, 5, 45–53. [Google Scholar] [CrossRef]
- Mokuwa, A.; Nuijten, E.; Okry, F.; Teeken, B.; Maat, H.; Richards, P.; Struik, C.P. Robustness and Strategies of Adaptation among Farmer Varieties of African Rice (Oryza glaberrima) and Asian Rice (Oryza sativa) across West Africa. PLoS ONE 2013, 8, e34801. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.E.; Dingkuhn, M.; Jones, M.P.; Mahamane, M.C. The influence of rice plant type on the effect of weed competition on Oryza sativa and Oryza glaberrima. Weed Res. 1998, 38, 207–216. [Google Scholar] [CrossRef]
- Dingkuhn, M.; Johnson, D.E.; Sow, A.; Audebert, A.Y. Relationships between upland rice canopy characteristics and weed competitiveness. Field Crop. Res. 1999, 61, 79–95. [Google Scholar] [CrossRef]
- Platten, D.J.; Egdane, A.J.; Ismail, M.A. Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: Many sources, many genes, one mechanism? BMC Plant Biol. 2013, 13, 32. [Google Scholar] [CrossRef]
- Linares, F.O. African rice (Oryza glaberrima): History and future potential. Proc. Natl. Acad. Sci. USA 2002, 99, 16360–16365. [Google Scholar] [CrossRef]
- Zampieri, E.; Pesenti, M.; Nocito, F.F.; Sacchi, A.G.; Valè, G. Rice Responses to Water Limiting Conditions: Improving Stress Management by Exploiting Genetics and Physiological Processes. Agriculture 2023, 13, 464. [Google Scholar] [CrossRef]
- Okry, F.; Van Mele, P.; Nuijten, E.; Struik, C.P.; Mongbo, L.R. Organizational analysis of the seed sector of rice in Guinea: Stakeholders, perception and institutional linkages. Exp. Agric. 2011, 47, 137–157. [Google Scholar] [CrossRef]
- Nuijten, E.; Van Treuren, R. Spatial and temporal dynamics in genetic diversity in upland rice and late millet (Pennisetum glaucum (L.) R. Br.) in the Gambia. Genet. Resour. Crop Evol. 2007, 54, 989–1009. [Google Scholar] [CrossRef]
- Temudo, P.M.; Cabral, I.A. The Social Dynamics of Mangrove Forests in Guinea-Bissau, West Africa. Hum. Ecol. 2017, 45, 307–320. [Google Scholar] [CrossRef]
- Garbanzo, G.; Céspedes, J.; Sandoval, S.; Temudo, P.M.; do Rosário Cameira, M. Moving toward the Biophysical Characterization of the Mangrove Swamp Rice Production System in Guinea Bissau: Exploring Tools to Improve Soil- and Water-Use Efficiencies. Agronomy 2024, 14, 335. [Google Scholar] [CrossRef]
- Garbanzo, G.; Cameira, M.; do Rosário Cameira, M.; Paredes, P. The Mangrove Swamp Rice Production System of Guinea Bissau: Identification of the Main Constraints Associated with Soil Salinity and Rainfall Variability. Agronomy 2024, 14, 468. [Google Scholar] [CrossRef]
- Ayanlaja, S.A.; Sanwo, J.O. Management of soil organic matter in the farming systems of the low land humid tropics of West Africa: A review. Soil Technol. 1991, 4, 265–279. [Google Scholar] [CrossRef]
- Beverwijk, A. Particle size analysis of soils by means of the hydrometer method. Sediment. Geol. 1967, 1, 403–406. [Google Scholar] [CrossRef]
- FAO. Standard Operating Procedure for Soil Organic Carbon; FAO: Rome, Italy, 2019. [Google Scholar]
- Póvoas, I.; Barral, M.F. Métodos de Análise de Solos; Comunicações; Ciências Agrárias; Instituto de Investigação Científica Tropical: Lisboa, Portugal, 1992; 61p. [Google Scholar]
- Jollife, I. Principal Component Analysis. In Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Cooley, W.W.; Lohnes, P.R. Multivariate Data Analysis; John Wiley & Sons: New York, NY, USA, 1971; 364p. [Google Scholar]
- Zeller, A.R. Measurement Error, Issues and Solutions; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Suriyagoda, L. Rice production in nutrient-limited soils: Strategies for improving crop productivity and land sustainability. J. Natl. Sci. Found. Sri Lanka 2022, 50, 521–539. [Google Scholar] [CrossRef]
- Beretta, N.A. Análisis de textura del suelo con hidrómetro: Modificaciones al método de Bouyoucus. Cienc. Investig. Agrar. 2014, 41, 263–271. [Google Scholar] [CrossRef]
- Balde, S.B.; Kobayashi, H.; Nohmi, M.; Ishida, A.; Esham, M.; Tolno, E. An Analysis of Technical Efficiency of Mangrove Rice Production in the Guinean Coastal Area. J. Agric. Sci. 2014, 6, 179–196. [Google Scholar] [CrossRef]
- Mendes, O.; Fragoso, M. Assessment of the Record-Breaking 2020 Rainfall in Guinea-Bissau and Impacts of Associated Floods. Geosciences 2023, 13, 25. [Google Scholar] [CrossRef]
- Mendes, O.; Fragoso, M. Recent changes in climate extremes in Guinea-Bissau. Afr. Geogr. Rev. 2024, 1–19. [Google Scholar] [CrossRef]
- Martinengo, S. Assessing phosphorus availability in paddy soils: The importance of integrating soil tests and plant responses. Biol. Fertil. Soils 2023, 59, 391–405. [Google Scholar] [CrossRef]
- Deng, Y.; Men, C.; Qiao, S.; Wang, W.; Gu, J.; Liu, L.; Zhang, Z.; Zhang, H.; Wang, Z.; Yang, J. Tolerance to low phosphorus in rice varieties is conferred by regulation of root growth. Crop J. 2020, 8, 534–547. [Google Scholar] [CrossRef]
- Richards, P.; Boulder, C.O. Indigenous Agricultural Revolution: Ecology and Food Production in West Africa. In American Anthropologist; Westview Press: Boulder, CO, USA, 1985; 192p. [Google Scholar]
- Keleman, P.-J.; Temudo, M.P.; Sá, R.M. Rooted in the Mangrove Landscape: Children and their Ethnoichthyological Knowledge as Sentinels for Biodiversity Loss in Northern Guinea-Bissau. Ethnobiol. Lett. 2023, 14, 10–21. [Google Scholar] [CrossRef]
- Penot, E. Analyse des données pluviometriques sur la region de Tombali. In EDI-IRFED-DEPA; CIRAD: Caboxanque, Guinea-Bissau, 1990; 24p. [Google Scholar]
- Castro, A. Notas sobre algumas variedades de arroz em cultura na Guiné. Bol. Cult. Guiné Port. 1950, 19, 347–378. [Google Scholar]
- Miranda, I. A pesquisa orizícola do DEPA: Resultados e prioridades. In Seminário Nacional sobre Arroz Próspero; DEPA: Bissau, Guinea-Bissau, 1990. [Google Scholar]
- Dalton, T.J.; Guei, R.G. Productivity gains from rice genetic enhancements in West Africa: Countries and ecologies. World Dev. 2003, 31, 359–374. [Google Scholar] [CrossRef]
- Conde, S.; Barai, A.; Catarino, S.; Costa, J.G.; Ferreira, S.; Ferreira, M.R.; Temudo, M.P.; Monteiro, F. Hidden Secrets of Mangrove Swamp Rice Stored Seeds in Guinea-Bissau: Assessment of Fungal Communities and Implications for Food Security. Agronomy 2024, 14, 1870. [Google Scholar] [CrossRef]
Variety (Local Names) | Growth Cycle | Species | Type and Source of Germplasm | |
---|---|---|---|---|
1. | Var 5 Selì/Mangrovia 6/N’tum | Short (90–105 days) | O. sativa | Ianda Guiné project purified farmers’ variety. |
2. | Edjur | Short (90–105 days) | O. glaberrima | Farmers’ variety from Cacheu region |
3. | Etele | Short (90–105 days) | O. glaberrima | Farmers’ variety from Cacheu region |
4. | Caublack p | Medium(105–125 days) | O. sativa | Farmers’ variety used as control |
5. | Aferenque | Long (<125 days) | O. sativa | Farmers’ variety from Tombali region |
6. | Yaca Xau p | Long (<125 days) | O. sativa | Farmers’ variety used as control |
7. | Cataco p | Long (<125 days) | O. sativa | Farmers’ variety from Tombali region |
8. | Mamussu p | Long (<125 days) | O. sativa | Farmers’ variety used as control |
Sand (%) | Silt (%) | Clay (%) | pH (1:5) | EC (mS cm−1) | RP (mV) | OM (%) | C (%) | N (%) | P2O5 (g kg−1) | K2O (g kg−1) | CEC (cmol+ kg −1) | BS (%) | Fe2O3 (%) | Al2O3(%) | T.Ex. Acid. (cmol+ kg −1) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TM—Tidal Mangrove (both regions, n = 147) | ||||||||||||||||
Tot. mean | 16.4 | 35.4 | 48.1 | 6.3 | 3.4 | 35.6 | 2.3 | 1.2 | 0.2 | 36.3 | 683.4 | 30.3 | 69.7 | 7.9 | 0.7 | 1.0 |
mean T0 | 32.8 | 24.2 | 43.0 | 5.6 | 12.2 | 76.4 | 3.1 | 1.3 | 0.2 | 42.1 | 858.6 | 29.2 | 96.6 | 9.1 | 1.0 | 0.4 |
std | 9.8 | 12.7 | 8.2 | 0.7 | 10.0 | 44.5 | 0.8 | 0.3 | 0.0 | 20.7 | 307.7 | 9.9 | 9.8 | 3.5 | 0.2 | 0.5 |
mean T2 | 14.0 | 42.1 | 43.9 | 6.4 | 2.2 | 30.8 | 2.3 | 1.3 | 0.2 | 32.9 | 721.5 | 31.8 | 59.6 | 9.4 | 0.3 | 0.8 |
std | 7.9 | 12.5 | 14.0 | 0.6 | 1.7 | 36.4 | 0.6 | 0.2 | 0.0 | 14.3 | 204.5 | 7.4 | 24.0 | 3.8 | 0.3 | 1.2 |
mean T3 | 7.1 | 32.4 | 60.6 | 6.5 | 2.0 | 27.5 | 2.2 | 1.3 | 0.1 | 37.9 | 590.2 | 29.2 | 71.7 | 6.8 | 0.8 | 1.4 |
std | 6.0 | 12.9 | 16.9 | 0.6 | 1.5 | 33.1 | 0.6 | 0.3 | 0.0 | 16.0 | 272.9 | 6.6 | 29.7 | 2.5 | 0.2 | 1.8 |
AM—Associated Mangrove (both regions, n = 136) | ||||||||||||||||
Tot. mean | 12,82 | 44.7 | 42.0 | 5.6 | 0.9 | 72.7 | 2.7 | 1.4 | 0.1 | 6.1 | 350.3 | 27.1 | 43.8 | 6.3 | 0.9 | 2.2 |
mean T0 | 22.4 | 40.9 | 36.8 | 4.7 | 2.1 | 129.9 | 3.3 | 1.6 | 0.2 | 8.0 | 342.7 | 25.4 | 54.2 | 9.1 | 1.4 | 2.5 |
std | 7.0 | 9.5 | 6.6 | 0.3 | 1.5 | 18.8 | 0.8 | 0.4 | 0.0 | 6.4 | 130.5 | 15.0 | 30.3 | 3.4 | 0.8 | 1.7 |
mean T2 | 9.2 | 47.1 | 43.4 | 5.7 | 0.8 | 67.0 | 2.7 | 1.5 | 0.2 | 4.8 | 379.7 | 28.2 | 31.9 | 5.8 | 0.4 | 2.2 |
std | 4.4 | 11.9 | 13.3 | 0.5 | 0.5 | 34.4 | 0.8 | 0.4 | 0.1 | 7.0 | 184.1 | 7.7 | 18.2 | 1.8 | 0.5 | 1.5 |
mean T3 | 12.6 | 42.6 | 43.5 | 5.8 | 0.8 | 62.8 | 2.5 | 1.4 | 0.1 | 6.9 | 324.0 | 26.7 | 52.7 | 5.4 | 1.2 | 2.1 |
std | 6.4 | 11.8 | 9.9 | 0.7 | 0.6 | 36.0 | 0.7 | 0.4 | 0.0 | 10.0 | 149.3 | 8.1. | 25.1 | 3.0 | 0.5 | 1.3 |
Variables | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
Sand (%) | −0.25 | 0.31 | −0.22 | 0.73 | −0.24 |
Silt (%) | 0.19 | −0.20 | 0.91 | −0.27 | 0.19 |
Clay (%) | −0.04 | 0.01 | −0.90 | −0.26 | −0.07 |
pH (H2O) | 0.89 | −0.21 | 0.07 | −0.23 | 0.29 |
EC (mS cm−1) | 0.29 | −0.02 | 0.09 | 0.64 | −0.19 |
Redox Potential (mV) | −0.84 | 0.24 | −0.10 | 0.24 | −0.28 |
Organic Matter (%) | −0.24 | 0.89 | −0.01 | 0.09 | 0.03 |
C (%) | −0.26 | 0.85 | 0.05 | −0.19 | 0.17 |
N (%) | −0.01 | 0.74 | −0.27 | 0.07 | −0.23 |
P (g kg−1) | 0.60 | −0.02 | 0.19 | 0.25 | −0.07 |
K (g kg−1) | 0.69 | −0.04 | 0.06 | 0.30 | −0.22 |
Cation Exchange Capacity (cmol+ kg−1) | 0.15 | 0.24 | −0.10 | −0.13 | −0.48 |
Base Saturation (%) | 0.06 | −0.09 | 0.04 | 0.58 | 0.01 |
Fe2O3 (g kg−1) | 0.11 | 0.02 | 0.00 | −0.15 | 0.76 |
Al2O3 (g kg−1) | 0.02 | 0.18 | 0.19 | −0.26 | 0.72 |
Total Exactable Acidity (cmol+ kg −1) | −0.55 | 0.29 | 0.12 | −0.14 | 0.14 |
Explained Variance (%) | 21 | 15 | 12 | 11 | 10 |
(A) Variables | PC1 | PC2 |
---|---|---|
Plant Height 1 (cm) (transplantation) | 0.54 | −0.11 |
Plant Height 2 (cm) (flowering) | 0.36 | −0.22 |
Nr. Panicles (panicles per m²) | −0.02 | 1.00 |
Yield Ridge 2 (g/m²) | 0.90 | 0.04 |
Yield Ridge 3 (g/m²) | 0.85 | 0.03 |
Explained Variance (%) | 39 | 21 |
Note: Yield = grain weight per m2 in ridges 2 and 3. | ||
(B) Varieties | (%) | |
Yaca Xau T | 33.33 | |
CaublackT | 28.57 | |
Mamussu T | 9.52 | |
Cataco T | 4.76 | |
Aferenque T | 4.76 | |
Edjur T | 4.76 | |
Others T | 14.29 | |
Caublack O | 31.82 | |
Aferenque O | 9.09 | |
Others O | 22.73 | |
T = Tombali; O = Oio |
(A) Variables | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Plant Height 1 (cm) (transplantation) | −0.12 | 0.92 | 0.22 | 0.09 |
Water Level 1 (cm) (transplantation) | −0.07 | 0.98 | 0.18 | 0.04 |
Mean Precipitation 1 (mm) (transplantation) | 0.95 | 0.02 | −0.16 | 0.09 |
Total Precipitation 1 (mm) (transplantation) | 0.77 | −0.15 | −0.11 | −0.07 |
Plant Height 2 (cm) (flowering) | −0.28 | 0.05 | 0.48 | −0.14 |
Water Level (cm) (flowering) | −0.01 | 0.02 | 0.15 | 0.09 |
Mean Precipitation 2 (mm) (flowering) | 0.71 | 0.07 | −0.08 | 0.74 |
Total Precipitation 2 (mm) (flowering) | 0.05 | 0.08 | 0.03 | 0.79 |
Nr. Panicles (panicles per m²) | 0.74 | −0.07 | 0.04 | 0.12 |
Yield Ridge 2 (g/m²) | 0.11 | 0.48 | 0.81 | 0.12 |
Yield Ridge 3 (g/m²) | 0.09 | 0.51 | 0.78 | 0.17 |
Explained Variance (%) | 23 | 19 | 17 | 11 |
Note: Yield = grain weight per m² in ridges 2 and 3. Mean Precipitation (mm) is the average of the last 10 days’ rainfalls; Total Precipitation is the sum of the last 3 days’ rainfalls. | ||||
(B) Varieties (Figure 5a) | (%) | |||
Caublack | 28.57 | |||
Yaca Xau | 28.57 | |||
Mamussu | 14.29 | |||
Cataco | 9.52 | |||
Aferenque | 4.76 | |||
Others | 14.29 | |||
(C) Varieties (Figure 5b) | (%) | |||
Caublack | 20.83 | |||
Yaca Xau | 12.5 | |||
Edjur | 12.5 | |||
Cataco | 8.33 | |||
Mamussu | 4.17 | |||
Others | 20.83 |
Variables | p-Value < |t| | T |
---|---|---|
(a) N = 61, R2 = 0.81/TM-cases | ||
Clay (%) | 0.024 | −2.326 |
OM (%) | 0.000 | 4.914 |
N (%) | 0.003 | 3.128 |
K (g kg−1) | 0.007 | 2.837 |
CEC (cmol kg−1) | 0.018 | 2.440 |
(b) N = 94, R2 = 0.569/AM-cases | ||
Sand (%) | 0.000 | −15.27 |
pH | 0.016 | −2.457 |
Mean Precipitation (mm) | 0.000 | 4.318 |
OM (%) | 0.000 | 4.406 |
N (%) | 0.034 | 2.160 |
K (g kg−1) | 0.027 | 2.255 |
Fe2O3 (g kg−1) | 0.000 | −3.926 |
Mean | Std. | St. Error Mean | 95% Conf. Interval of Difference | t | df | Sig. (2-Tailed) | |||
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
T-test 1 | TM—AM | 25.29 | 127.89 | 13.05 | −0.617 | 51.20 | 1.93 | 95.0 | 0.055 |
T-test 2 | Reg 1—Reg 2 1 | 70.64 | 143.84 | 11.82 | 47.274 | 94.00 | 5.97 | 147.0 | 0.000 * |
T-test 3 | TM—AM 2 | −17.91 | 137.50 | 13.96 | −45.631 | 9.79 | −1.28 | 96.0 | 0.202 |
Region/Village | Yields 2021 (g/m2) | Yields 2022 (g/m2) | Average Yields (g/m2) |
---|---|---|---|
TM Enchugal | 103.8 | 105.69 | 104.3 |
TM Malafu | 116.88 | 102.28 | 110.0 |
AM Enchugal | 234.09 | 185.01 | 209.5 |
AM Malafu | 206.07 | 178.93 | 192.5 |
Average Oio | 169.06 | 142.98 | 156.02 |
TM Cafine-Cafale | 246.26 | 272.41 | 259.33 |
AM Cafine-Cafale | 226.07 | 150.0 | 188.0 |
Average Tombali | 236.17 | 211.12 | 223.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merkohasanaj, M.; Cortez, N.; Cunha-Queda, C.; Andreetta, A.; Cossa, V.; Martín-Peinado, F.J.; Temudo, M.P.; Goulao, L.F. Linking Soil Fertility and Production Constraints with Local Knowledge and Practices for Two Different Mangrove Swamp Rice Agroecologies, Guinea-Bissau, West Africa. Agronomy 2025, 15, 342. https://doi.org/10.3390/agronomy15020342
Merkohasanaj M, Cortez N, Cunha-Queda C, Andreetta A, Cossa V, Martín-Peinado FJ, Temudo MP, Goulao LF. Linking Soil Fertility and Production Constraints with Local Knowledge and Practices for Two Different Mangrove Swamp Rice Agroecologies, Guinea-Bissau, West Africa. Agronomy. 2025; 15(2):342. https://doi.org/10.3390/agronomy15020342
Chicago/Turabian StyleMerkohasanaj, Matilda, Nuno Cortez, Cristina Cunha-Queda, Anna Andreetta, Viriato Cossa, Francisco José Martín-Peinado, Marina Padrão Temudo, and Luis F. Goulao. 2025. "Linking Soil Fertility and Production Constraints with Local Knowledge and Practices for Two Different Mangrove Swamp Rice Agroecologies, Guinea-Bissau, West Africa" Agronomy 15, no. 2: 342. https://doi.org/10.3390/agronomy15020342
APA StyleMerkohasanaj, M., Cortez, N., Cunha-Queda, C., Andreetta, A., Cossa, V., Martín-Peinado, F. J., Temudo, M. P., & Goulao, L. F. (2025). Linking Soil Fertility and Production Constraints with Local Knowledge and Practices for Two Different Mangrove Swamp Rice Agroecologies, Guinea-Bissau, West Africa. Agronomy, 15(2), 342. https://doi.org/10.3390/agronomy15020342