Evaluation of the Concentration-Addition Approach for Pesticide Mixture Risk Assessment in Agricultural Watersheds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Sample Preparation
2.2. Mode of Action Classification for Pesticide Selection
2.3. Environmental Toxicity Information
2.4. Environmentally Realistic Mixture Risk Assessment
3. Results and Discussion
3.1. Mixture Risk Assessment Based on RQ
3.2. Mixture Toxicity Assessment Based on TUs
3.3. Environmental Risk Assessment with Mixture Toxicity Assessment
3.4. Substances Driving Seasonal Ecotoxicological Risk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeng, H.; Fu, X.; Liang, Y.; Qin, L.; Mo, L. Risk assessment of an organochlorine pesticide mixture in the surface waters of Qingshitan Reservoir in Southwest China. RSC Adv. 2018, 8, 17797–17805. [Google Scholar] [CrossRef] [PubMed]
- Malaj, E.; Von Der Ohe, P.C.; Grote, M.; Kühne, R.; Mondy, C.P.; Usseglio-Polatera, P.; Brack, W.; Schäfer, R.B. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc. Natl. Acad. Sci. USA 2014, 111, 9549–9554. [Google Scholar] [CrossRef]
- EI Afandi, G.; Irfan, M. Pesticides risk assessment review: Status, modeling approaches, and future perspectives. Agronomy 2024, 14, 2299. [Google Scholar] [CrossRef]
- Sardela, V.F.; Martucci, M.E.P.; De Araújo, A.L.D.; Leal, E.C.; Oliveira, D.S.; Carneiro, G.R.A.; Deventer, K.; Van Eenoo, P.; Pereira, H.M.G.; Aquino Neto, F.R. Comprehensive analysis by liquid chromatography Q-Orbitrap mass spectrometry: Fast screening of peptides and organic molecules. J. Mass Spectrom. 2018, 53, 476–503. [Google Scholar] [CrossRef] [PubMed]
- Finckh, S.; Beckers, L.-M.; Busch, W.; Carmona, E.; Dulio, V.; Kramer, L.; Krauss, M.; Posthuma, L.; Schulze, T.; Slootweg, J.; et al. A risk based assessment approach for chemical mixtures from wastewater treatment plant effluents. Environ. Int. 2022, 164, 107234. [Google Scholar] [CrossRef] [PubMed]
- Relyea, R.A. A cocktail of contaminants: How mixtures of pesticides at low concentrations affect aquatic communities. Oecologia 2009, 159, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Altenburger, R.; Brack, W.; Burgess, R.M.; Busch, W.; Escher, B.I.; Focks, A.; Mark Hewitt, L.; Jacobsen, B.N.; De Alda, M.L.; Ait-Aissa, S.; et al. Future water quality monitoring: Improving the balance between exposure and toxicity assessments of real-world pollutant mixtures. Environ. Sci. Eur. 2019, 31, 12. [Google Scholar] [CrossRef]
- Markert, N.; Rhiem, S.; Trimborn, M.; Guhl, B. Mixture toxicity in the Erft River: Assessment of ecological risks and toxicity drivers. Environ. Sci. Eur. 2020, 32, 51. [Google Scholar] [CrossRef]
- Sigurnjak Bureš, M.; Cvetnić, M.; Miloloža, M.; Kučić Grgić, D.; Markić, M.; Kušić, H.; Bolanča, T.; Rogošić, M.; Ukić, Š. Modeling the toxicity of pollutants mixtures for risk assessment: A review. Environ. Chem. Lett. 2021, 19, 1629–1655. [Google Scholar] [CrossRef]
- Chatterjee, M.; Roy, K. Recent Advances on Modelling the Toxicity of Environmental Pollutants for Risk Assessment: From Single Pollutants to Mixtures. Curr. Pollut. Rep. 2022, 8, 81–97. [Google Scholar] [CrossRef]
- Beyer, J.; Petersen, K.; Song, Y.; Ruus, A.; Grung, M.; Bakke, T.; Tollefsen, K.E. Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper. Mar. Environ. Res. 2014, 96, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Silva, L.; Laranjeiro, C.; Lino, C.; Pena, A. Selected Pharmaceuticals in Different Aquatic Compartments: Part II—Toxicity and Environmental Risk Assessment. Molecules 2020, 25, 8. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Chen, Z.; Hollert, H.; Zhou, S.; Deutschmann, B.; Seiler, T.-B. Toxicity of 10 organic micropollutants and their mixture: Implications for aquatic risk assessment. Sci. Total Environ. 2019, 666, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- FAO. Pesticides Use and Trade 1990–2022; FAOSTAT Analytical Briefs No. 89; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Hwang, I.-S.; Oh, Y.-J.; Kwon, H.-Y.; Ro, J.-H.; Kim, D.-B.; Moon, B.-C.; Oh, M.-S.; Noh, H.-H.; Park, S.-W.; Choi, G.-H.; et al. Monitoring of Pesticide Residues Concerned in Stream Water. Korean J. Environ. Agric. 2019, 38, 173–184. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Qian, Y.; Zhao, X.; Wang, Q. The synergistic toxicity of the multiple chemical mixtures: Implications for risk assessment in the terrestrial environment. Environ. Int. 2015, 77, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, C.; Wang, M.; Ebeling, M.; Gladbach, A. An efficient and pragmatic approach for regulatory aquatic mixture risk assessment of pesticides. Environ. Sci. Eur. 2022, 34, 16. [Google Scholar] [CrossRef]
- Weisner, O.; Frische, T.; Liebmann, L.; Reemtsma, T.; Roß-Nickoll, M.; Schäfer, R.B.; Schäffer, A.; Scholz-Starke, B.; Vormeier, P.; Knillmann, S.; et al. Risk from pesticide mixtures—The gap between risk assessment and reality. Sci. Total Environ. 2021, 796, 149017. [Google Scholar] [CrossRef] [PubMed]
- Kortenkamp, A.; Backhaus, T.; Faust, M. State of the Art Report on Mixture Toxicity; Final Report: 070307/2007/485103/ETU/D.1; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J. Ecotoxicological assessment of pharmaceuticals and personal care products using predictive toxicology approaches. Green Chem. 2020, 22, 1458–1516. [Google Scholar] [CrossRef]
- Bopp, S.K.; Barouki, R.; Brack, W.; Dalla Costa, S.; Dorne, J.-L.C.M.; Drakvik, P.E.; Faust, M.; Karjalainen, T.K.; Kephalopoulos, S.; Van Klaveren, J.; et al. Current EU research activities on combined exposure to multiple chemicals. Environ. Int. 2018, 120, 544–562. [Google Scholar] [CrossRef] [PubMed]
- Heys, K.A.; Shore, R.F.; Pereira, M.G.; Jones, K.C.; Martin, F.L. Risk assessment of environmental mixture effects. RSC Adv. 2016, 6, 47844–47857. [Google Scholar] [CrossRef]
- Hernández, A.F.; Gil, F.; Lacasaña, M. Toxicological interactions of pesticide mixtures: An update. Arch. Toxicol. 2017, 91, 3211–3223. [Google Scholar] [CrossRef] [PubMed]
- Altenburger, R.; Schmitt-Jansen, M. Chapter 5 Predicting toxic effects of contaminants in ecosystems using single species investigations. In Bioindicators and Biomonitors; Breure, A.M., Markert, B.A., Zechmeister, H.G., Eds.; Elsevier Science: New York, NY, USA, 2003; pp. 153–198. [Google Scholar] [CrossRef]
- Backhaus, T.; Faust, M. Predictive Environmental Risk Assessment of Chemical Mixtures: A Conceptual Framework. Environ. Sci. Technol. 2012, 46, 2564–2573. [Google Scholar] [CrossRef] [PubMed]
- Backhaus, T.; Altenburger, R.; Faust, M.; Frein, D.; Frische, T.; Johansson, P.; Kehrer, A.; Porsbring, T. Proposal for environmental mixture risk assessment in the context of the biocidal product authorization in the EU. Environ. Sci. Eur. 2013, 25, 4. [Google Scholar] [CrossRef]
- Backhaus, T. Commentary on the EU Commission’s proposal for amending the Water Framework Directive, the Groundwater Directive, and the Directive on Environmental Quality Standards. Environ. Sci. Eur. 2023, 35, 22. [Google Scholar] [CrossRef]
- Rodea-Palomares, I.; Gao, Z.; Weyers, A.; Ebeling, M. Risk from unintentional environmental mixtures in EU surface waters is dominated by a limited number of substances. Sci. Total Environ. 2023, 856, 159090. [Google Scholar] [CrossRef]
- Kumari, M.; Kumar, A. Identification of component-based approach for prediction of joint chemical mixture toxicity risk assessment with respect to human health: A critical review. Food Chem. Toxicol. 2020, 143, 111458. [Google Scholar] [CrossRef]
- Kim, Y.-E.; Jeon, D.; Lee, H.; Huh, Y.; Lee, S.; Kim, J.G.; Kim, H.S. Revealing the Extent of Pesticide Runoff to the Surface Water in Agricultural Watersheds. Water 2023, 15, 3984. [Google Scholar] [CrossRef]
- Singh, A.K.; Bilal, M.; Barceló, D.; Iqbal, H.M.N. A predictive toolset for the identification of degradation pattern and toxic hazard estimation of multimeric hazardous compounds persists in water bodies. Sci. Total Environ. 2022, 824, 153979. [Google Scholar] [CrossRef]
- Belanger, S.E.; Beasley, A.; Brill, J.L.; Krailler, J.; Connors, K.A.; Carr, G.J.; Embry, M.; Barron, M.G.; Otter, R.; Kienzler, A. Comparisons of PNEC derivation logic flows under example regulatory schemes and implications for ecoTTC. Regul. Toxicol. Pharmacol. 2021, 123, 104933. [Google Scholar] [CrossRef]
- Beffa, R.; Menne, H.; Köcher, H. Herbicide Resistance Action Committee (HRAC): Herbicide Classification, Resistance Evolution, Survey, and Resistance Mitigation Activities. In Modern Crop Protection Compounds; Jeschke, P., Witschel, M., Krämer, W., Schirmer, U., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019; pp. 5–32. [Google Scholar] [CrossRef]
- Hermann, D.; Stenzel, K. FRAC Mode-of-action Classification and Resistance Risk of Fungicides. In Modern Crop Protection Compounds; Jeschke, P., Witschel, M., Krämer, W., Schirmer, U., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019; pp. 589–608. [Google Scholar] [CrossRef]
- Nauen, R.; Slater, R.; Sparks, T.C.; Elbert, A.; Mccaffery, A. IRAC: Insecticide Resistance and Mode-of-action Classification of Insecticides. In Modern Crop Protection Compounds; Jeschke, P., Witschel, M., Krämer, W., Schirmer, U., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019; pp. 995–1012. [Google Scholar] [CrossRef]
- Li, W.; Xin, S.; Deng, W.; Wang, B.; Liu, X.; Yuan, Y.; Wang, S. Occurrence, spatiotemporal distribution patterns, partitioning and risk assessments of multiple pesticide residues in typical estuarine water environments in eastern China. Water Res. 2023, 245, 120570. [Google Scholar] [CrossRef]
- Herrero-Hernández, E.; Rodríguez-Cruz, M.S.; Pose-Juan, E.; Sánchez-González, S.; Andrades, M.S.; Sánchez-Martín, M.J. Seasonal Distribution of Herbicide and Insecticide Residues in the Water Resources of the Vineyard Region of La Rioja (Spain). Sci. Total Environ. 2017, 609, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Fuerst, E.P. Understanding the Mode of Action of the Chloroacetamide and Thiocarbamate Herbicides. Weed Technol. 1987, 1, 270–277. [Google Scholar] [CrossRef]
- Ramesh, M.; Priyanka, M.; Tamilarasi, R.; Poopal, R.-K.; Ren, Z.; Li, B. Short-term toxicity of chloroacetanilide herbicide on non-target organism: Estimation of median-lethal concentration, hematological, biochemical, ion regulation, and antioxidants. Comp. Clin. Pathol. 2022, 32, 125–137. [Google Scholar] [CrossRef]
- Mwila, K.; Burton, M.H.; Van Dyk, J.S.; Pletschke, B.I. The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures. Environ. Monit. Assess. 2013, 185, 2315–2327. [Google Scholar] [CrossRef] [PubMed]
- Finizio, A.; Di Guardo, A.; Menaballi, L.; Barra Caracciolo, A.; Grenni, P. Mix-Tool: An Edge-of-Field Approach to Predict Pesticide Mixtures of Concern in Surface Water from Agricultural Crops. Environ. Toxicol. Chem. 2022, 41, 2028–2038. [Google Scholar] [CrossRef] [PubMed]
- El-Sheekh, M.M.; Kotkat, H.M.; Hammouda, O.H.E. Effect of atrazine herbicide on growth, photosynthesis, protein synthesis, and fatty acid composition in the unicellular green alga Chlorella kessleri. Ecotoxicol. Environ. Saf. 1994, 29, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, S.; Gan, J.; Haver, D.L.; Kabashima, J.N. Persistence of selected organophosphate and carbamate insecticides in waters from a coastal watershed. Environ. Toxicol. Chem. 2004, 23, 2649–2654. [Google Scholar] [CrossRef]
- Nagai, T.; Taya, K.; Yoda, I. Comparative toxicity of 20 herbicides to 5 periphytic algae and the relationship with mode of action. Environ. Toxicol. Chem. 2016, 35, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Casillas, A.; De La Torre, A.; Navarro, I.; Sanz, P.; Martínez, M.D.L.Á. Environmental risk assessment of neonicotinoids in surface water. Sci. Total Environ. 2022, 809, 151161. [Google Scholar] [CrossRef]
- Backhaus, T.; Karlsson, M. Screening level mixture risk assessment of pharmaceuticals in STP effluents. Water Res. 2014, 49, 157–165. [Google Scholar] [CrossRef]
- Silva, E.; Cerejeira, M.J. Concentration addition-based approach for aquatic risk assessment of realistic pesticide mixtures in Portuguese river basins. Environ. Sci. Pollut. Res. 2015, 22, 6756–6765. [Google Scholar] [CrossRef]
- Galert, W.; Hassold, E. Environmental Risk Assessment of Technical Mixtures Under the European Registration, Evaluation, Authorisation and Restriction of Chemicals—A Regulatory Perspective. Integr. Environ. Assess. Manag. 2021, 17, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Mao, H.; Lv, H.; Zheng, Y.; Peng, C.; Hou, S. Novel two-tiered approach of ecological risk assessment for pesticide mixtures based on joint effects. Chemosphere 2018, 192, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Larsen, A.E.; Gaines, S.D.; Deschênes, O. Spatiotemporal variation in the relationship between landscape simplification and insecticide use. Ecol. Appl. 2015, 25, 1976–1983. [Google Scholar] [CrossRef]
- Li, H.; Zhao, B.; Wang, D.; Zhang, K.; Tan, X.; Zhang, Q. Effect of multiple spatial scale characterization of land use on water quality. Environ. Sci. Pollut. Res. 2023, 30, 7106–7120. [Google Scholar] [CrossRef]
- Junghans, M.; Backhaus, T.; Faust, M.; Scholze, M.; Grimme, L.H. Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest Manag. Sci. 2003, 59, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
- Syberg, K.; Jensen, T.S.; Cedergreen, N.; Rank, J. On the Use of Mixture Toxicity Assessment in REACH and the Water Framework Directive: A Review. Hum. Ecol. Risk Assess. Int. J. 2009, 15, 1257–1272. [Google Scholar] [CrossRef]
- Wood, R.J.; Mitrovic, S.M.; Lim, R.P.; Kefford, B.J. How benthic diatoms within natural communities respond to eight common herbicides with different modes of action. Sci. Total Environ. 2016, 557–558, 636–643. [Google Scholar] [CrossRef] [PubMed]
Group | Compound |
---|---|
1 | Alachlor, butachlor, cafenstrole, dimethenamid, esprocarb, fentrazamide, mefenacet, metolachlor, napropamide, pretilachlor |
2 | Acephate, cadusafos, β-chlorfenvinphos, diazinon, dichlorvos, dimethoate, dimethomorph, dimethylvinphos, ethoprophos, imicyafos, malathion, phenthoate, profenofos, tebupirimfos |
3 | Cyproconazole, difenoconazole, diniconazole, epoxiconazole, fenarimol, fenbuconazole, hexaconazole, ipconazole, metconazole, myclobutanil, penconazole, prochloraz, propiconazole, tebuconazole, tetraconazole, triadimefon |
4 | Azimsulfuron, bensulfuron-methyl, cyclosulfamuron, flucetosulfuron, halosulfuron-methyl, imazosulfuron, metazosulfuron, penoxsulam, pyriftalid, pyriminobac-methyl, pyrimisulfan |
Group | River a | RQmix | Ratio of Exceedance of SRQ b (%) | Ratio of Exceedance of RQSTU c (%) | Trophic Level d | Maximum Ratio of SRQ to RQSTU | ||||
---|---|---|---|---|---|---|---|---|---|---|
Algae | Daphnids | Fish | ||||||||
Min | Max | Median | (%) | (%) | (%) | |||||
Group 1 | M | 3.62 × 10−1 | 4.06 × 102 | 1.84 × 101 | 72.2% | 100% | 100 | 0 | 0 | 1.03 |
D | 3.74 × 10−1 | 1.65 × 103 | 1.45 × 101 | 61.1% | 95.5% | 100 | 0 | 0 | 1.39 | |
Group 2 | M | 6.71 × 10−6 | 1.31 × 102 | 1.38 | 41.7% | 100% | 0 | 100 | 0 | 1.01 |
D | 7.63 × 10−3 | 1.80 × 102 | 1.12 | 30.5% | 100% | 0 | 100 | 0 | 1.01 | |
Group 3 | M | 9.12 × 10−4 | 1.83 | 7.70 × 10−3 | 2.8% | 100% | 100 | 0 | 0 | 1.05 |
D | 1.61 × 10−3 | 2.56 | 1.56 × 10−2 | 2.8% | 100% | 100 | 0 | 0 | 1.10 | |
Group 4 | M | 1.88 × 10−3 | 2.62 × 10−1 | 2.10 × 10−2 | 0% | - | - | - | - | 1.00 |
D | 1.09 × 10−3 | 1.36 | 3.83 × 10−2 | 5.6% | 100% | 100 | 0 | 0 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-E.; Jeon, D.R.; Im, J.K.; Lee, H.; Huh, Y.; Lee, J.-C.; Oh, Y.-K.; Kim, J.G.; Kim, H.S. Evaluation of the Concentration-Addition Approach for Pesticide Mixture Risk Assessment in Agricultural Watersheds. Agronomy 2025, 15, 347. https://doi.org/10.3390/agronomy15020347
Kim Y-E, Jeon DR, Im JK, Lee H, Huh Y, Lee J-C, Oh Y-K, Kim JG, Kim HS. Evaluation of the Concentration-Addition Approach for Pesticide Mixture Risk Assessment in Agricultural Watersheds. Agronomy. 2025; 15(2):347. https://doi.org/10.3390/agronomy15020347
Chicago/Turabian StyleKim, Young-Eun, Da Rae Jeon, Jong Kwon Im, Hyeri Lee, Yujeong Huh, Jong-Chun Lee, You-Kwan Oh, Jong Guk Kim, and Hyoung Seop Kim. 2025. "Evaluation of the Concentration-Addition Approach for Pesticide Mixture Risk Assessment in Agricultural Watersheds" Agronomy 15, no. 2: 347. https://doi.org/10.3390/agronomy15020347
APA StyleKim, Y.-E., Jeon, D. R., Im, J. K., Lee, H., Huh, Y., Lee, J.-C., Oh, Y.-K., Kim, J. G., & Kim, H. S. (2025). Evaluation of the Concentration-Addition Approach for Pesticide Mixture Risk Assessment in Agricultural Watersheds. Agronomy, 15(2), 347. https://doi.org/10.3390/agronomy15020347