Satureja kitaibelii Essential Oil and Extracts: Bioactive Compounds and Pesticide Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Phytochemical Analysis
2.2.1. Extraction Procedure
2.2.2. Derivatization of Methanolic Extract and Exudate Fraction
2.2.3. Gas Chromatography–Mass Spectrometry
2.2.4. Thin-Layer Chromatography
2.3. Antifungal/Anti-Oomycete Bioassay
2.4. Acetylcholinesterase (AChE) Inhibition Assay
2.5. Seed Germination Inhibition Bioassay
2.6. Data Analysis
3. Results
3.1. Phytochemical Analysis
3.1.1. Essential Oil
3.1.2. Exudate Fraction
3.1.3. Methanolic Extract
3.2. Fungal and Oomycete Growth Inhibition Properties
3.3. Acetylcholinesterase (AChE) Inhibitory Activity
3.4. Seed Germination Inhibition Bioassay
4. Discussion
4.1. Phytochemical Constituents
4.2. Fungal and Oomycete Growth Inhibition Properties
4.3. Acetylcholinesterase (AChE) Inhibitory Activity
4.4. Seed Germination Inhibition Bioassay
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schrader, K.; Andolfi, A.; Cantrell, C.; Cimmino, A.; Duke, S.; Osbrink, W.; Wedge, D.; Evidente, A. A survey of phytotoxic microbial and plant metabolites as potential natural products for pest management. Chem. Biodivers. 2010, 7, 2261. [Google Scholar] [CrossRef] [PubMed]
- Okwute, S.K. Plants as Potential Sources of Pesticidal Agents: A Review. In Pesticides—Advances in Chemical and Botanical Pesticides; Soundararajan, R.P., Ed.; IntechOpen: London, UK, 2012; pp. 207–232. [Google Scholar] [CrossRef]
- Mann, R.S.; Kaufman, E. Natural product pesticides: Their development, delivery and use against insect vectors. MiniRev. Org. Chem. 2012, 9, 185. [Google Scholar] [CrossRef]
- Musa, F.M.; Carli, C.; Susuri, L.; Pireva, I. Monitoring of Myzus persicae (Sluzer) in potato fields in Kosovo. Acta Agric. Slov. 2004, 83, 379. [Google Scholar] [CrossRef]
- Cai, X.; Gu, M. Bioherbicides in Organic Horticulture. Horticulturae 2016, 2, 2. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020, 9, 3. [Google Scholar] [CrossRef]
- Jouini, A.; Verdeguer, M.; Pinton, S.; Araniti, F.; Palazzolo, E.; Badalucco, L.; Laudicina, V.A. Potential Effects of Essential Oils Extracted from Mediterranean Aromatic Plants on Target Weeds and Soil Microorganisms. Plants 2020, 9, 10. [Google Scholar] [CrossRef]
- Verdeguer, M.; Sánchez-Moreiras, A.M.; Araniti, F. Phytotoxic Effects and Mechanism of Action of Essential Oils and Terpenoids. Plants 2020, 9, 11. [Google Scholar] [CrossRef]
- Garrido-Miranda, K.A.; Giraldo, J.D.; Schoebitz, M. Essential Oils and Their Formulations for the Control of Curculionidae Pests. Fron. Agron. 2022, 4, 876687. [Google Scholar] [CrossRef]
- Nikolova, M.; Berkov, S. Use of essential oils as natural herbicides. Ecol. Balk. 2018, 10, 259–265. [Google Scholar]
- Werrie, P.-Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.L. Phytotoxicity of essential oils: Opportunities and constraints for the development of biopesticides. A review. Foods 2020, 9, 1291. [Google Scholar] [CrossRef]
- Lengai, G.; Muthomi, J.; Mbega, E. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
- Nikolova, M.; Yovkova, M.; Yankova-Tsvetkova, E.; Traykova, B.; Stefanova, T.; Aneva, I.; Berkov, S. Biocidal Activity of Origanum vulgare subsp. hirtum Essential Oil. Acta Univ. Agric. Silvic. Mendel. Brun. 2021, 69, 569–578. [Google Scholar] [CrossRef]
- Chaves, N.; Escudero, J.C. Allelopathic Effect of Cistus ladanifer on Seed Germination. Funct. Ecol. 1997, 11, 432–440. Available online: http://www.jstor.org/stable/2390378 (accessed on 29 January 2025). [CrossRef]
- Onyilagha, J.; Grotewold, E. The biology and structural distribution of surface flavonoids. In Recent Research Developments in Plant Science; Pandalai, S.G., Ed.; Research Signpost: Trivandrum, India, 2004; pp. 53–71. [Google Scholar]
- Karamanoli, K.; Menkissoglu-Spiroudi, U.; Bosabalidis, A.M.; Vokou, D.; Constantinidou, H.-I.A. Bacterial colonization of the phyllosphere of nineteen plant species and antimicrobial activity of their leaf secondary metabolites against leaf associated bacteria. Chemoecology 2005, 15, 59–67. [Google Scholar] [CrossRef]
- Lyubenova, A.; Nikolova, M.; Slavov, S.B. Impact of Origanum vulgare subsp. hirtum (Link) Ietswaart derived extracts and essential oil on plant pathogens from genus Phytophthora. Bulg. J. Agric. Sci. 2024, 30, 833–838. [Google Scholar]
- Sotirova, A.; Mutafova, B.; Berkov, S.; Nikolova, M. Antibacterial Activity of Methanol Extract and Acetone Exudates from Bulgarian Plants. Acta Microbiol. Bulg. 2022, 38, 48–51. [Google Scholar]
- Nikolova, M.; Yankova-Tsvetkova, E.; Stefanova, T.; Stoyanov, S.; Berkov, S. Evaluation of Helichrysum arenarium flower exudate as an inhibitor on Lolium perenne seed germination under laboratory conditions. Acta Agrob. 2023, 76, 761. [Google Scholar] [CrossRef]
- Lyubenova, A.; Rusanova, M.; Nikolova, M.; Slavov, S.B. Plant extracts and Trichoderma spp.: Possibilities for implementation in agriculture as biopesticides. Biotechnol. Biotechnol. Equip. 2023, 37, 159–166. [Google Scholar] [CrossRef]
- Şahin, F.; Güllüce, M.; Daferera, D.; Sökmen, A.; Sökmen, M.; Polissiou, M.; Agar, G.; Özer, H. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control 2004, 15, 549–557. [Google Scholar] [CrossRef]
- Kordali, S.; Kabaagac, G.; Sen, İ.; Yilmaz, F.; Najda, A. Phytotoxic Effects of Three Origanum Species Extracts and Essential Oil on Seed Germinations and Seedling Growths of Four Weed Species. Agronomy 2022, 12, 2581. [Google Scholar] [CrossRef]
- Srikrishnah, S.; Begam, U.J. Review on Use of Plant Extracts in Weed Control. Curr. Trends Biomedical. Eng. Biosci. 2019, 18, 309–317. [Google Scholar] [CrossRef]
- Garcia-Rellán, D.; Verdeguer, M.; Salamone, A.; Blázquez, M.A.; Boira, H. Chemical Composition, Herbicidal and Antifungal Activity of Satureja cuneifolia Essential Oils from Spain. Nat. Prod. Commun. 2016, 11, 1934578X1601100636. [Google Scholar] [CrossRef]
- Hazrati, H.; Saharkhiz, M.J.; Niakousari, M.; Moein, M. Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol. Environ. Saf. 2017, 142, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Fierascu, I.; Dinu-Pirvu, C.E.; Fierascu, R.C.; Velescu, B.S.; Anuta, V.; Ortan, A.; Jinga, V. Phytochemical Profile and Biological Activities of Satureja hortensis L.: A Review of the Last Decade. Molecules 2018, 23, 10. [Google Scholar] [CrossRef]
- Güllüce, M.; Sökmen, M.; Daferera, D.; Ağar, G.; Ozkan, H.; Kartal, N.; Polissiou, M.; Sökmen, A.; Sahin, F. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J. Agric. Food Chem. 2003, 51, 3958–3965. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Jalali Sendi, J.; Ziaee, M.; Krutmuang, P. Acaricidal, Insecticidal, and Nematicidal Efficiency of Essential Oils Isolated from the Satureja Genus. Int. J. Environ. Res. Public Health 2021, 18, 6050. [Google Scholar] [CrossRef]
- Tepe, B. Inhibitory Effect of Satureja on Certain Types of Organisms. Rec. Nat. Prod. 2015, 9, 1–18. [Google Scholar]
- Anchev, M. Genus Satureja L. In Flora Reipublicae Popularis Bulgaricae; Velčev, V., Ed.; Aedibus Academiae Scientiarum Bulgaria: Sofia, Bulgaia, 1989; pp. 336–338. (In Bulgarian) [Google Scholar]
- Matevski, V.; Čarni, A.; Ćušterevska, R.; Kostadinovski, M.; Mucina, L. Syntaxonomy and biogeography of dry grasslands on calcareous substrates in the central and southern Balkans. Appl. Veg. Sci. 2018, 21, 488–513. [Google Scholar] [CrossRef]
- Todorova, S.; Tzonev, R. Bromo Moesiacae-Stipetum Epilosae—A New Association from the Relict Mountain Steppe Vegetation in South-Western Bulgaria. Hacquetia 2010, 9, 185–206. [Google Scholar] [CrossRef]
- Šilić, C. Monographie der Gattungen Satureja L., Calamintha Miller Micromeria Bentham, Acinos Miller und Clinopodium L. In Flora Jugoslaviens; Svjetlost: Sarajevo, Bosnia and Herzegovina, 1979. [Google Scholar]
- Gopčević, K.; Grujić, S.; Arsenijević, J.; Karadžić, I.; Izrael-Živković, L.; Maksimović, Z. Phytochemical Properties of Satureja kitaibelii, Potential Natural Antioxidants: A New Insight. Plant Foods Hum. Nut. 2019, 74, 179–184. [Google Scholar] [CrossRef]
- Kundaković, T.; Milenković, M.; Zlatković, S.; Kovacević, N.; Goran, N. Composition of Satureja kitaibelii essential oil and its antimicrobial activity. Nat. Prod. Commun. 2011, 6, 1353–1356. [Google Scholar] [CrossRef] [PubMed]
- Mihajilov-Krstev, T.; Kitić, D.; Radnović, D.; Ristić, M.; Mihajlović-Ukropina, M.; Zlatković, B. Chemical composition and antimicrobial activity of Satureja kitaibelii essential oil against pathogenic microbial strains. Nat. Prod. Commun. 2011, 6, 1167–1172. [Google Scholar] [CrossRef] [PubMed]
- Aćimović, M.; Zorić, M.; Zheljazkov, V.D.; Pezo, L.; Čabarkapa, I.; Stanković Jeremić, J.; Cvetković, M. Chemical Characterization and Antibacterial Activity of Essential Oil of Medicinal Plants from Eastern Serbia. Molecules 2020, 25, 5482. [Google Scholar] [CrossRef] [PubMed]
- Dimitrijević, M.V.; Miladinović, L.C.; Marković, M.S.; Arsić, B.; Mihajilov-Krstev, T.M.; Miladinović, D.L. New Facts on the Antimicrobial Essential Oil of Satureja kitaibelii. Chem. Biodivers. 2024, 21, e202301418. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Semerdjieva, I.B.; Cantrell, C.L.; Astatkie, T.; Aćimović, M. Phytochemical Variability of Essential Oils of Two Balkan Endemic Species: Satureja pilosa Velen. and S. kitaibelii Wierzb. ex Heuff. (Lamiaceae). Molecules 2022, 27, 3153. [Google Scholar] [CrossRef]
- Miladinović, D.L.; Dimitrijević, M.V.; Miladinović, L.C.; Marković, M.S.; Stojanović, G.S. Seasonal variation in the essential oil of Satureja kitaibelii determines chemotypes. J. Essent. Oil Res. 2022, 34, 567–575. [Google Scholar] [CrossRef]
- Dodoš, T.; Rajčević, N.; Janaćković, P.; Vujisić, L.; Marin, P.D. Essential oil profile in relation to geographic origin and plant organ of Satureja kitaibelii Wierzb. Ex Heuff. Ind. Crop Prod. 2019, 139, 111549. [Google Scholar] [CrossRef]
- Gavrilova, A.; Nikolova, M.; Gavrilov, G. Phytochemical screening of Satureja kitaibelii Wierzb. Ex Heuff. Extracts by GC/MS and TLC. Farmacia 2023, 71, 91–96. [Google Scholar] [CrossRef]
- Souiy, Z. Essential Oil Extraction Process. In Essential Oils—Recent Advances, New Perspectives and Applications; Viskelis, J., Ed.; Intech Open: Rijeka, Croatia, 2024; pp. 1–15. [Google Scholar] [CrossRef]
- Wollenweber, E.; Dörr, M.; Rustaiyan, A.; Roitman, J.; Graven, E. Notes: Exudate Flavonoids of Some Salvia and a Trichostema Species. Z. Naturforsch. C J. Biosci. 1992, 47, 782–784. [Google Scholar] [CrossRef]
- Berkov, S.; Pechlivanova, D.; Denev, R.; Nikolova, M.; Georgieva, L.; Sidjimova, B.; Bakalov, D.; Tafradjiiska, R.; Stoynev, A.; Momekov, G.; et al. GC-MS analysis of Amaryllidaceae and Sceletium-type alkaloids in bioactive fractions from Narcissus cv. Hawera. Rapid Commun. Mass. Spectrom. 2021, 35, e9116. [Google Scholar] [CrossRef]
- Hummel, J.; Strehmel, N.; Selbig, J.; Walther, D.; Kopka, J. Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics 2010, 6, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, M.; Lyubenova, A.; Yankova-Tsvetkova, E.; Georgiev, B.; Berkov, S.; Aneva, I.; Trendafilova, A. Artemisia Santonicum L. and Artemisia Lerchiana Web. Essential Oils and Exudates as Sources of Compounds with Pesticidal Action. Plants 2023, 12, 3491. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Zygadlo, J.A.; Guzman, C.A.; Grosso, N.R. Antifungal Properties of the Leaf Oils of Tagetes minuta L. and T. filifolia Lag. J. Essent. Oil Res. 1994, 6, 617–621. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- López, S.; Bastida, J.; Viladomat, F.; Codina, C. Acetylcholinesterase Inhibitory Activity of Some Amaryllidaceae Alkaloids and Narcissus Extracts. Life Sci. 2002, 71, 2521–2529. [Google Scholar] [CrossRef]
- Atak, M.; Mavi, K.; Uremis, I. Bio-herbicidal effects of oregano and rosemary essential oils on germination and seedling growth of bread wheat cultivars and weeds. Rom. Biotechnol. Lett. 2016, 21, 11149–11159. [Google Scholar]
- Chalchat, J.-C.; Gorunovic, M.S.; Maksimovic, Z.A. Essential Oil of Satureja kitaibelii Wierzb. F. Aristata (Vand.) Hayek, Lamiaceae from Eastern Serbia. J. Essent. Oil Res. 1999, 11, 691–692. [Google Scholar] [CrossRef]
- Konakchiev, A.; Tsankova, E. The Essential Oils of Satureja montana ssp. kitaibelii Wierzb. and Satureja pilosa var. pilosa Velen from Bulgaria. J. Essent. Oil Res. 2002, 14, 120–121. [Google Scholar] [CrossRef]
- Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Tsetegho Sokeng, A.J.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M.; et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef] [PubMed]
- Balahbib, A.; El Omari, N.; Hachlafi, N.E.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health beneficial and pharmacological properties of p-cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef] [PubMed]
- de Cássia da Silveira e Sá, R.; Andrade, L.N.; de Sousa, D.P. A review on anti-inflammatory activity of monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yan, Y.; Liu, W.; Liu, J.; Fan, T.; Deng, H.; Cai, Y. Advances and perspectives on pharmacological activities and mechanisms of the monoterpene borneol. Phytomedicine 2024, 132, 155848. [Google Scholar] [CrossRef]
- Bendre, R.; Bagul, S.; Rajput, J. Carvacrol: An excellent natural pest control agent. Nat. Prod. Chem. Res. 2018, 6, 349. [Google Scholar] [CrossRef]
- Muñoz, M.; Torres-Pagán, N.; Peiró, R.; Guijarro, R.; Sánchez-Moreiras, A.M.; Verdeguer, M. Phytotoxic effects of three natural compounds: Pelargonic acid, carvacrol, and cinnamic aldehyde, against problematic weeds in Mediterranean crops. Agronomy 2020, 10, 791. [Google Scholar] [CrossRef]
- Jesus, J.A.; Lago, J.H.; Laurenti, M.D.; Yamamoto, E.S.; Passero, L.F. Antimicrobial activity of oleanolic and ursolic acids: An update. Evid. Based Complement. Alternat Med. 2015, 2015, 620472. [Google Scholar] [CrossRef]
- Chung, Y.K.; Heo, H.J.; Kim, E.K.; Kim, H.K.; Huh, T.L.; Lim, Y.; Kim, S.K.; Shin, D.H. Inhibitory effect of ursolic acid purified from Origanum majorana L on the acetylcholinesterase. Mol. Cells 2001, 11, 137–143. [Google Scholar] [CrossRef]
- Stępnik, K.; Kukula-Koch, W.; Plazinski, W.; Rybicka, M.; Gawel, K. Neuroprotective Properties of Oleanolic Acid—Computational-Driven Molecular Research Combined with In Vitro and In Vivo Experiments. Pharmaceuticals 2023, 16, 1234. [Google Scholar] [CrossRef]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Švarc-Gajić, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of phenolic compounds and antioxidant activity of a Mediterranean plant: The case of Satureja montana subsp. kitaibelii. J. Funct. Foods 2015, 18, 1167–1178. [Google Scholar] [CrossRef]
- Pan, L.; He, F.; Liang, Q.; Bo, Y.; Lin, X.; Javed, Q.; Ullah, M.S.; Sun, J. Allelopathic Effects of Caffeic Acid and Its Derivatives on Seed Germination and Growth Competitiveness of Native Plants (Lantana indica) and Invasive Plants (Solidago canadensis). Agriculture 2023, 13, 1719. [Google Scholar] [CrossRef]
- Widmer, T.L.; Laurent, N. Plant extracts containing caffeic acid and rosmarinic acid inhibit zoospore germination of Phytophthora spp. pathogenic to Theobroma cacao. Eur. J. Plant Pathol. 2006, 115, 377–388. [Google Scholar] [CrossRef]
- Jian, Y.; Chen, X.; Ma, H.; Zhang, C.; Luo, Y.; Jiang, J.; Yin, Y. Limonene formulation exhibited potential application in the control of mycelial growth and deoxynivalenol production in Fusarium graminearum. Front. Microbiol. 2023, 14, 1161244. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liao, H.; Li, Y.; Qi, Y.; Ni, H.; Zou, Z.; Liu, Z. Chemical composition and antifungal activity of Cinnamomum camphora chvar. Borneol essential oil obtained using solvent-free microwave-assisted method. Arab. J. Chem. 2023, 16, 104996. [Google Scholar] [CrossRef]
- Lopez, M.D.; Pascual-Villalobos, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crops Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Caputo, L.; Amato, G.; De Martino, L.; De Feo, V.; Nazzaro, F. Anti-Cholinesterase and Anti--Amylase Activities and Neuroprotective Effects of Carvacrol and p-Cymene and Their Effects on Hydrogen Peroxide Induced Stress in SH-SY5Y Cells. Int. J. Mol. Sci. 2023, 24, 6073. [Google Scholar] [CrossRef]
- Gülçin, İ.; Scozzafava, A.; Supuran, C.T.; Koksal, Z.; Turkan, F.; Çetinkaya, S.; Bingöl, Z.; Huyut, Z.; Alwasel, S.H. Ros-marinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholin-esterase, butyrylcholinesterase and carbonic anhydrase isoenzymes. J. Enzyme Inhib. Med. Chem. 2016, 31, 1698–1702. [Google Scholar] [CrossRef]
- Kamli, M.R.; Sharaf, A.A.M.; Sabir, J.S.M.; Rather, I.A. Phytochemical Screening of Rosmarinus officinalis L. as a Potential Anticholinesterase and Antioxidant–Medicinal Plant for Cognitive Decline Disorders. Plants 2022, 11, 514. [Google Scholar] [CrossRef]
- Khan, S.; Taning, C.N.T.; Bonneure, E.; Mangelinckx, S.; Smagghe, G.; Ahmad, R.; Fatima, N.; Asif, M.; Shah, M.M. Bioactivity-guided isolation of rosmarinic acid as the principle bioactive compound from the butanol extract of Isodon rugosus against the pea aphid, Acyrthosiphon pisum. PLoS ONE 2019, 14, e0215048. [Google Scholar] [CrossRef]
- Silva, F.V.M.; Martins, A.; Salta, J.; Neng, N.R.; Nogueira, J.M.F.; Mira, D.; Gaspar, N.; Justino, J.; Grosso, C.; Urieta, J.S.; et al. Phytochemical Profile and Anticholinesterase and Antimicrobial Activities of Supercritical versus Conventional Extracts of Satureja montana. J. Agric. Food Chem. 2009, 57, 11557–11563. [Google Scholar] [CrossRef]
- Cabana, R.; Silva, L.R.; Valentão, P.; Viturro, C.I.; Andrade, P.B. Effect of different extraction methodologies on the recovery of bioactive metabolites from Satureja parvifolia (Phil.) Epling (Lamiaceae). Ind. Crop Prod. 2013, 48, 49–56. [Google Scholar] [CrossRef]
- Les, F.; Galiffa, V.; Cásedas, G.; Moliner, C.; Maggi, F.; López, V.; Gómez-Rincón, C. Essential Oils of Two Subspecies of Satureja montana L. against Gastrointestinal Parasite Anisakis simplex and Acetylcholinesterase Inhibition. Molecules 2024, 29, 19. [Google Scholar] [CrossRef] [PubMed]
- Uslu, Ö.; Gedik, O.; Kaya, A.; Khan, M.; Tassever, M.; Turkkaya, E. Allelopathic Effects of Flower Extract of Oleander (Nerium Oleander) on the Germination of Seed and Seedling Growth of Lolium Multiflorum. J. Inst. Sci. Technol. 2018, 8, 309–3017. [Google Scholar] [CrossRef]
- El-Mergawi, R.A.; Al-Humaid, A.I. Searching for natural herbicides in methanol extracts of eight plant species. Bull. Nat. Res. Cent. 2019, 43, 22. [Google Scholar] [CrossRef]
- Ben Kaab, S.; Lins, L.; Hanafi, M.; Bettaieb Rebey, I.; Deleu, M.; Fauconnier, M.-L.; Ksouri, R.; Jijakli, M.H.; De Clerck, C. Cynara cardunculus Crude Extract as a Powerful Natural Herbicide and Insight into the Mode of Action of Its Bioactive Molecules. Biomolecules 2020, 10, 209. [Google Scholar] [CrossRef]
- Wahyuni, D.S.C.; Van der Kooy, F.; Klinkhamer, P.G.L.; Verpoorte, R.; Leiss, K. The Use of Bio-Guided Fractionation to Explore the Use of Leftover Biomass in Dutch Flower Bulb Production as Allelochemicals against Weeds. Molecules 2013, 18, 4510–4525. [Google Scholar] [CrossRef]
- Hernández, I.; Munné-Bosch, S. Naringenin inhibits seed germination and seedling root growth through a salicylic acid-independent mechanism in Arabidopsis thaliana. Plant Physiol. Biochem. 2012, 61, 24–28. [Google Scholar] [CrossRef]
RT | RI | Compound | Area, % |
---|---|---|---|
16.04 | 927 | β-Thujene | 0.60 ± 0.1 |
16.41 | 935 | α-Pinene | 3.68 ± 0.4 |
16.76 | 952 | Camphene | 1.20 ± 0.7 |
18.14 | 991 | β-Myrcene | 0.96 ± 0.1 |
18.50 | 1017 | α-Terpinene | 0.38 ± 0.1 |
19.71 | 1022 | p-Cymene | 23.94 ± 1.8 |
19.82 | 1031 | D-Limonene | 8.57 ± 0.9 |
20.00 | 1032 | Eucalyptol | 0.84 ± 0.2 |
20.14 | 1042 | β-Ocimene | 0.67 ± 0.1 |
20.77 | 1060 | γ-Terpinene | 2.70 ± 0.5 |
21.28 | 1070 | Sabinene hydrate | 1.67 ± 0.7 |
21.98 | 1097 | Linalool | 0.53 ± 0.1 |
24.89 | 1166 | endo-Borneol | 7.15 ± 0.6 |
25.02 | 1177 | Terpinen-4-ol | 2.67 ± 0.4 |
26.51 | 1244 | Carvacrol methyl ether | 6.97 ± 0.5 |
26.75 | 1253 | Geraniol | 8.63 ± 0.4 |
28.22 | 1299 | Carvacrol | 7.22 ± 0.6 |
31.01 | 1388 | (–)-β-Bourbonene | 1.45 ± 0.1 |
32.08 | 1419 | Caryophyllene | 1.29 ± 0.3 |
33.59 | 1432 | β-Copaene | 0.53 ± 0.1 |
33.84 | 1509 | β-Bisabolene | 1.28 ± 0.2 |
35.58 | 1578 | (+)-Spathulenol | 1.20 ± 0.2 |
35.71 | 1581 | Caryophyllene oxide | 1.57 ± 0.1 |
RI | Compound | Amount, μg * | |
---|---|---|---|
Exudate Fraction | Methanolic Extract | ||
1220 | Borneol | 163.9 ± 26 | 16.5 ± 3 |
1249 | Benzoic Acid | – | 2.9 ± 0.7 |
1289 | Glycerol | 479.9 ± 31 | 755.3 ± 24 |
1321 | Succinic acid | 19.0 ± 8 | 79.0 ± 11 |
1339 | Carvacrol | 634.7 ± 17 | 259.8 ± 19 |
1396 | Hydroquinone | 3.1 ± 0.9 | – |
1497 | Malic acid | 33.7 ± 4 | 22.1 ± 6 |
1624 | Ribofuranose | – | 156.6 ± 10 |
1635 | 4-Hydroxybenzoic acid | 11.4 ± 0.5 | 5.2 ± 2 |
1776 | Vanillic acid | 1.1 ± 0.6 | – |
1803 | Fructose 1 | 273.1 ± 33 | 661.0 ± 25 |
1811 | Fructose 2 | 450.7 ± 45 | 1510.4 ± 67 |
1835 | Protocatechuic acid | 10.2 ± 3 | 10.4 ± 8 |
1842 | Quinic acid | 18.6 ± 5 | 167.4 ± 12 |
1855 | Syringic acid | – | 8.5 ± 0.9 |
1890 | D-Glucopyranose | 130.5 ± 6 | 1122.2 ± 68 |
1946 | 4-Hydroxycinnamic acid | 4.01 ± 1.4 | 2.5 ± 0.7 |
1996 | Methyl caffeate | 10.6 ± 1.2 | – |
2040 | Hexadecanoic acid | 646.4 ± 49 | 134.6 ± 28 |
2080 | Catechollactate | 16.4 ± 2.9 | 222.6 ± 31 |
2104 | Ferulic acid | 15.1 ± 3.2 | 0.8 ± 0.1 |
2129 | Myo-Inositol | 43.4 ± 9 | 2876.9 ± 87 |
2155 | Caffeic acid | 16.1 ± 2.4 | 56.1 ± 16 |
2212 | Octadienoic acid | 161.5 ± 11 | 170.9 ± 21 |
2218 | Octatrienoic acid | 302.4 ± 24 | 241.86 ± 28 |
2246 | Stearic acid | 40.7 ± 3 | 29.9 ± 12 |
2628 | Sucrose | 410.0 ± 32 | 6597.0 ± 167 |
2838 | Tetracosanoic acid | 69.4 ± 10 | – |
2872 | Naringenin | 74.7 ± 12 | – |
2900 | Nonacosane C29H60 | 486.2 ± 56 | – |
2942 | Taxifolin | 8.5 ± 2 | – |
3100 | Hentriacontane C31H64 | 340.9 ± 44 | – |
3122 | Methylated flavone | 50.2 ± 10 | – |
3194 | β-Sitosterol | 137.0 ± 13 | 96.2 ± 33 |
3335 | β-Amyrin | 16.2 ± 8 | 3.8 ± 2 |
3455 | Rosmarinic acid | 7.5 ± 2 | 469.2 ± 43 |
3540 | Uvaol | 107.3 ± 17 | 20.3 ± 8 |
3570 | Oleanolic acid | 3505.55 ± 204 | 128.6 ± 12 |
3580 | Betulinic acid | 67.5 ± 21 | 2.3 ± 0.9 |
3620 | Ursolic acid | 4457.9 ± 267 | 244.5 ± 21 |
3632 | Micromeric acid | 47.3 ± 12 | – |
Compounds | Rf Values in Different TLC Conditions * | |||
---|---|---|---|---|
SG, S1 | SG, S2 | SG, S3 | PA, S4 | |
Xanthomicrol | 0.62 | 0.95 | ||
Scutellarein 6 methyl ether | 0.50 | 0.71 | ||
Rosmarinic acid | 0.98 | 0.73 | ||
Luteolin-7-glucoronide | 0.50 | |||
Rutin | 0.31 | 0.06 |
ME Concentration, mg/mL | Inhibition of Seed Germination, % | Inhibition of Root Growth, % |
---|---|---|
1 | 13.4 ± 9 | 1 ± 1 |
3 | 21.8 ± 8 | 56 ± 6 |
5 | 95.8 ± 3 | 97.5 ± 1 |
8 | 99.4 ± 1 | 100 ± 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolova, M.; Lyubenova, A.; Yankova-Tsvetkova, E.; Georgiev, B.; Gavrilov, G.; Gavrilova, A. Satureja kitaibelii Essential Oil and Extracts: Bioactive Compounds and Pesticide Properties. Agronomy 2025, 15, 357. https://doi.org/10.3390/agronomy15020357
Nikolova M, Lyubenova A, Yankova-Tsvetkova E, Georgiev B, Gavrilov G, Gavrilova A. Satureja kitaibelii Essential Oil and Extracts: Bioactive Compounds and Pesticide Properties. Agronomy. 2025; 15(2):357. https://doi.org/10.3390/agronomy15020357
Chicago/Turabian StyleNikolova, Milena, Aneta Lyubenova, Elina Yankova-Tsvetkova, Borislav Georgiev, Genadi Gavrilov, and Anna Gavrilova. 2025. "Satureja kitaibelii Essential Oil and Extracts: Bioactive Compounds and Pesticide Properties" Agronomy 15, no. 2: 357. https://doi.org/10.3390/agronomy15020357
APA StyleNikolova, M., Lyubenova, A., Yankova-Tsvetkova, E., Georgiev, B., Gavrilov, G., & Gavrilova, A. (2025). Satureja kitaibelii Essential Oil and Extracts: Bioactive Compounds and Pesticide Properties. Agronomy, 15(2), 357. https://doi.org/10.3390/agronomy15020357