Mitigating Water Loss in Arid Lands: Buffelgrass as a Potential Replacement for Alfalfa in Livestock Feed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Alfalfa Fields
2.2. Alfalfa Forage Yield and Interval Cutting
2.3. Germination, Yield and Overgrazing, and Diversity of Cenchrus ciliaris
2.4. Dry Matter, Chemical Composition and Digestibility
2.5. Statistical Analysis
3. Results
3.1. Alfalfa Crop
3.2. Germination of Cenchrus ciliaris
3.3. Morphological Diversity
3.4. Dry Matter Yield and Resistance to Overgrazing
3.5. Correlations
3.6. Comparison Between Alfalfa and Buffelgrass for Yield, Chemical Composition, and Digestibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehmood, T.; Hassan, M.A.; Ashraf, A.; Ilić, P.; Peng, L.; Bibi, S.; Sattar, M.; Bilal, M.; Ali, L.; Yousaf, H. Changing Carbon Dynamics under Climate Change and Land Degradation in MENA Region: Prospective of Innovative Management Practices. In Climate Change and Environmental Degradation in the MENA Region; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Fahmi, K.J.; Abed, S.A. Climate Change: Droughts and Increasing Desertification in the Middle East, with Special Reference to Iraq. Engineering 2022, 14, 235–273. [Google Scholar] [CrossRef]
- Mondal, S.; Palit, D. Challenges in Natural Resource Management for Ecological Sustainability. In Natural Resources Conservation and Advances for Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 29–59. [Google Scholar]
- Mseddi, K.; Al-Shammari, A.; Sharif, H.; Chaieb, M. Plant Diversity and Relationships with Environmental Factors after Rangeland Exclosure in Arid Tunisia. Turk. J. Bot. 2016, 40, 287–297. [Google Scholar] [CrossRef]
- Jimoh, S.O.; Feng, X.; Li, P.; Hou, Y.; Hou, X. Risk-Overgrazing Relationship Model: An Empirical Analysis of Grassland Farms in Northern China. Rangel. Ecol. Manag. 2020, 73, 463–472. [Google Scholar] [CrossRef]
- Azaiez, O.B.; Alharbi, M.; Alhajoj, A.; Alruwaili, F.; Njeru, J. Effects of Community Camel and Sheep Grazing on Vegetation Cover in Al-Mayla Rangeland in Northern Saudi Arabia. Range Manag. Agrofor. 2023, 44, 226–232. [Google Scholar]
- Swain, C.K.; Mohapat, K.K. Soils’ Role in Meeting Global Demand for Food, Water, and Bioenergy. In Environmental Nexus for Resource Management; CRC Press: Boca Raton, FL, USA, 2025; pp. 169–187. [Google Scholar]
- Wolf, I.D.; Sobhani, P.; Esmaeilzadeh, H. Assessing Changes in Land Use/Land Cover and Ecological Risk to Conserve Protected Areas in Urban–Rural Contexts. Land 2023, 12, 231. [Google Scholar] [CrossRef]
- Mseddi, K.; Alghamdi, A.; Sharawy, S.; Ibrahim, N. Screening of Weeds and Their Effect on Alfalfa (Medicago sativa). Indian J. Agric. Sci. 2017, 87, 1565–1571. [Google Scholar] [CrossRef]
- General Authority for Statistics. Alfalfa Statistics; General Authority for Statistics: Riyadh, Saudi Arabia, 2017. [Google Scholar]
- Alaqeel, K.M. In Proceedings of the 1st ALFALFA SYMPOSIUM, Châlons-En-Champagne, France, 8 February 2017; NADEC: Riyadh, Saudi Arabia, 2017.
- Odnoletkova, N.; Patzek, T.W. Water Resources in Saudi Arabia: Trends in Rainfall, Water Consumption, and Analysis of Agricultural Water Footprint. NPJ Sustain. Agric. 2023, 1, 7. [Google Scholar] [CrossRef]
- Kanatas, P.; Gazoulis, I.; Travlos, I. Irrigation Timing as a Practice of Effective Weed Management in Established Alfalfa (Medicago sativa L.) Crop. Agronomy 2021, 11, 550. [Google Scholar] [CrossRef]
- McNeill, M.R.; Tu, X.; Altermann, E.; Beilei, W.; Shi, S. Sustainable Management of Medicago sativa for Future Climates: Insect Pests, Endophytes and Multitrophic Interactions in a Complex Environment. Front. Agron. 2022, 4, 825087. [Google Scholar] [CrossRef]
- Cubo, M.T.; Alías-Villegas, C.; Balsanelli, E.; Mesa, D.; De Souza, E.; Espuny, M.R. Diversity of Sinorhizobium (Ensifer) meliloti Bacteriophages in the Rhizosphere of Medicago marina: Myoviruses, Filamentous and N4-like Podovirus. Front. Microbiol. 2020, 11, 22. [Google Scholar] [CrossRef]
- Palma, G.R.; Coutinho, R.M.; Godoy, W.A.C.; Cônsoli, F.L.; Kraenkel, R.A. Bacteriophage Effect on Parasitism Resistance. arXiv 2022, arXiv:2205.03382. [Google Scholar]
- Allbed, A.; Kumar, L.; Shabani, F. Climate Change Impacts on Date Palm Cultivation in Saudi Arabia. J. Agric. Sci. 2017, 155, 1203–1218. [Google Scholar] [CrossRef]
- Wu, J.; Gu, Y.; Sun, K.; Wang, N.; Shen, H.; Wang, Y.; Ma, X. Correlation of Climate Change and Human Activities with Agricultural Drought and Its Impact on the Net Primary Production of Winter Wheat. J. Hydrol. 2023, 620, 129504. [Google Scholar] [CrossRef]
- Haque, M.I.; Khan, M.R. Impact of Climate Change on Food Security in Saudi Arabia: A Roadmap to Agriculture-Water Sustainability. J. Agribus. Dev. Emerg. Econ. 2022, 12, 1–18. [Google Scholar] [CrossRef]
- Koech, O.K.; Kinuthia, R.N.; Karuku, G.N.; Mureithi, S.M.; Wanjogu, R. Water Use Efficiency of Six Rangeland Grasses under Varied Soil Moisture Content Levels in the Arid Tana River County, Kenya. Afr. J. Environ. Sci. Technol. 2015, 9, 632–640. [Google Scholar] [CrossRef]
- Yáñez-Chávez, L.G.; Pedroza-Sandoval, A.; Sánchez-Cohen, I.; Velásquez-Valle, M.A.; Trejo-Calzada, R. Growth, Physiology, and Productivity of Bouteloua gracilis and Cenchrus ciliaris Using Moisture Retainers under Different Planting Methods. Agriculture 2023, 13, 1134. [Google Scholar] [CrossRef]
- Ngenzi, O.D.; Ruvuga, P.R.; Msalya, G.M.; Maleko, D.D.; Tefera, S. Participatory Establishment of Cenchrus ciliaris Forage Grass among Pastoralists in a Semi-Arid Rangeland Area of Eastern Tanzania. Afr. J. Range Forage Sci. 2024, 41, 29–38. [Google Scholar] [CrossRef]
- Ameer, A.; Ahmad, F.; Asghar, N.; Hameed, M.; Ahmad, K.S.; Mehmood, A.; Nawaz, F.; Shehzad, M.A.; Mumtaz, S.; Kaleem, M. Aridity-Driven Changes in Structural and Physiological Characteristics of Buffel Grass (Cenchrus ciliaris L.) from Different Ecozones of Punjab Pakistan. Physiol. Mol. Biol. Plants 2023, 29, 1205–1224. [Google Scholar] [CrossRef]
- Martins, D.J. Grasses of East Africa; Penguin Random House: Cape Town, South Africa, 2022; ISBN 1775847608. [Google Scholar]
- Rhodes, A.C.; Rutledge, J.; DuPont, B.; Plowes, R.M.; Gilbert, L.E. Targeted Grazing of an Invasive Grass Improves Outcomes for Native Plant Communities and Wildlife Habitat. Rangel. Ecol. Manag. 2021, 75, 41–50. [Google Scholar] [CrossRef]
- Rhodes, A.C.; Plowes, R.M.; Gilbert, L.E. Mitigating Buffelgrass Invasion through Simulated Targeted Grazing: Understanding Restoration Potential in a Variable Precipitation Regime. Restor. Ecol. 2023, 31, e13923. [Google Scholar] [CrossRef]
- Kharrat-Souissi, A.; Baumel, A.; Torre, F.; Chaieb, M. Genetic Differentiation of the Dominant Perennial Grass Cenchrus ciliaris L. Contributes to Response to Water Deficit in Arid Lands. Rangel. J. 2012, 34, 55–62. [Google Scholar] [CrossRef]
- Singh, S.; Koli, P.; Singh, T.; Das, M.M.; Maity, S.B.; Singh, K.K.; Katiyar, R.; Misra, A.K.; Mahanta, S.K.; Srivastava, M.K. Assessing Genotypes of Buffel Grass (Cenchrus ciliaris) as an Alternative to Maize Silage for Sheep Nutrition. PLoS ONE 2024, 19, e0304328. [Google Scholar] [CrossRef] [PubMed]
- Kharrat-Souissi, A.; Baumel, A.; Mseddi, K.; Torre, F.; Chaieb, M. Polymorphism of Cenchrus ciliaris L. a Perennial Grass of Arid Zones. Afr. J. Ecol. 2011, 49, 209–220. [Google Scholar] [CrossRef]
- Tommasino, E.; López Colomba, E.; Carrizo, M.; Grunberg, K.; Quiroga, M.; Carloni, E.; Griffa, S.; Ribotta, A.; Luna, C. Individual and Combined Effects of Drought and Heat on Antioxidant Parameters and Growth Performance in Buffel Grass (Cenchrus ciliaris L.) Genotypes. S. Afr. J. Bot. 2018, 119, 104–111. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G.; Sauvant, D.; Renaudeau, D.; Bastianelli, D.; Lebas, F. Lablab (Lablab purpureus). Feedipedia, a Programme by INRA, CIRAD, AFZ and FAO. 2016. Available online: https://www.feedipedia.org/node/297 (accessed on 2 November 2024).
- Kharrat-Souissi, A.; Siljak-Yakovlev, S.; Brown, S.C.; Baumel, A.; Torre, F.; Chaieb, M. The Polyploid Nature of Cenchrus ciliaris L. (Poaceae) Has Been Overlooked: New Insights for the Conservation and Invasion Biology of This Species—A Review. Rangel. J. 2014, 36, 11–23. [Google Scholar] [CrossRef]
- Arshadullah, M.; Malik, M.A.; Rasheed, M.; Jilani, G.; Zahoor, F.; Kaleem, S. Seasonal and Genotypic Variations Influence the Biomass and Nutritional Ingredients of Cenchrus ciliaris Grass Forage. Int. J. Agric. Biol. 2011, 13, 120–124. [Google Scholar]
- Sanderson, M.A.; Voigt, P.; Jones, R.M. Yield and Quality of Warm-Season Grasses in Central Texas. J. Range Manag. 1999, 52, 145. [Google Scholar] [CrossRef]
- Kisambo, B.K.; Wasonga, O.V.; Koech, O.K.; Karuku, G.N. Morphological and Productivity Responses of Buffel Grass (Cenchrus ciliaris) and Guinea Grass (Panicum maximum) Ecotypes to Simulated Grazing in a Semi-arid Environment. Grassl. Res. 2022, 1, 290–300. [Google Scholar] [CrossRef]
- Alhammad, B.A.; Mohamed, A.; Raza, M.A.; Ngie, M.; Maitra, S.; Seleiman, M.F.; Wasonga, D.; Gitari, H.I. Optimizing Productivity of Buffel and Sudan Grasses Using Optimal Nitrogen Fertilizer Application under Arid Conditions. Agronomy 2023, 13, 2146. [Google Scholar] [CrossRef]
- Yigzaw, G.W. Effect of Harvesting Stage on Yield and Nutritive Value of Buffel Grass (Cenchrus ciliaris Linn) under Irrigation at Gewane District, North Eastern Ethiopia. J. Sci. Innov. Res. 2019, 8, 7–12. [Google Scholar] [CrossRef]
- Sultan, B.; Defrance, D.; Iizumi, T. Evidence of Crop Production Losses in West Africa Due to Historical Global Warming in Two Crop Models. Sci. Rep. 2019, 9, 12834. [Google Scholar] [CrossRef] [PubMed]
- El-Ghanim, W.M.; Hassan, L.M.; Galal, T.M.; Badr, A. Floristic Composition and Vegetation Analysis in Hail Region North of Central Saudi Arabia. Saudi J. Biol. Sci. 2010, 17, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Al-Turki, T.A.; Al-Olayan, H. Contribution to the Flora of Saudi Arabia: Hail Region. Saudi J. Biol. Sci. 2003, 10, 190–222. [Google Scholar]
- Alghamdi, A.; Mseddi, K.; Abdelgadir, M.; Sharawy, S. Inaccessible Zones of Jabal Salma, Ha’il Region in Saudi Arabia: A Reservoir for Native Seed Species. J. Exp. Biol. Agric. Sci. 2018, 6, 572–581. [Google Scholar] [CrossRef]
- Soufan, W.; Al-Suhaibani, N.; Tillmann, P.; Okla, M.K.; Abdel-Salam, E.M. Changes in Yield and Forage Quality of Six Alfalfa Cultivars in Response to Sustainable Irrigation with Treated Wastewater. Int. J. Agric. Biol. 2020, 24, 1286–1292. [Google Scholar]
- Soufan, W.; Okla, M.K.; Al-Ghamdi, A.A. Effects of Irrigation with Treated Wastewater or Well Water on the Nutrient Contents of Two Alfalfa (Medicago sativa L.) Cultivars in Riyadh, Saudi Arabia. Agronomy 2019, 9, 729. [Google Scholar] [CrossRef]
- Daur, I.; Saad, M.M.; Eida, A.A.; Ahmad, S.; Shah, Z.H.; Ihsan, M.Z.; Muhammad, Y.; Sohrab, S.S.; Hirt, H. Boosting Alfalfa (Medicago sativa L.) Production with Rhizobacteria from Various Plants in Saudi Arabia. Front. Microbiol. 2018, 9, 477. [Google Scholar] [CrossRef]
- Lizarazo-Ortega, C.; Rodríguez-Castillejos, G.; Bernal-Barragán, H.; Gutiérrez-Ornelas, E.; Olivares-Sáenz, E.; Hernández-Mendoza, J.L. Effect of Grazing, Cutting, and Irrigation on the Production and Nutritional Value of Buffelgrass. Rev. Mex. Cienc. Pecu. 2024, 15, 602–615. [Google Scholar] [CrossRef]
- Lloveras, J.; Chocarro, C.; Freixes, O.; Arqué, E.; Moreno, A.; Santiveri, F. Yield, Yield Components, and Forage Nutritive Value of Alfalfa as Affected by Seeding Rate under Irrigated Conditions. Agron. J. 2008, 100, 191–197. [Google Scholar] [CrossRef]
- Tesar, M.B.; Marble, V.L. Alfalfa Establishment. Alfalfa Alfalfa Improv. 1988, 29, 303–332. [Google Scholar]
- Al-Kahtani, S.N.; Taha, E.-K.A.; Al-Abdulsalam, M. Alfalfa (Medicago sativa L.) Seed Yield in Relation to Phosphorus Fertilization and Honeybee Pollination. Saudi J. Biol. Sci. 2017, 24, 1051–1055. [Google Scholar] [CrossRef]
- Soufan, W.; Dewir, Y.H.; Al-Suhaibani, N.A. In Vitro Evaluation of Seed Germination in Twelve Alfalfa Cultivars under Salt Stress. Phyton (B Aires) 2023, 92, 111–120. [Google Scholar] [CrossRef]
- Al-Soqeer, A.; Al-Otayk, S.M.; Motawei, M.I. Molecular Characterization of New Buffelgrass (‘Cenchrus ciliaris’) Genotypes. Plant Omics 2020, 13, 104–107. [Google Scholar] [CrossRef]
- Hacker, J.B.; Waite, R.B. Selecting Buffel Grass (Cenchrus ciliaris) with Improved Spring Yield in Subtropical Australia. Trop. Grassl. 2001, 35, 205–210. [Google Scholar]
- Muir, J.P.; Abrao, L. Agronomic Evaluation of 10 Cultivated Grasses in Semi-Arid Mozambique. Trop. Grassl. 1999, 33, 34–39. [Google Scholar]
- M’Seddi, K.; Visser, M.; Neffati, M.; Reheul, D.; Chaïeb, M. Seed and Spike Traits from Remnant Populations of Cenchrus ciliaris L. in South Tunisia: High Distinctiveness, No Ecotypes. J. Arid Environ. 2002, 50, 309–324. [Google Scholar] [CrossRef]
- Thiex, N. Evaluation of Analytical Methods for the Determination of Moisture, Crude Protein, Crude Fat, and Crude Fiber in Distillers Dried Grains with Solubles. J. AOAC Int. 2009, 92, 61–73. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Symposium: Carbohydrate Methodology, Metabolism, and Nutritional Implications in Dairy Cattle. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Wardeh, M.F. Models for Estimating Energy and Protein Utilization for Feed. Ph.D. Thesis, Utah State University, Logan, UT, USA, 1981. [Google Scholar]
- Díaz-Romeau, R.A.; Hunter, P. Metodología Para El Muestreo de Suelos y Tejidos de Investigación En Invernadero; CATIE: Turrialba, Costa Rica, 1978. [Google Scholar]
- Al-Naeem, M.A. Influence of Water Stress on Water Use Efficiency and Dry-Hay Production of Alfalfa in Al-Ahsa, Saudi Arabia. Int. J. Soil Sci. 2008, 3, 119–126. [Google Scholar] [CrossRef]
- Al-Suhaibani, N. Estimation Yield and Quality of Alfalfa and Clover for Mixture Cropping Pattern at Different Seeding Rates. Am. -Eurasian J. Agric. Environ. Sci. 2010, 8, 189. [Google Scholar]
- Abdullah, A.-D.A. Evaluation of 24 Local Seed Sources of Buffelgrass for Persistence and Forage Yield in the Riyadh Area. J. King Saud Univ. 2003, 15, 133–139. [Google Scholar]
- Rao, A.S.; Singh, K.C.; Wight, J.R. Productivity of Cenchrus Ciliaris in Relation to Rainfall and Fertilization. J. Range Manag. 1996, 49, 143. [Google Scholar] [CrossRef]
- Rajora, M.P.; Mahajan, S.S.; Bhatt, R.K.; Jindal, S.K.; Roy, M.M. Response of Genotypes to Cutting Management for Seed Yield in Cenchrus ciliaris Under Hot Arid Conditions. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2016, 86, 455–462. [Google Scholar] [CrossRef]
- Zaheer, I.E.; Ali, S.; Saleem, M.H.; Ali, M.; Riaz, M.; Javed, S.; Sehar, A.; Abbas, Z.; Rizwan, M.; El-Sheikh, M.A. Interactive Role of Zinc and Iron Lysine on Spinacia oleracea L. Growth, Photosynthesis and Antioxidant Capacity Irrigated with Tannery Wastewater. Physiol. Mol. Biol. Plants 2020, 26, 2435–2452. [Google Scholar] [CrossRef]
- Staniak, M.; Kocoń, A. Forage Grasses under Drought Stress in Conditions of Poland. Acta Physiol. Plant 2015, 37, 1–10. [Google Scholar] [CrossRef]
- Govaerts, R. World Checklist of Selected Plant Families; Royal Botanic Gardens: Kew, UK, 2009. [Google Scholar]
- Al-Dakheel, A.J.; Hussain, M.I. Genotypic Variation for Salinity Tolerance in Cenchrus ciliaris L. Front. Plant Sci. 2016, 7, 1090. [Google Scholar] [CrossRef]
- Ghafar, M.A.; Akram, N.A.; Saleem, M.H.; Wang, J.; Wijaya, L.; Alyemeni, M.N. Ecotypic Morphological and Physio-Biochemical Responses of Two Differentially Adapted Forage Grasses, Cenchrus ciliaris L. and Cyperus arenarius Retz. to Drought Stress. Sustainability 2021, 13, 8069. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Vendramini, J.M.B.; Pedreira, C.G.S.; Rios, E.F. Warm-season Grasses for Humid Areas. Forages Sci. Grassl. Agric. 2020, 2, 331–345. [Google Scholar]
- Duke, J.A. Handbook of Energy Crops. 1983. Available online: http://www.hort.purdue.edu/newcrop/duke_energy/Albizia_falcataria.html (accessed on 5 November 2024).
- Kharrat-Souissi, A.; Siljak-Yakovlev, S.; Brown, S.C.; Chaieb, M. Cytogeography of Cenchrus ciliaris (Poaceae) in Tunisia. Folia Geobot. 2013, 48, 95–113. [Google Scholar] [CrossRef]
- Cruz Martínez, A.; Pedroza Sandoval, A.; Trejo Calzada, R.; Sánchez Cohen, I.; Samaniego Gaxiola, J.A.; Hernández Salgado, R. Captación de Agua de Lluvia y Retención de Humedad Edáfica En El Establecimiento de Buffel (Cenchrus ciliaris L.). Rev. Mex. Cienc. Pecu. 2016, 7, 159–172. [Google Scholar] [CrossRef]
- Ventura, Y.; Sagi, M. Halophyte Crop Cultivation: The Case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- Al-Dakheel, A.J.; Hussain, M.I. Saving Fresh Water Resources through Cultivation of Salt-Tolerant Forage Grasses: Seasonal and Genotypic Variations. Biosalinity News 2015, 16, 10–12. [Google Scholar]
- Wasim, M.A.; Naz, N.; Zehra, S.S. Anatomical Characteristic, Ionic Contents and Nutritional Potential of Buffel Grass (Cenchrus ciliaris L.) under High Salinity. S. Afr. J. Bot. 2022, 144, 471–479. [Google Scholar] [CrossRef]
- Visser, M.; M’Seddi, K.; Chaïeb, M.; Neffati, M. Assessing Yield and Yield Stability of Remnant Populations of Cenchrus ciliaris L. in Arid Tunisia: Developing a Blueprint for Initiating Native Seed Production. Grass Forage Sci. 2008, 63, 301–313. [Google Scholar] [CrossRef]
- Negawo, A.T.; Muktar, M.S.; Gutiérrez, R.A.S.; Habte, E.; Muchugi, A.; Jones, C.S. A Genome-Wide Association Study of Biomass Yield and Feed Quality in Buffel Grass (Cenchrus ciliaris L.). Agriculture 2024, 14, 257. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Bertoldi, W. Plants and River Morphodynamics: The Emergence of Fluvial Biogeomorphology. River Res. Appl. 2024, 40, 887–942. [Google Scholar] [CrossRef]
- Peerzada, A.M.; Naeem, M. Germination Ecology of Cenchrus Biflorus Roxb.: Effects of Environmental Factors on Seed Germination. Rangel. Ecol. Manag. 2018, 71, 424–432. [Google Scholar] [CrossRef]
- Tmannetje, L.; Jones, R.M. Pasture and Animal Productivity of Buffel Grass with Siratro, Lucerne or Nitrogen-Fertilizer. Trop. Grassl. 1990, 24, 269–281. [Google Scholar]
- Kim, H.; Hyun, S.W.; Hoogenboom, G.; Porter, C.H.; Kim, K.S. Fuzzy Union to Assess Climate Suitability of Annual Ryegrass (Lolium multiflorum), Alfalfa (Medicago sativa) and Sorghum (Sorghum bicolor). Sci. Rep. 2018, 8, 10220. [Google Scholar] [CrossRef]
- Cinar, S.; Hatipoglu, R.; Avci, M.; Gundel, F.D.; Aktas, A. Quality Characteristics of the Mixtures of Some Warm Season Perennial Grasses with Alfalfa (Medicago sativa L.) under Irrigated Conditions in the Mediterranean Region of Turkey. Appl. Ecol. Environ. Res. 2018, 16, 7139–7154. [Google Scholar] [CrossRef]
- Theunissen, J.D. Biomass Production of Different Ecotypes of Threegrass Species of the Semi-Arid Grasslands of Southern Africa. J. Arid Environ. 1995, 29, 439–445. [Google Scholar] [CrossRef]
- Abu-Alrub, I.; Aran, A.; Hamad, O.; Awaga, A. Yield and Quality of Cenchrus ciliaris (L.) Affected by Nitrogen and Phosphorus Fertilization. J. Food Agric. Environ. 2014, 12, 139–142. [Google Scholar]
- Tinoco-Ojanguren, C.; Reyes-Ortega, I.; Sánchez-Coronado, M.E.; Molina-Freaner, F.; Orozco-Segovia, A. Germination of an Invasive Cenchrus ciliaris L. (Buffel Grass) Population of the Sonoran Desert under Various Environmental Conditions. S. Afr. J. Bot. 2016, 104, 112–117. [Google Scholar] [CrossRef]
- Hussey, M.A.; Bashaw, E.C. Performance of Buffelgrass Germplasm with Improved Winter Survival. Agron. J. 1996, 88, 944–946. [Google Scholar] [CrossRef]
Studied Accession names | |||||
Aja | Jameen | Zaitoun | Gaed | Industrial zone | |
Coordinates | 27°34’30.82”N 41°41’35.69”E | 27°28’56.87”N 41°41’47.35”E | 27°33’5.52”N 41°41’55.08”E | 27°51’27.45”N 41°43’55.26”E | 27°29’47.79”N 41°44’7.04”E |
Elevation (m) | 981 | 987 | 980 | 861 | 981 |
Discarded accession names | |||||
An Nisiyah | Aja-1 | Gaed-1 | Gaed-2 | Industrial zone-1 | |
Coordinates | 27°36’27.47”N 41°41’43.62”E | 27°34’15.94”N 41°42’9.51”E | 27°51’2.87”N 41°44’34.58”E | 27°51’43.93”N 41°45’17.19”E | 27°29’41.25”N 41°46’19.29”E |
Elevation (m) | 986 | 973 | 854 | 847 | 996 |
1st Year | 2nd, 3rd Year | 4th, 5th Year | Mean | ||
---|---|---|---|---|---|
Cut number | 1st cut | 4–5 | 8–10 | 5–6 | 6–7 |
Time interval (days) | 90 | 60 | 40 | 50 | 50 |
D.M.Y/cut (t ha−1) | 3.08 ± 0.16 | 2.46 ± 0.24 | 2.34 ± 0.28 | 1.72 ± 0.34 | 2.27 ± 0.52 ** |
Annual yield (t ha−1) | 16.42 ± 0.70 | 22.66 ± 1.1 | 11.94 ± 0.58 | 17 ± 5.3 ** | |
Alfalfa density (plant m−2) | 186.8 ± 31.6 | 171.5 ± 23.7 | 61.8 ± 27.2 | 140 ± 68 ** | |
Income (USD/Year/ha−1) | 3415 ± 27 | 4532 ± 82 | 2149 ± 61 | 3365 ± 56 | |
Weed Control Cost (USD/Year/ha−1) | <50 | 50 < Cost < 100 | 100 < cost < 200 | 50 < cost < 200 |
Accession | PL (cm) | PD (cm) | ST (cm) | LL (cm) | BN | SP (cm) | Similar Cultivar | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indust. Z. | 69.7 | ± | 9.1 c | 54.0 | ± | 7.9 e | 72.7 | ± | 7.6 c | 16.0 | ± | 1.0 c | 7.0 | ± | 1.0 a | 10.0 | ± | 1.0 b | Gayndah |
Gaed | 105.0 | ± | 5.0 a | 96.7 | ± | 2.9 a | 71.7 | ± | 3.2 c | 24.0 | ± | 1.0 b | 5.3 | ± | 0.6 b | 11.7 | ± | 0.6 a | Biloela |
Jameen | 110.0 | ± | 17.3 a | 86.7 | ± | 11.5 b | 104.0 | ± | 7.9 a | 34.0 | ± | 1.0 a | 4.0 | ± | 1.0 c | 11.7 | ± | 2.1 a | Bergbuffel |
Aja | 86.7 | ± | 5.8 b | 73.3 | ± | 2.9 c | 78.3 | ± | 7.6 a | 25.0 | ± | 2.0 b | 3.3 | ± | 0.6 d | 12.7 | ± | 1.2 c | Gayndah |
Zaitoun | 67.0 | ± | 2.6 c | 66.0 | ± | 1.0 d | 59.3 | ± | 5.1 d | 12.3 | ± | 2.5 d | 6.7 | ± | 1.2 a | 7.0 | ± | 0.0 d | Gayndah |
Average | 87.7 | ± | 19.9 | 75.3 | ± | 16.5 | 77.2 | ± | 16.3 | 22.3 | ± | 8.0 | 5.3 | ± | 1.7 | 10.6 | ± | 2.3 | |
P | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.001 |
Ac | Dry Matter DM (g) | Overgrazing OVG (g) | Yield (t ha−1) | ||||
---|---|---|---|---|---|---|---|
Indust. Z. | 254.7 | ± | 9.5 d | 501.7 | ± | 25.6 b | 9.3 ± 1.2 c |
Gaed | 492.7 | ± | 8.0 a | 866.7 | ± | 32.5 a | 16.9 ± 22.3 a |
Jameen | 513.3 | ± | 25.2 a | 940.3 | ± | 37.4 a | 18.4 ± 1.6 a |
Aja | 392.7 | ± | 6.4 a | 654.6 | ± | 14.9 b | 13.8 ± 2.1 b |
Zaitoun | 337.3 | ± | 22.7 bc | 580.8 | ± | 36.4 b | 12.0 ± 1.4 b |
Average | 398.1 | ± | 100.8 | 708.8 | ± | 29.3 | 14.1 ± 3.6 |
P | 0.000 | 0.069 | 0.012 |
PL | PD | ST | LL | BN | SP | DM | DEN | GER | |
---|---|---|---|---|---|---|---|---|---|
PL | 1 | ||||||||
PD | 0.915 ** | 1 | |||||||
ST | 0.725 ** | 0.437 | 1 | ||||||
LL | 0.821 ** | 0.638 * | 0.863 ** | 1 | |||||
BN | −0.578 * | −0.478 | −0.566 * | −0.744 ** | 1 | ||||
SP | 0.549 * | 0.411 | 0.594 * | 0.700 ** | −0.568 * | 1 | |||
DM | 0.892 ** | 0.925 ** | 0.565 * | 0.794 ** | −0.587 * | 0.454 | 1 | ||
DEN | −0.859 ** | −0.902 ** | −0.515 * | −0.633 * | 0.427 | −0.512 | −0.783 ** | 1 | |
GER | −0.21 | −0.113 | −0.251 | −0.194 | −0.343 | 0.062 | −0.217 | 0.049 | 1 |
Yield (t ha−1) | Irrigation (YES/NO) | Cuts Number/Year | |
---|---|---|---|
1- Medicago sativa | |||
Actual study | 11.94–22.66 | Yes, 2500–3000 mm/year | 5–10 cuts |
[58] | 2.21–5.33 | Yes, 1140–1220 mm | |
[59] | 16.36 | Yes | 5–6 cuts |
2- Cenchrus ciliaris | |||
Actual study | 9.30–18.4 | Yes, 400–500 mm | 4 |
[60] | 2.94–26.16 | Yes, 480 mm | 4 cuts (Seasonal) |
[61] | 0.50–3.00 | No, rain 180–250 mm | 3–4 |
[34] | 2.90–9.35 | No, rain 122–740 mm | 3 cuts |
[62] | 3.36–5.84 | No, rain 320–560 mm | 3 |
Nutrient (% DW) | Alfalfa | Buffelgrass |
---|---|---|
Dry matter | 90.30 ± 5.40 | 88.00 ± 4.70 |
Crude protein | 20.60 ± 2.40 | 8.30 ± 0.10 |
Crude fat | 2.36 ± 0.13 | 3.10 ± 0.17 |
Crude fiber | 23.60 ± 1.33 | 29.20 ± 3.30 |
ADF | 35.60 ± 3.40 | 49.90 ± 0.30 |
NDF | 41.90 ± 2.10 | 69.60 ± 0.50 |
TDN | 60.22 ± 3.70 | 63.20 ± 3.50 |
Ca2+ | 1.23 ± 0.10 | 3.32 ± 0.87 |
P | 0.25 ± 0.02 | 0.81 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghorbel, M.; Alghamdi, A.; Brini, F.; Hawamda, A.I.M.; Mseddi, K. Mitigating Water Loss in Arid Lands: Buffelgrass as a Potential Replacement for Alfalfa in Livestock Feed. Agronomy 2025, 15, 371. https://doi.org/10.3390/agronomy15020371
Ghorbel M, Alghamdi A, Brini F, Hawamda AIM, Mseddi K. Mitigating Water Loss in Arid Lands: Buffelgrass as a Potential Replacement for Alfalfa in Livestock Feed. Agronomy. 2025; 15(2):371. https://doi.org/10.3390/agronomy15020371
Chicago/Turabian StyleGhorbel, Mouna, Ahmad Alghamdi, Faical Brini, Abdalmenem I. M. Hawamda, and Khalil Mseddi. 2025. "Mitigating Water Loss in Arid Lands: Buffelgrass as a Potential Replacement for Alfalfa in Livestock Feed" Agronomy 15, no. 2: 371. https://doi.org/10.3390/agronomy15020371
APA StyleGhorbel, M., Alghamdi, A., Brini, F., Hawamda, A. I. M., & Mseddi, K. (2025). Mitigating Water Loss in Arid Lands: Buffelgrass as a Potential Replacement for Alfalfa in Livestock Feed. Agronomy, 15(2), 371. https://doi.org/10.3390/agronomy15020371