A Plug Seedling Growth-Point Detection Method Based on Differential Evolution Extra-Green Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Detection Protocols
2.3. Plug Seedling Growth-Point Detection Algorithm
2.3.1. Adaptive Optimization of Gray Factor
2.3.2. Boundary Division of Plug-Tray Hole
2.3.3. Seedling Identification and Growth-Point Detection
2.4. Evaluation Method
3. Results
3.1. Findings from the Laboratory Plug Seedling Tray Analysis
3.1.1. Results of Adaptive Grayscale Adjustments
3.1.2. Results of Plug Seedling Identification and Growth-Point Detection
3.2. Results of Plug Seedling Detection in the Greenhouse
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistics of China. China Statistical Yearbook 2023; China Statistics Press: Beijing, China, 2023; pp. 12–18. [Google Scholar]
- Jin, X.; Chen, Z.; Zhao, B.; Liu, M.; Li, M.; Li, Z.; Ji, J. Design and experiment of high-speed and precise positioning seeding control system for rice seedlings based on dual-position feedback adjustment (DPFA). Comput. Electron. Agric. 2024, 217, 108548. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, K.J.; Han, J.F.; Yang, Y.; Chu, Q.; Zhou, Z.; Gu, S. Detection of the quality of white palm cell tray seedlings based on the side view image of seedling stems under leaves. J. Agric. Eng. 2021, 37, 194–201. [Google Scholar]
- Tong, J.; Shi, H.; Wu, C. Skewness correction and quality evaluation of plug seedling images based on Canny operator and Hough transform. Comput. Electron. Agric. 2018, 155, 461–472. [Google Scholar] [CrossRef]
- Tong, J.; Yu, J.; Wu, C.; Yu, G.; Shi, H. Health information acquisition and position calculation of plug seedling in greenhouse seedling bed. Comput. Electron. Agric. 2021, 185, 106146. [Google Scholar] [CrossRef]
- González-Barbosa, J.-J.; Ramírez-Pedraza, A.; Ornelas-Rodríguez, F.-J.; Cordova-Esparza, D.-M.; González-Barbosa, E.-A. Dynamic Measurement of Portos Tomato Seedling Growth Using the Kinect 2.0 Sensor. Agriculture 2022, 12, 449. [Google Scholar] [CrossRef]
- Syed, T.N.; Liu, J.Z.; Zhou, X.; Zhao, S.Y.; Yuan, Y.; Hassan, S.A.M.; Lakhiar, I.A. Seedling-lump integrated non-destructive monitoring for automatic transplanting with Intel RealSense depth camera. Artif. Intell. Agric. 2019, 3, 18–32. [Google Scholar] [CrossRef]
- Buxbaum, N.; Lieth, J.H.; Earles, M. Non-destructive Plant Biomass Monitoring with High Spatio-Temporal Resolution via Proximal RGB-D Imagery and End-to-End Deep Learning. Front. Plant Sci. 2022, 13, 758818. [Google Scholar] [CrossRef]
- Otoya, P.E.L.; Gardini, S.R.P. A Machine Vision System based on RGB-D Image Analysis for the Artichoke Seedling Grading Automation According to Leaf Area. In Proceedings of the 2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 29–31 October 2021; pp. 176–181. [Google Scholar]
- Samsuzzaman, S.; Reza, M.N.; Islam, S.; Lee, K.-H.; Haque, M.A.; Ali, M.R.; Cho, Y.J.; Noh, D.H.; Chung, S.-O. Automated Seedling Contour Determination and Segmentation Using Support Vector Machine and Image Features. Agronomy 2024, 14, 2940. [Google Scholar] [CrossRef]
- Jin, X.; Yuan, Y.; Jia, J.; Zhao, K.; Li, M.; Chen, K. Design and implementation of anti-leakage planting system for transplanting machine based on fuzzy information. Comput. Electron. Agric. 2020, 169, 105204. [Google Scholar] [CrossRef]
- Li, Y.; Wei, H.; Tong, J.; Qiu, Z.; Wu, C. Evaluation of health identification method for plug seedling transplantation robots in greenhouse environment. Biosyst. Eng. 2024, 240, 33–45. [Google Scholar] [CrossRef]
- Wu, L.Y.; Wang, Z.M.; Hu, Y.; Li, K.; Wang, C.H. Design and test of grading transplanting system for cell tray seedlings based on machine vision. Agric. Mech. Res. 2022, 44, 127–132,140. [Google Scholar]
- Narisetti, N.; Henke, M.; Neumann, K.; Stolzenburg, F.; Altmann, T.; Gladilin, E. Deep Learning Based Greenhouse Image Segmentation and Shoot Phenotyping (DeepShoot). Front. Plant Sci. 2022, 13, 906410. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Bie, Z.; Zhang, Y.; Huang, Y.; Peng, C.; Han, B.; Xu, S. Nondestructive Detection of Key Phenotypes for the Canopy of the Watermelon Plug Seedlings Based on Deep Learning. Hortic. Plant J. 2022, 100363. [Google Scholar] [CrossRef]
- Perugachi-Diaz, Y.; Tomczak, J.M.; Bhulai, S. Deep Learning for White Cabbage Seedling Prediction. Comput. Agric. 2021, 182, 106059. [Google Scholar] [CrossRef]
- Jin, X.; Chen, S.; Zhao, L.; Li, R.; Li, Q.; Gu, S.; Liu, G.; Ji, J. Low-damage Fetching Method for Pepper Seedlings Based on Res-Unet. Comput. Electron. Agric. 2024, 221, 108919. [Google Scholar] [CrossRef]
- Jin, X.; Tang, L.M.; Ji, J.T.; Wang, C.L.; Wang, S.S. Potential analysis of an automatic transplanting method for healthy potted seedlings using computer vision. Int. J. Agric. Biol. Eng. 2021, 14, 162–168. [Google Scholar] [CrossRef]
- Kohar, S.; Jagtap, J. Spatio-Temporal Deep Neural Networks for Accession Classification of Arabidopsis Plants Using Image Sequences. Ecol. Inform. 2021, 64, 101334. [Google Scholar] [CrossRef]
- Li, T.; Ling, R.; Bin, H.; Wang, S.; Zhao, M.; Zhang, Y.; Yang, M. Grading Detection of Tomato Hole-Pan Seedlings Using Improved YOLOv5s and Transfer Learning. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2023, 39, 174–184. [Google Scholar] [CrossRef]
- Žeger, I.; Grgić, S. An overview of grayscale image colorization methods. In Proceedings of the 2020 International Symposium ELMAR, Zadar, Croatia, 14–15 September 2020; pp. 109–112. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Han, X.; Wang, H.; Yuan, T.; Zou, K.; Liao, Q.; Deng, K.; Zhang, Z.; Zhang, C.; Li, W. A rapid segmentation method for weed based on CDM and ExG index. Crop Prot. 2023, 172, 106321. [Google Scholar] [CrossRef]
- Liu, W.; Sun, H.; Xia, Y.; Kang, J. Real-Time Cucumber Target Recognition in Greenhouse Environments Using Color Segmentation and Shape Matching. Appl. Sci. 2024, 14, 1884. [Google Scholar] [CrossRef]
- Sunil, G.C.; Zhang, Y.; Koparan, C.; Ahmed, M.R.; Howatt, K.; Sun, X. Weed and Crop Species Classification Using Computer Vision and Deep Learning Technologies in Greenhouse Conditions. J. Agric. Food Res. 2022, 9, 100325. [Google Scholar] [CrossRef]
- Bilal, M.; Pant, M.; Zaheer, H.; García-Hernández, L.; Abraham, A. Differential Evolution: A review of more than two decades of research. Eng. Appl. Artif. Intell. 2020, 90, 103479. [Google Scholar] [CrossRef]
- Zhang, Z.; Ni, H.X.; Yuan, C.M.; Yang, L.H. Mastering MATLAB Digital Image Processing and Recognition; People’s Posts and Telecommunications Press: Beijing, China, 2020; pp. 315–324. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. Automatic 1975, 11, 23–27. [Google Scholar] [CrossRef]
- Yan, Z.; Zhao, Y.; Luo, W.; Ding, X.; Li, K.; He, Z.; Shi, Y.; Cui, Y. Machine vision-based tomato plug tray missed seeding detection and empty cell replanting. Comput. Electron. Agric. 2023, 187, 107800. [Google Scholar] [CrossRef]
- Ni, C. Research and Application of Digital Image Filtering Algorithms; Publishing House of Electronics Industry: Beijing, China, 2020; pp. 102–128. [Google Scholar]
- Mukhopadhyay, J. Approximation of Euclidean Metric by Digital Distances; Springer: Singapore, 2020; pp. 55–70. [Google Scholar]
- Xu, T.; Yao, L.; Xu, L.; Chen, X.; Yang, Z. Image Segmentation of Cucumber Seedlings Based on Genetic Algorithm. Sustainability 2023, 15, 3089. [Google Scholar] [CrossRef]
- Kirch, P.; Öztürk, E.; Çelik, Y. A Novel Approach for Monitoring of Smart Greenhouse and Flowerpot Parameters and Detection of Plant Growth with Sensors. Agriculture 2022, 12, 1705. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, H.; Zhu, S.; Yang, T.; Huang, R.; Ou, J.; Dong, L.; Tao, D.; Zhen, W. A Plug Seedling Growth-Point Detection Method Based on Differential Evolution Extra-Green Algorithm. Agronomy 2025, 15, 375. https://doi.org/10.3390/agronomy15020375
Xia H, Zhu S, Yang T, Huang R, Ou J, Dong L, Tao D, Zhen W. A Plug Seedling Growth-Point Detection Method Based on Differential Evolution Extra-Green Algorithm. Agronomy. 2025; 15(2):375. https://doi.org/10.3390/agronomy15020375
Chicago/Turabian StyleXia, Hongmei, Shicheng Zhu, Teng Yang, Runxin Huang, Jianhua Ou, Lingjin Dong, Dewen Tao, and Wenbin Zhen. 2025. "A Plug Seedling Growth-Point Detection Method Based on Differential Evolution Extra-Green Algorithm" Agronomy 15, no. 2: 375. https://doi.org/10.3390/agronomy15020375
APA StyleXia, H., Zhu, S., Yang, T., Huang, R., Ou, J., Dong, L., Tao, D., & Zhen, W. (2025). A Plug Seedling Growth-Point Detection Method Based on Differential Evolution Extra-Green Algorithm. Agronomy, 15(2), 375. https://doi.org/10.3390/agronomy15020375