Continuous Injection of Hydrogen Peroxide in Drip Irrigation—Application to Field Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatments
2.2. Soil Analysis
2.3. Surface Drip Tape Irrigation—for Chilli (Capsicum annum L.)
2.3.1. Location, Soil, Crop and Weather Description
2.3.2. Irrigation Setup, H2O2 Treatment and Sampling Plan
2.3.3. Plant and Harvest Data Collection
2.3.4. Emitter Performance Data
2.4. Above-Ground Drip Irrigation—for Table Grapes (Vitis vinifera L.)
2.4.1. Location, Soil, Crop and Weather Description
2.4.2. Irrigation Setup, H2O2 Treatment and Sampling Plan
2.4.3. Plant and Harvest Data Collection
2.4.4. Emitter Performance Data
2.5. Subsurface Drip Irrigation—for Sugarcane (Saccharum officinarum L.)
2.5.1. Location, Soil, Crop and Weather Description
2.5.2. Irrigation Setup, H2O2 Treatment and Sampling Plan
2.5.3. Plant and Harvest Data Collection
2.5.4. Emitter Performance Data
2.6. Data Analysis
3. Results
3.1. Chilli with Surface Drip Tape Irrigation
3.1.1. Drip Emitter Performance
3.1.2. Peroxide Levels
3.1.3. Yield
3.1.4. Soil Processes
3.2. Grape with Above-Ground Drip Irrigation
3.2.1. Drip Emitter Performance
3.2.2. Peroxide Levels
3.2.3. Yield
3.2.4. Soil Processes
3.3. Sugarcane with Subsurface Drip Irrigation
3.3.1. Drip Emitter Performance
3.3.2. Peroxide Levels
3.3.3. Yield
3.3.4. Soil Processes
4. Discussion
4.1. Overview
- (i)
- An improvement in emitter flow rate due to reduced biofilm and/or scale clogging of emitters, and thus increased supply of water to the plant root zone, as shown by Japhet et al. (2022) [5].
- (ii)
- Increased oxygen in the root zone associated with H2O2 breakdown. Aerated rhizospheres of drip irrigated crops in the tropics have been reported to produce favourable crop growth response in a number of trials, e.g., Bhattarai et al. [27] for zucchini, vegetables soybean and cotton; Gil et al. [28] for avocado; Abd Elhady et al. [29] for potato; and Sariyev et al. [30] for corn.
- (iii)
- Disinfection of the rhizosphere due to production of the hydroxy radical (•OH). The breakdown products of H2O2 have been linked to improved tolerance to root diseases [31].
- (iv)
- Plant-priming effects of H2O2 (Zhang et al. [32] and references therein).
4.2. Four Possible Effects of H2O2
4.2.1. Reduced Emitter Clogging and Improved Emitter Flow Rates
4.2.2. Increased Soil Oxygen from Decomposition of H2O2
4.2.3. Rhizosphere Disinfection
4.2.4. Priming Effects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NaanDanJain. Irrigation System Care and Maintenance. A Jain Irrigation Company. 2018. Available online: https://www.scribd.com/document/670049781/1-NDJ-Irrigation-maintenance-140818F-1 (accessed on 23 December 2020).
- Watts, R.J.; Forget, M.K.; Kong, S.; Teel, A.L. Hydrogen peroxide decomposition in model subsurface systems. J. Hazard. Mater. 1999, B69, 229–243. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, F.K.; Santos, L.O.; Buffon, J.G. Mechanism of action, sources, and application of peroxidases. Food Res. Int. 2021, 143, 110266. [Google Scholar] [CrossRef] [PubMed]
- Molomahmood, H.V.; Qin, J.L.; Zhu, Y.T.; Deng, M.L.; Long, M.C. The role of soil organic matters and minerals on hydrogen peroxide decomposition in the soil. Chemosphere 2020, 249, 126146. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, M.; Yamanaka, K. Synergistic disinfection and removal of biofilms by a sequential two-step treatment with ozone followed by hydrogen peroxide. Water Res. 2014, 64, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Japhet, N.; Tarchitzky, J.; Chen, Y. Effectiveness of hydrogen peroxide treatments in preventing biofilm clogging in drip irrigation systems applying treated wastewater. Biofouling 2022, 38, 575–592. [Google Scholar] [CrossRef]
- Netafim. Drip Irrigation Systems Maintenance. 2021. Available online: https://www.netafim.com/globalassets/local/uae/irrigating-the-future-pdfs/complete-drip-maintenance-guide.pdf (accessed on 18 January 2025).
- Schumb, W.C.; Satterfield, C.N.; Wentworth, R.L. Hydrogen Peroxide; Reinhold Publishing Corporation: New York, NY, USA, 1955. [Google Scholar]
- Leigh, A. Stabilization of Hydrogen Peroxide. U.S. Patent No. 4304762, 8 December 1981. [Google Scholar]
- Carnine, G.T.; Kenmore, N.Y.; Leonard, R.D.; Trenton, N.J. Stabilization of Hydrogen Peroxide. U.S. Patent No. 3383174, 14 May 1968. [Google Scholar]
- Young, M.N.; Chowdhury, N.; Garver, E.; Evans, P.J.; Popat, S.C.; Rittmann, B.E.; Torres, C.I. Understanding the impact of operational conditions on performance of microbial peroxide producing cells. J. Power Sources 2017, 356, 448–458. [Google Scholar] [CrossRef]
- Oh, H.S.; Kim, J.J.; Kim, Y.H. Stabilization of hydrogen peroxide using tartaric acids in Fenton and Fenton-like oxidation. Korean J. Chem. Eng. 2016, 33, 885–892. [Google Scholar] [CrossRef]
- Zu, Y.W.; Sun, Y.; Yang, W.Z.; Zhang, K.; Chen, Y.; Yin, X.S.; Liu, Y. Performance and mechanism of 1-hydroxy ethylidene-1,1-di phosphonic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid in the inhibition of calcium carbonate scale. J. Mol. Liq. 2021, 334, 116093. [Google Scholar] [CrossRef]
- Mikutta, R.; Kleber, M.; Kaiser, K.; Jahn, R. Review: Organic matter removal from soils using hydrogen peroxide, sodium hypochlorite and disodium peroxodisulfate. Soil Sci. Soc. Am. J. 2005, 69, 120–136. [Google Scholar]
- Nowack, B. Environmental chemistry of phosphonates. Water Res. 2003, 37, 255–2546. [Google Scholar] [CrossRef] [PubMed]
- Yates. Yates Anti Rot. 2025. Available online: https://www.yates.com.au/yates-500ml-anti-rot-phosacid-systemic-fungicide/ (accessed on 18 January 2025).
- Barmac. Phospot 600. 2025. Available online: https://barmac.com.au/wp-content/uploads/sites/3/2016/01/phospot-600-label.pdf (accessed on 18 January 2025).
- Bhattarai, S.P.; Su, N.; Midmore, D.J. Oxygation unlocks yield potentials of crops in oxygen-limited soil environments. Adv. Agron. 2005, 88, 313–377. [Google Scholar]
- Friedman, S.P.; Naftaliev, B. A survey of the aeration status of drip-irrigated orchards. Agric. Water Manag. 2012, 115, 132–147. [Google Scholar] [CrossRef]
- Ben-Noah, I.; Friedman, S.P. Oxygenation of clayey soils by adding hydrogen peroxide to the irrigation solution: Lysimetric experiments. Rhizosphere 2016, 2, 51–61. [Google Scholar] [CrossRef]
- Thomas, P.G. Optimisation of Stabilised Hydrogen Peroxide Use for Drip Irrigation. PhD Thesis, Central Queensland University, Rockhampton, Australia, 2021. [Google Scholar]
- Nilahyane, A.; Ghimire, R.; Thapa, V.R.; Sainju, E.M. Cover crop effects on soil carbon dioxide emissions in a semiarid cropping system. AGE 2019, 3, 1–7. [Google Scholar] [CrossRef]
- Schnurer, J.; Rosswall, T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol. 1982, 43, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, J.; Davis, T.E.; Trexler, E. microBIOMETER® correlates 94% with the Carbon Fumigation Assay. Available online: https://www.researchgate.net/publication/348885877_microBIOMETER_correlates_94_with_Carbon_Fumigation_Assay (accessed on 18 January 2025).
- Conyers, M.K.; Poile, G.J.; Oates, A.A.; Waters, D.; Chan, K.Y. Comparison of three carbon determination methods on naturally occurring substrates and the implication for the quantification of soil carbon. Soil Res. 2011. 49, 27–33. [CrossRef]
- Prince, R. Measuring Delivery of Drip Irrigation Systems. Department of Primary Industries and Regional Development, WA Agriculture and Food. 2006. Available online: https://www.agric.wa.gov.au/strawberries/measuring-delivery-drip-irrigation-systems (accessed on 18 January 2025).
- Bhattarai, S.P.; Huber, S.; Midmore, D.J. Aerated subsurface irrigation water gives growth and yield benefits to zucchini, vegetable soybean and cotton in heavy clay soils. Ann. Appl. Biol. 2004, 144, 285–298. [Google Scholar] [CrossRef]
- Gil, P.M.; Ferreyra, R.; Barrera, C.; Zúñiga, C.; Gurovich, L. Effect of injecting hydrogen peroxide into heavy clay loam soil on pant water status, net CO2 assimilation, Bbomass, and vascular anatomy of avocado trees. Chilean J. Agric. Res. 2009, 69, 97–106. [Google Scholar] [CrossRef]
- Abd Elhady, S.A.; El-Gawad, H.G.A.; Ibrahim, M.F.M.; Mukherjee, S.; Elkelish, A.; Azab, E.; Gobouri, A.A.; Farag, R.; Ibrahim, H.A.; El-Azm, N.A. Hydrogen peroxide supplementation in irrigation water alleviates drought stress and boosts growth and productivity of potato plants. Sustainability 2021, 13, 899. [Google Scholar] [CrossRef]
- Sariyev, A.; Barutcular, C.; Acar, M.; Hossain, A.; El Sabagh, A. Sub-surface drip irrigation in associated with H2O2 improved the productivity of maize under clay-rich soil of Adana, Turkey. Phyton 2020, 89, 519. [Google Scholar] [CrossRef]
- Morikawa, C.K. Generation of hydroxyl radicals by Fe-polyphenol-activated CaO2 as a potential treatment for soil-borne diseases. Scientific Reports 2018, 8, 9752. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Jia, X.F.; Yu, B.; Gao, Y.; Bai, J.G. Exogenous hydrogen peroxide influences antioxidant enzyme activity and lipid peroxidation in cucumber leaves at low light. Sci. Hortic. 2011, 129, 656–662. [Google Scholar] [CrossRef]
- Szekut, F.D.; dos Santos, D.B.; de Azevedo, C.A.V.; Klein, M.R.; Ribeiro, M.D.; de Sousa Medeiros, S. Biofouling and performance of labyrinth-type emitters in drip irrigation with treated domestic sewage. Afr. J. Agric. Res. 2016, 11, 3839–3846. [Google Scholar] [CrossRef]
- de Jong ECOservices. Available online: https://www.loxyde.com/stabilised-hydrogen-peroxyde (accessed on 18 January 2025).
- Ma, J.Y.; Wen, Y.; Ma, Z.L.; Liu, J.; Wei, C.L.; Zhang, J.Z.; Wang, Z.H. Effect of fertilizer-air0coupled drip irrigation on soil microbial carbon and nitrogen cycling functions. Soil Sci. Soc. Am. J. 2025, 89, e70001. [Google Scholar] [CrossRef]
- Liao, C.; Gurol, M.D. Chemical oxidation by photolytic decomposition of hydrogen peroxide. Environ. Sci. Tecnol. 1995, 29, 3007–3014. [Google Scholar] [CrossRef]
- Petigara, B.R.; Blough, N.V.; Mignerey, A.C. Mechanisms of hydrogen peroxide decomposition in soils. Environ. Sci. and Technol. 2002, 36, 639–645. [Google Scholar] [CrossRef]
- Bissey, L.L.; Smith, J.L.; Watts, R.J. Soil organic matter–hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton’s reagent). Water Res. 2006, 40, 2477–2484. [Google Scholar] [CrossRef] [PubMed]
- Zappi, M.; White, K.; Hwang, H.M.; Bajpai, R.; Qasim, M. The fate of hydrogen peroxide as an oxygen source for bioremediation activities within saturated aquifer systems. J. Air Waste Manag. Assoc. 2000, 50, 1818–1830. [Google Scholar] [CrossRef]
- Savvides, A.; Ali, S.; Tester, M.; Fotopoulos, V. Chemical priming of plants against multiple abiotic stresses: Mission possible? Trends Plant Sci. 2016, 21, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Roychoudhury, A. Abiotic stress tolerance in plants by priming and pretreatment with hydrogen peroxide. In Priming and Pretreatment of Seeds and Seedlings; Hasanuzzaman, M., Fotopoulos, V., Eds.; Springer: Singapore, 2019; pp. 417–426. [Google Scholar] [CrossRef]
Treatment * | EFR Field (L h−1) | CUC Field (%) | Soil Moisture (%) |
---|---|---|---|
Control | 1.198 | 83.0 | 14.0 |
H2O2 Low | 1.111 | 86.0 | 11.7 |
H2O2 High | 1.003 | 85.0 | 10.8 |
LSD 5% | 0.346 | 1.76 | 1.64 |
Row Position | Control | H2O2 Low | H2O2 High | Mean |
---|---|---|---|---|
+120 m | 1.195 | 1.131 | 1.148 | 1.161 |
+70 m | 1.146 | 1.098 | 1.106 | 1.119 |
+20 m | 1.214 | 1.025 | 0.929 | 1.060 |
−20 m | 1.076 | 0.995 | 1.060 | 1.050 |
−120 m | 0.972 | 0.908 | 0.882 | 0.923 |
−220 m | 0.979 | 0.870 | 0.895 | 0.920 |
Mean | 1.097 | 1.005 | 1.003 | 1.039 |
p value LSD (28 df) | Treatment = 0.003 ***, Position ≤ 0.001 ***, Trt × Position = 0.124 ns Treatment = 0.086, Position = 0.122, Trt × Position = 0.211 |
Replicate | Treatment | Position | ||||||
---|---|---|---|---|---|---|---|---|
+120 m | +70 m | +20 m | −20 m | −120 m | −220 m | Average | ||
1 | Control | Nil | Nil | Nil | Nil | Nil | Nil | Nil |
2 | Control | Nil | Nil | Nil | Nil | Nil | Nil | Nil |
3 | Control | Nil | Nil | Nil | Nil | Nil | Nil | Nil |
1 | H2O2 Low | 2.3 | 0.5 | 3 | 1.5 | 1.4 | 0.6 | 1.5 |
2 | H2O2 Low | 0.5 | 0.5 | 5.4 | 5.8 | 1.9 | 0.5 | 2.4 |
3 | H2O2 Low | NA | NA | NA | NA | NA | NA | NA |
1 | H2O2 High | 13.8 | 8.4 | 15.1 | 9.6 | 11.4 | 9 | 11.2 |
2 | H2O2 High | 11.2 | 7 | 14 | 12.1 | 11.7 | 12.1 | 11.4 |
3 | H2O2 High | 11.2 | 8.7 | 12.6 | 10.5 | 11.6 | 12.1 | 11.1 |
Treatment | Green Total (t ha−1) | Green Marketable (t ha−1) | Red Total (t ha−1) | Gross Yield (t ha−1) | Red Marketable (t ha−1) | Biomass Yield (g Plant−1) | Root Weight (g Plant−1) |
---|---|---|---|---|---|---|---|
Control | 24.34 | 23.77 | 26.25 | 50.59 | 24.84 | 95.6 | 25.2 |
H2O2 Low | 28.29 | 27.16 | 28.26 | 56.55 | 25.72 | 105.8 | 25.2 |
H2O2 High | 28.03 | 25.12 | 26.78 | 54.81 | 24.08 | 88.2 | 23.4 |
p value | 0.011 *** | 0.001 *** | 0.129 ns | 0.007 *** | 0.241 ns | 0.21 ns | 0.983 ns |
LSD (16 df) | 2.803 | 1.516 | 2.033 | 3.69 | 1.946 | 20.24 | 7.11 |
Treatments | Soil pH (1:5) | EC (μS m−1) | Fluorescein Diacetate (μg Fluorescein/g Soil−1/h−1) | Microbial Biomass Carbon (mg C kg Dry Soil−1) | Total Soil N (%) | Total Soil C (%) | Respiration (g CO2 m−2 h−1) |
---|---|---|---|---|---|---|---|
Control | 7.32 | 90.20 | 476.43 | 47.99 | 0.035 | 0.88 | 0.032 |
H2O2 Low | 7.21 | 87.91 | 442.59 | 51.33 | 0.031 | 0.88 | 0.057 |
H2O2 High | 7.36 | 79.61 | 427.58 | 47.18 | 0.033 | 0.84 | 0.036 |
p value | 0.148 | 0.323 | 0.337 | 0.607 | 0.667 | 0.236 | 0.032 |
LSD | 0.157 | 15.160 | 69.500 | 9.190 | 0.008 | 0.052 | 0.015 |
Treatments | Average EFR | Blockage | Biofoul | CUC | H2O2 Discharge |
---|---|---|---|---|---|
Control | 2.37 | 13.7 | 20.0 | 95 | 0 |
H2O2 Low | 2.39 | 5.7 | 3.4 | 95 | 6.3 |
H2O2 High | 2.22 | 6.2 | 3.5 | 93 | 8.3 |
LSD 5% | 0.052 | 5.2 | 9.0 | 2.3 | 4.1 |
Treatment | Soil Moisture (%) | pH | EC (μS cm−1) | Respiration (g CO2 m−2 h−1) | FDA (μg g dw soil−1 h−1) | Microbial Biomass Carbon (mg C kg dry soil−1) | Total Carbon (%) | Total Nitrogen (%) |
---|---|---|---|---|---|---|---|---|
Control | 23.2 | 6.83 | 142.2 | 0.770 | 167.9 | 122.0 | 1.74 | 0.19 |
H2O2 Low | 33.5 | 6.47 | 84.9 | 1.205 | 188.8 | 99.0 | 1.84 | 0.21 |
H2O2 High | 22.5 | 6.63 | 104.6 | 1.130 | 159.1 | 124.1 | 1.53 | 0.13 |
p value | 0.006 | 0.294 | 0.001 | 0.301 | 0.375 | 0.405 | 0.054 | <0.001 |
LSD (16 df) | 6.73 | 0.47 | 25.34 | 0.530 | 45.30 | 43.18 | 0.254 | 0.030 |
Treatments | Emitter Flow Rate (L h−1) | Irrigation Flow Rate (mm h−1) | Root Intrusion (%) | Soil Moisture (%) | H2O2 Discharge (ppm) | Soil Respiration (g CO2 m−2 h−1) |
---|---|---|---|---|---|---|
Control | 1.39 b* | 6.4 c | 19.8 a | 33.4 a | 0 | 1.54 b |
H2O2 Low | 1.61 a | 7.5 a | 11.2 b | 32.2 b | 6.6 b | 2.13 a |
H2O2 High | 1.54 ab | 6.7 b | 14.7 b | 31.6 b | 8.8 a | 1.92 ab |
p value | 0.050 | 0.059 | 0.037 | 0.048 | 0.030 | 0.002 |
LSD 5% | 0.23 | 0.13 | 3.4 | 0.853 | 1.331 | 0.499 |
Treatment | Soil Moisture (%) | pH | EC (μS cm−1) | Respiration (g CO2 m−2 h−1) | FDA (μg g dw Soil h−1) | Microbial Biomass Carbon (mg C kg Dry Soil−1) | Total Carbon (% w/w) | Total Nitrogen (% w/w) |
---|---|---|---|---|---|---|---|---|
Control | 25.1 | 6.24 | 79.7 | 0.367 | 476 | 63.6 | 1.69 | 0.118 |
H2O2 Low | 22.7 | 6.41 | 93.4 | 0.430 | 465 | 37.0 | 1.25 | 0.104 |
H2O2 High | 24.5 | 6.31 | 85.8 | 0.462 | 431 | 58.9 | 1.68 | 0.123 |
Mean | 24.1 | 6.32 | 86.3 | 0.419 | 457 | 115.0 | 1.54 | 0.114 |
p value | 0.008 | 0.687 | 0.521 | 0.825 | 0.668 | 0.008 | 0.001 | 0.001 |
LSD 5% | 1.42 | 0.47 | 25.99 | 0.344 | 115.1 | 15.83 | 0.102 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, P.G.; Bhattarai, S.P.; Balsys, R.J.; Walsh, K.B.; Midmore, D.J. Continuous Injection of Hydrogen Peroxide in Drip Irrigation—Application to Field Crops. Agronomy 2025, 15, 385. https://doi.org/10.3390/agronomy15020385
Thomas PG, Bhattarai SP, Balsys RJ, Walsh KB, Midmore DJ. Continuous Injection of Hydrogen Peroxide in Drip Irrigation—Application to Field Crops. Agronomy. 2025; 15(2):385. https://doi.org/10.3390/agronomy15020385
Chicago/Turabian StyleThomas, Paul G., Surya P. Bhattarai, Ron J. Balsys, Kerry B. Walsh, and David J. Midmore. 2025. "Continuous Injection of Hydrogen Peroxide in Drip Irrigation—Application to Field Crops" Agronomy 15, no. 2: 385. https://doi.org/10.3390/agronomy15020385
APA StyleThomas, P. G., Bhattarai, S. P., Balsys, R. J., Walsh, K. B., & Midmore, D. J. (2025). Continuous Injection of Hydrogen Peroxide in Drip Irrigation—Application to Field Crops. Agronomy, 15(2), 385. https://doi.org/10.3390/agronomy15020385