Açaí Waste Biochar Combined with Phosphorus Fertiliser and Phosphorus Use Efficiency in Cowpea (Vigna unguiculata (L.) Walp)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Collection and Biochar Production
2.2. Experimental Design
2.3. Biomass and Nutrient Analysis in Cowpea
2.4. Soil Analysis
2.5. Statistical Analysis
3. Results
3.1. Biological Components of Cowpea
3.2. Soil Available P Content, P Content in Biomass, and Agronomic Efficiency in Cowpea
3.3. Soil Properties
3.4. Soil Organic Carbon (SOC) and Easily Extractable Glomalin (EE-GRSP)
3.5. Correlation Between Soil Factors and Biological Components of Cowpea
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, D.C.; Glaser, B.; Woods, W.I. Dark Earths: Origin, Properties, Management; Springer: Dordrecht, The Netherlands, 2003; 505p. [Google Scholar]
- Teixeira, W.G.; Kern, D.C.; Madari, B.E.; Lima, H.N.; Woods, W. As Terras Pretas de Índio da Amazônia: Sua Caracterização e Uso Deste Conhecimento na Criação de Novas Áreas; Embrapa Amazônia Ocidental: Manaus, Brazil, 2009; ISBN 85-89111-06-7. [Google Scholar]
- Falcão, N.P.d.S.; Silva, J.R.A.d. Características de adsorção de fósforo em alguns solos da Amazônia Central. Acta Amaz. 2004, 34, 337–342. [Google Scholar] [CrossRef]
- Lehmann, J. Terra Preta Nova—Where to from Here? In Amazonian Dark Earths: Wim Sombroek’s Vision; Woods, W.I., Teixeira, W.G., Steiner, C., WinklerPrins, A., Rebellato, L., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 473–486. ISBN 978-1-4020-9031-8. [Google Scholar]
- Sombroek, W.I.M.; Ruivo, M.D.L.; Fearnside, P.M.; Glaser, B.; Lehmann, J. Amazonian Dark Earths as Carbon Stores and Sinks. In Amazonian Dark Earths: Origin Properties Management; Springer: Dordrecht, the Netherlands, 2003; pp. 125–139. [Google Scholar]
- Schellekens, J.; Santos, T.; Maceido, R.; Buurman, P.; Kuyper, T.; Vidal-Torrado, P. Molecular Composition of Several Soil Organic Matter Fractions from Anthropogenic Black Soils (Terra Preta de Índio) in Amazonia—A Pyrolysis-GC/MS Study. Geoderma 2017, 288, 154. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Nutakor, C. Recent Advancement in Biochar Production and Utilization—A Combination of Traditional and Bibliometric Review. Int. J. Hydrogen Energy 2024, 54, 1137–1153. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Bian, R.; He, W.; Liu, Y.; Shen, G.; Xie, H.; Feng, Y. Bibliometric Analysis of Biochar-Based Organic Fertilizers in the Past 15 Years: Focus on Ammonia Volatilization and Greenhouse Gas Emissions during Composting. Environ. Res. 2024, 243, 117853. [Google Scholar] [CrossRef]
- Leng, L.; Huang, H.; Li, H.; Li, J.; Zhou, W. Biochar Stability Assessment Methods: A Review. Sci. Total Environ. 2019, 647, 210–222. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, P.; Zhang, H.; Yuan, W. Biochar Production and Applications in Agro and Forestry Systems: A Review. Sci. Total Environ. 2020, 723, 137775. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: London, UK, 2015; ISBN 978-0-415-70415-1. [Google Scholar]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Gonnermann, H.M. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 2017, 12, e0179079. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, K.; Han, L.; Chen, Y.; Liu, J.; Xing, B. Biochar Stability and Impact on Soil Organic Carbon Mineralization Depend on Biochar Processing, Aging and Soil Clay Content. Soil Biol. Biochem. 2022, 169, 108657. [Google Scholar] [CrossRef]
- Semida, W.M.; Beheiry, H.R.; Sétamou, M.; Simpson, C.R.; Abd El-Mageed, T.A.; Rady, M.M.; Nelson, S.D. Biochar Implications for Sustainable Agriculture and Environment: A Review. S. Afr. J. Bot. 2019, 127, 333–347. [Google Scholar] [CrossRef]
- Xue, P.; Hou, R.; Fu, Q.; Li, T.; Wang, J.; Zhou, W.; Shen, W.; Su, Z.; Wang, Y. Potentially Migrating and Residual Components of Biochar: Effects on Phosphorus Adsorption Performance and Storage Capacity of Black Soil. Chemosphere 2023, 336, 139250. [Google Scholar] [CrossRef]
- Gao, S.; DeLuca, T.H.; Cleveland, C.C. Biochar Additions Alter Phosphorus and Nitrogen Availability in Agricultural Ecosystems: A Meta-Analysis. Sci. Total Environ. 2019, 654, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; DeLuca, T.H. Influence of Biochar on Soil Nutrient Transformations, Nutrient Leaching, and Crop Yield. Adv. Plants Agric. Res 2016, 4, 1–16. [Google Scholar]
- Rafael, R.B.A.; Fernández-Marcos, M.L.; Cocco, S.; Ruello, M.L.; Fornasier, F.; Corti, G. Benefits of Biochars and NPK Fertilizers for Soil Quality and Growth of Cowpea (Vigna unguiculata L. Walp.) in an Acid Arenosol. Pedosphere 2019, 29, 311–333. [Google Scholar] [CrossRef]
- Bentes, V.L.I. Preparação e Caracterização de Compósitos a Base de Fosfatos de Ferro Suportados em Carvões Ativados de Resíduos de Caroços de Açaí e do Endocarpo de Tucumã para Aplicação Ambiental; UFAM: Manaus, Brazil, 2017. [Google Scholar]
- Miranda, L.d.V.A.; Mochiutti, S.; Cunha, A.C.d.; Cunha, H.F.A. Descarte e Destino Final de Caroços de Açaí na Amazônia Oriental-Brasil. Ambiente Soc. 2022, 25, e01382. [Google Scholar]
- Neto, H.H.L.C.; Souza, I.V.d.; Façanha, A.C.M.; Santos, A.V.A.d.; Silva, A.G.d.; Pereira, C.E.d.R.; Silvestre, R.C.M.; Jean, R.N.P. A disposição final de caroço de açaí no distrito administrativo de Icoaraci, Pará. Rev. Cient. Fac. Educ. Meio Ambiente 2023, 14, 221–236. [Google Scholar] [CrossRef]
- IBGE Produção de Açaí (Cultivo) No Brasil | IBGE. Available online: https://www.ibge.gov.br/explica/producao-agropecuaria/acai-cultivo/br (accessed on 26 March 2024).
- Sato, M.K.; de Lima, H.V.; Costa, A.N.; Rodrigues, S.; Pedroso, A.J.S.; de Freitas Maia, C.M.B. Biochar from Acai Agroindustry Waste: Study of Pyrolysis Conditions. Waste Manag. 2019, 96, 158–167. [Google Scholar] [CrossRef]
- John, V.; Braga, A.R.d.O.; Danielli, C.K.A.d.O.; Sousa, H.M.; Danielli, F.E.; de Araujo, R.O.; Marques-dos-Santos, C.; Falcão, N.P.d.S.; Guerra, J.F.C. Characterization of Biochar Produced in a Mobile Handmade Kiln from Small-Sized Waste Biomass for Agronomic and Climate Change Benefits. Agronomy 2024, 14, 1861. [Google Scholar] [CrossRef]
- Sato, M.K.; de Lima, H.V.; Noronha Costa, A.; Rodrigues, S.; Mooney, S.J.; Clarke, M.; Silva Pedroso, A.J.; de Freitas Maia, C.M.B. Biochar as a Sustainable Alternative to Açaí Waste Disposal in Amazon, Brazil. Process Saf. Environ. Prot. 2020, 139, 36–46. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo; Embrapa: Rio de Janeiro, Brazil, 2017; 573p. [Google Scholar]
- John, V.; Braga, A.R.d.O.B.; Oliveira Danielli, C.K.A.d.; Sousa, H.M.; Danielli, F.E.; Marques-dos-Santos, C.; Falcão, N.P.d.S.; Guerra, J.F.C. Economic Feasibility Analysis of Biochar as a Soil Amendment in Central Amazonia: A Case Study and Perspectives. 2025, in press.
- Oliveira, I.J.; Fontes, J.R.A.; Dias, M.C.; Barreto, J.F. Recomendações Técnicas para o Cultivo do Feijão-Caupi no Estado do Amazonas; Embrapa Amazônia Ocidental: Manaus, Brazil, 2019; p. 30. [Google Scholar]
- Yan, X.; Chen, X.; Ma, C.; Cai, Y.; Cui, Z.; Chen, X.; Wu, L.; Zhang, F. What Are the Key Factors Affecting Maize Yield Response to and Agronomic Efficiency of Phosphorus Fertilizer in China? Field Crops Res. 2021, 270, 108221. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Wright, S.F.; Upadhyaya, A. Extraction of an Abundant and Unusual Protein from Soil and Comparison with Hyphal Protein of Arbuscular Mycorrhizal Fungi. Soil Sci. 1996, 161, 575–586. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Chintala, R.; Schumacher, T.E.; McDonald, L.M.; Clay, D.E.; Malo, D.D.; Papiernik, S.K.; Clay, S.A.; Julson, J.L. Phosphorus Sorption and Availability from Biochars and Soil/Biochar Mixtures. CLEAN—Soil Air Water 2014, 42, 626–634. [Google Scholar] [CrossRef]
- Sharma, S.; Sekhon, B.S.; Singh, P.; Siddiqui, M.H.; Kesawat, M.S. Response of Biochar Derives from Farm Waste on Phosphorus Sorption and Desorption in Texturally Different Soils. Heliyon 2023, 9, e19356. [Google Scholar] [CrossRef]
- Blume, H.-P.; Brümmer, G.W.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.-M. Soil-Plant Relations. In Scheffer/SchachtschabelSoil Science; Springer: Berlin/Heidelberg, Germany, 2016; pp. 409–484. [Google Scholar]
- DeLuca, T.H.; Gundale, M.J.; MacKenzie, M.D.; Jones, D.L. Biochar Effects on Soil Nutrient Transformations. In Biochar for Environmental Management; Routledge: London, UK, 2015; pp. 421–454. [Google Scholar]
- Sparks, D.L.; Singh, B.; Siebecker, M.G. Environmental Soil Chemistry; Academic Press: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Ippolito, J.A.; Spokas, K.A.; Novak, J.M.; Lentz, R.D.; Cantrell, K.B. Biochar Elemental Composition and Factors Influencing Nutrient Retention. In Biochar for Environmental Management; Routledge: London, UK, 2015; pp. 139–163. [Google Scholar]
- Buss, W.; Assavavittayanon, K.; Shepherd, J.G.; Heal, K.V.; Sohi, S. Biochar Phosphorus Release Is Limited by High pH and Excess Calcium. J. Environ. Qual. 2018, 47, 1298–1303. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Awad, Y.M.; Yang, X.; Ryu, C.; Rizwan, M.; Rinklebe, J.; Tsang, D.C.W.; Ok, Y.S. Influence of Soil Properties and Feedstocks on Biochar Potential for Carbon Mineralization and Improvement of Infertile Soils. Geoderma 2018, 332, 100–108. [Google Scholar] [CrossRef]
- Cardoso, M.J. A Cultura do Feijão Caupi No Meio-Norte do Brasil; Embrapa Meio-Norte: Teresina, Brazil, 2000. [Google Scholar]
- Phares, C.A.; Atiah, K.; Frimpong, K.A.; Danquah, A.; Asare, A.T.; Aggor-Woananu, S. Application of Biochar and Inorganic Phosphorus Fertilizer Influenced Rhizosphere Soil Characteristics, Nodule Formation and Phytoconstituents of Cowpea Grown on Tropical Soil. Heliyon 2020, 6, e05255. [Google Scholar] [CrossRef]
- Geng, N.; Kang, X.; Yan, X.; Yin, N.; Wang, H.; Pan, H.; Yang, Q.; Lou, Y.; Zhuge, Y. Biochar Mitigation of Soil Acidification and Carbon Sequestration Is Influenced by Materials and Temperature. Ecotoxicol. Environ. Saf. 2022, 232, 113241. [Google Scholar] [CrossRef]
- Nkoh, J.N.; Baquy, M.A.-A.; Mia, S.; Shi, R.; Kamran, M.A.; Mehmood, K.; Xu, R. A Critical-Systematic Review of the Interactions of Biochar with Soils and the Observable Outcomes. Sustainability 2021, 13, 13726. [Google Scholar] [CrossRef]
- Graver, E.R.; Singh, B.; Hanley, K.; Lehmann, J. Determination of Cation Exchange Capacity in Biochar. In Biochar: A Guide to Analytical Methods; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Arif, M.; Ilyas, M.; Riaz, M.; Ali, K.; Shah, K.; Ul Haq, I.; Fahad, S. Biochar Improves Phosphorus Use Efficiency of Organic-Inorganic Fertilizers, Maize-Wheat Productivity and Soil Quality in a Low Fertility Alkaline Soil. Field Crops Res. 2017, 214, 25–37. [Google Scholar] [CrossRef]
- Gross, A.; Bromm, T.; Glaser, B. Soil Organic Carbon Sequestration after Biochar Application: A Global Meta-Analysis. Agronomy 2021, 11, 2474. [Google Scholar] [CrossRef]
- He, J.-D.; Chi, G.-G.; Zou, Y.-N.; Shu, B.; Wu, Q.-S.; Srivastava, A.K.; Kuča, K. Contribution of Glomalin-Related Soil Proteins to Soil Organic Carbon in Trifoliate Orange. Appl. Soil Ecol. 2020, 154, 103592. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, R.M.; Kemmelmeier, K.; Pedroso, D.d.F.; Pinto, F.A.; dos Santos, J.V.; Gastauer, M.; Caldeira, C.F.; Ramos, S.J.; Siqueira, J.O.; Carneiro, M.A.C. Native Arbuscular Mycorrhizal Fungi Respond to Rehabilitation in Iron Ore Mining Areas from the Eastern Brazilian Amazon. Pedobiologia 2021, 89, 150768. [Google Scholar] [CrossRef]
- Li, S.; Tasnady, D. Biochar for Soil Carbon Sequestration: Current Knowledge, Mechanisms, and Future Perspectives. C 2023, 9, 67. [Google Scholar] [CrossRef]
Soil Properties | Unit | Low | Medium | High |
---|---|---|---|---|
pH (H2O) | - | 3.99 | 4.10 | 4.43 |
Available P | mg kg−1 | 0.67 | 1.97 | 2.90 |
Total N | g kg−1 | 0.52 | 0.88 | 1.27 |
Soil organic carbon (SOC) | g kg−1 | 15.16 | 16.00 | 16.17 |
K | cmolc kg−1 | 0.03 | 0.05 | 0.07 |
Ca | cmolc kg−1 | 0.10 | 0.15 | 0.16 |
Mg | cmolc kg−1 | 0.03 | 0.04 | 0.05 |
Na | cmolc kg−1 | 0.01 | 0.01 | 0.01 |
Al | cmolc kg−1 | 0.91 | 1.10 | 2.45 |
Potential Acidity (H + Al) | cmolc kg−1 | 4.47 | 4.69 | 5.81 |
CEC | cmolc kg−1 | 1.08 | 1.35 | 2.72 |
Clay | % | - | 53.0 | - |
Silt | % | - | 17.7 | - |
Sand | % | - | 29.3 | - |
Element | Unit | Mean | Standard Deviation |
---|---|---|---|
Carbon (C) | g 100g−1 | 76.96 | 3.19 |
N | g 100g−1 | 0.41 | 0.12 |
Oxygen (O) | g 100g−1 | 16.04 | 3.04 |
Hydrogen (H) | g 100g−1 | 1.47 | 0.13 |
H/C | - | 0.23 | 0.03 |
O/C | - | 0.16 | 0.04 |
C/N | - | 232.85 | 58.45 |
pH (H2O) | - | 8.86 | 0.73 |
Electrical conductivity | µS m−1 | 273 | 72.76 |
CEC | mmolc kg−1 | 41.25 | 18.87 |
Ashes | g 100g−1 | 5.20 | 1.00 |
CaCO3 equivalent | g 100g−1 | 4.20 | 0.95 |
Organic C | g 100g−1 | 23.69 | 3.81 |
Total N | g 100g−1 | 0.51 | 0.60 |
P2O5 | g 100g−1 | 0.59 | 0.17 |
K2O | g 100g−1 | 1.44 | 0.43 |
Mg | g 100g−1 | 0.12 | 0.02 |
Ca | g 100g−1 | 0.15 | 0.02 |
Sulphur (S) | % | 0.12 | 0.10 |
Biochar (t ha−1) | P (kg ha−1) | Height (cm) | Number of Leaves | Leaf Area (cm2) | Aerial Biomass (g) | Root Biomass (g) |
---|---|---|---|---|---|---|
0 | 0 | 34.33 ± 4.93 Bb | 4.17 ± 1.04 Ab | 68.58 ± 10.32 Cb | 9.27 ± 0.34 Bb | 0.48 ± 0.2 Ab |
40 | 101.00 ± 15.62 Aa | 14.83 ± 1.53 Aa | 230.22 ± 7.43 Aa | 28.4 ± 0.66 Aa | 3.06 ± 0.6 Aa | |
80 | 101.83 ± 15.18 Aa | 14.17 ± 0.29 Aa | 268.65 ± 3.22 Aa | 28.94 ± 0.66 Aa | 2.71 ± 0.13 Aa | |
120 | 83.33 ± 2.89 Aa | 17.33 ± 3.62 Aa | 265.84 ± 78.54 Aa | 28.49 ± 2.66 Aa | 3.05 ± 1.22 Aa | |
7.5 | 0 | 33.92 ± 10.52 Bb | 3.17 ± 1.26 Ab | 114.28 ± 12.1 BCb | 9.69 ± 1.6 Bb | 0.71 ± 1.12 Ab |
40 | 91.83 ± 8.95 Aa | 13.33 ± 1.44 Aa | 242.4 ± 17.91 Aa | 28.5 ± 0.65 Aa | 2.2 ± 0.88 Aab | |
80 | 86.67 ± 13.16 Aa | 14.0 ± 1.8 Aa | 240.31 ± 55.64 Aa | 29.06 ± 1.92 Aa | 2.49 ± 0.28 Aab | |
120 | 93.33 ± 15.97 Aa | 13.67 ± 4.31 Aa | 256.59 ± 65.46 Aa | 28.78 ± 1.64 Aa | 2.94 ± 0.21 Aa | |
15 | 0 | 32.83 ± 4.04 Bb | 5.0 ± 1 Ab | 142.47 ± 27.27 ABCb | 10.27 ± 0.49 Bb | 0.32 ± 0.04 Aa |
40 | 118.17 ± 24.76 Aa | 13.17 ± 1.26 Aa | 258.67 ± 49.71 Aa | 28.27 ± 0.55 Aa | 2.2 ± 0.83 Aa | |
80 | 96.00 ± 12.12 Aa | 15.67 ± 2.25 Aa | 269.82 ± 31.94 Aa | 28.98 ± 3.18 Aa | 2.25 ± 0.34 Aa | |
120 | 110.67 ± 29.62 Aa | 16.0 ± 1.5 Aa | 272.79 ± 69.31 Aa | 27.93 ± 1.73 Aa | 2.09 ± 0.82 Aa | |
30 | 0 | 55.58 ± 7.8 ABb | 6.33 ± 0.58 Ab | 168.00 ± 32.39 ABb | 12.44 ± 0.79 ABb | 1.37 ± 1.13 Ab |
40 | 85.63 ± 16.87 Aab | 14.17 ± 1.89 Aa | 252.31 ± 38.96 Aab | 29.74 ± 1.09 Aa | 3.57 ± 1.64 Aa | |
80 | 88.00 ± 9.99 Aab | 14.83 ± 0.76 Aa | 231.59 ± 15.15 Aab | 28.39 ± 0.72 Aa | 2.25 ± 0.73 Aab | |
120 | 94.17 ± 13.61 Aa | 15.33 ± 0.76 Aa | 273.36 ± 39.93 Aa | 29.62 ± 1.54 Aa | 2.24 ± 0.28 Aab | |
60 | 0 | 79.00 ± 21.66 Aa | 7.5 ± 2.18 Ab | 224.79 ± 18.47 Ab | 14.45 ± 2.42 Ab | 0.86 ± 0.3 Ab |
40 | 91.33 ± 9.36 Aa | 13.67 ± 2.31 Aa | 253.54 ± 29.6 Aab | 27.96 ± 1.73 Aa | 3.68 ± 1.42 Aa | |
80 | 86.5 ± 9.12 Aa | 14.5 ± 0.5 Aa | 323.58 ± 26.83 Aa | 29.15 ± 1.91 Aa | 3.6 ± 2.04 Aa | |
120 | 96.08 ± 22.74 Aa | 13.0 ± 0.87 Aa | 264.49 ± 22.83 Aab | 28.89 ± 1.38 Aa | 3.06 ± 1.03 Aa | |
B | NS | NS | ** | NS | NS | |
Anova | P | *** | *** | *** | *** | *** |
B × P | * | NS | NS | NS | NS |
Biochar (t ha−1) | P (kg ha−1) | Soil Available P (mg kg−1) | P Plant Content (g kg−1) | APE (%) |
---|---|---|---|---|
0 | 0 | 11.12 ± 4.23 Ac | 1.64 ± 0.18 Ad | - |
40 | 49.60 ± 9.98 Ab | 4.01 ± 0.39 Bc | 109.69 ± 3.77 a | |
80 | 88.99 ± 9.85 Ba | 6.49 ± 0.38 Ab | 56.38 ± 1.89 b | |
120 | 96.37 ± 9.03 Ca | 8.29 ± 1.03 Aa | 36.74 ± 5.08 c | |
7.5 | 0 | 9.15 ± 0.54 Ad | 2.28 ± 0.69 Ac | - |
40 | 43.58 ± 5.28 Ac | 4.31 ± 0.49 ABb | 110.26 ± 3.70 a | |
80 | 90.63 ± 16.41 Bb | 6.88 ± 0.43 Aa | 56.75 ± 5.50 b | |
120 | 166.67 ± 25.65 Ba | 7.99 ± 0.23 Aa | 37.30 ± 3.14 c | |
15 | 0 | 12.57 ± 0.52 Ac | 2.22 ± 0.33 Ad | - |
40 | 49.60 ± 7.52 Ab | 4.47 ± 0.24 ABc | 108.96 ± 3.18 a | |
80 | 62.18 ± 13.96 Bb | 6.72 ± 0.35 Ab | 56.52 ± 9.11 b | |
120 | 174.32 ± 3.28 Ba | 8.9 ± 0.57 Aa | 35.66 ± 3.30 Ac | |
30 | 0 | 15.86 ± 2.41 Ad | 2.2 ± 0.48 Ad | - |
40 | 52.34 ± 8.10 Ac | 5.05 ± 0.18 ABc | 117.37 ± 6.25 Aa | |
80 | 92.27 ± 13.03 Bb | 6.55 ± 0.83 Ab | 54.83 ± 2.05 Ab | |
120 | 170.22 ± 22.15 Ba | 8.77 ± 0.64 Aa | 38.89 ± 2.94 Ac | |
60 | 0 | 23.47 ± 1.43 Ad | 2.8 ± 0.74 Ad | - |
40 | 56.71 ± 7.76 Ac | 5.45 ± 0.1 Ac | 107.17 ± 9.93 Aa | |
80 | 146.43 ± 29.68 Ab | 6.88 ± 0.75 Ab | 56.98 ± 5.47 Ab | |
120 | 208.79 ± 11.83 Aa | 8.83 ± 0.82 Aa | 37.51 ± 2.65 Ac | |
Anova | B | *** | ** | NS |
P | *** | *** | *** | |
B × P | *** | NS | NS |
Biochar (t ha−1) | P (kg ha−1) | pH | N | Ca | Mg | K | Na | Al | CEC |
---|---|---|---|---|---|---|---|---|---|
(g kg−1) | (cmolc kg−1) | ||||||||
0 | 0 | 4.86 ± 0.08 Cb | 1.78 ± 0.05 Ba | 2.45 ± 0.04 Aa | 1.89 ± 0.04 Aa | 0.07 ± 0.01 Aa | 0.44 ± 0.05 Ca | 0.15 ± 0.01 Aa | 4.99 ± 0.1 Aa |
40 | 5.33 ± 0.01 Ca | 1.81 ± 0.08 BCa | 1.97 ± 0.08 Ab | 1.52 ± 0.09 ABb | 0.08 ± 0 Aa | 0.14 ± 0.03 Cb | 0.14 ± 0.01 Aab | 3.84 ± 0.13 ABb | |
80 | 5.37 ± 0.01 Ba | 1.68 ± 0.08 Ca | 2.14 ± 0.04 Ab | 1.57 ± 0.08 Ab | 0.08 ± 0.01 Aa | 0.13 ± 0.02 Cb | 0.11 ± 0.02 Abc | 4.03 ± 0.05 ABb | |
120 | 5.32 ± 0.03 Ba | 1.56 ± 0.07 Ca | 2.15 ± 0.11 Ab | 1.66 ± 0.1 Ab | 0.08 ± 0.02 Ba | 0.11 ± 0.01 Cb | 0.09 ± 0.01 Ac | 4.09 ± 0.22 ABb | |
7.5 | 0 | 5.11 ± 0.29 BCb | 1.76 ± 0.06 Ba | 1.95 ± 0.11 Cbc | 1.67 ± 0.09 Aa | 0.06 ± 0.02 Ab | 0.46 ± 0.09 Ca | 0.07 ± 0.02 Ba | 4.22 ± 0.25 Ba |
40 | 5.42 ± 0.03 BCab | 1.61 ± 0.16 Ca | 1.88 ± 0.05 Ac | 1.54 ± 0.05 Aab | 0.08 ± 0 Aab | 0.16 ± 0.02 Cb | 0.07 ± 0.01 Ba | 3.73 ± 0.07 Bb | |
80 | 5.44 ± 0.06 Ba | 1.74 ± 0.01 Ca | 2.15 ± 0.12 Ab | 1.65 ± 0.09 Aa | 0.09 ± 0 Aa | 0.17 ± 0.01 Cb | 0.06 ± 0.02 Ba | 4.12 ± 0.18 Aab | |
120 | 5.41 ± 0.06 Bab | 1.85 ± 0.16 BCa | 2.37 ± 0.07 Aa | 1.35 ± 0.26 Bb | 0.11 ± 0.01 ABa | 0.21 ± 0.04 Cb | 0.06 ± 0 ABa | 4.08 ± 0.34 Bab | |
15 | 0 | 5.31 ± 0.18 Ba | 1.94 ± 0.08 Ba | 2.28 ± 0.11 ABa | 1.35 ± 0.09 Ba | 0.06 ± 0.02 Ab | 0.48 ± 0.11 Ca | 0.06 ± 0.02 Ba | 4.23 ± 0.33 Ba |
40 | 5.45 ± 0.05 BCa | 1.93 ± 0.15 Ba | 2.02 ± 0.01 Ab | 1.21 ± 0.04 Ca | 0.09 ± 0.01 Aa | 0.25 ± 0.01 Cb | 0.07 ± 0.01 Ba | 3.64 ± 0.05 Bb | |
80 | 5.42 ± 0.13 Ba | 1.80 ± 0.09 Ca | 2.04 ± 0.18 Ab | 1.22 ± 0.04 Ba | 0.09 ± 0.01 Aa | 0.21 ± 0.01 Cb | 0.07 ± 0.02 Ba | 3.63 ± 0.23 Bb | |
120 | 5.49 ± 0.03 ABa | 1.94 ± 0.02 Ba | 2.27 ± 0.02 Aa | 1.22 ± 0.05 Ba | 0.09 ± 0.01 ABa | 0.22 ± 0.03 Cb | 0.07 ± 0.01 ABa | 3.88 ± 0.06 Bab | |
30 | 0 | 5.76 ± 0.43 Aa | 2.00 ± 0.21 ABa | 2.07 ± 0.18 BCab | 1.3 ± 0.08 Ba | 0.07 ± 0.01 Ab | 0.7 ± 0.05 Ba | 0.05 ± 0 Ba | 4.19 ± 0.3 Ba |
40 | 5.7 ± 0.07 ABa | 1.94 ± 0.20 Ba | 1.92 ± 0.07 Ab | 1.13 ± 0.17 Ca | 0.1 ± 0.01 Aa | 0.44 ± 0.02 Bb | 0.04 ± 0.01 BCa | 3.62 ± 0.24 Bb | |
80 | 5.49 ± 0.05 Ba | 2.14 ± 0.08 Ba | 2.09 ± 0 Aab | 1.26 ± 0.02 Ba | 0.1 ± 0.01 Aa | 0.46 ± 0.03 Bb | 0.04 ± 0.01 BCa | 3.96 ± 0.05 ABab | |
120 | 5.58 ± 0.13 ABa | 2.11 ± 0.16 Ba | 2.27 ± 0.08 Aa | 1.3 ± 0.05 Ba | 0.11 ± 0.01 Aa | 0.45 ± 0.02 Bb | 0.06 ± 0.02 ABa | 4.19 ± 0.1 ABa | |
60 | 0 | 5.97 ± 0.13 Aa | 2.31 ± 0.18 Aa | 2.05 ± 0.05 Cab | 1.41 ± 0.1 Ba | 0.08 ± 0.01 Ab | 1.07 ± 0.11 Aa | 0.01 ± 0.01 Cb | 4.62 ± 0.26 ABa |
40 | 5.95 ± 0.08 Aa | 2.59 ± 0.18 Aa | 1.93 ± 0.04 Ab | 1.29 ± 0.02 BCa | 0.1 ± 0.01 Aab | 0.91 ± 0.04 Ab | 0.02 ± 0.02 Cab | 4.25 ± 0.01 Aa | |
80 | 5.87 ± 0.04 Aa | 2.51 ± 0.15 Aa | 2.1 ± 0.11 Aab | 1.31 ± 0.03 Ba | 0.11 ± 0.01 Aa | 0.83 ± 0.09 Ab | 0.02 ± 0.01 Cab | 4.36 ± 0.04 Aa | |
120 | 5.82 ± 0.08 Aa | 2.45 ± 0.08 Aa | 2.16 ± 0.13 Aa | 1.34 ± 0.08 Ba | 0.11 ± 0.01 Aa | 0.90 ± 0.06 Ab | 0.04 ± 0.01 Ba | 4.55 ± 0.19 Aa | |
B | *** | *** | * | *** | *** | *** | *** | *** | |
Anova | P | * | NS | *** | *** | *** | *** | NS | *** |
B × P | ** | * | *** | * | NS | NS | *** | ** |
Biochar (t ha−1) | P (kg ha−1) | SOC (g kg−1) | EE-GRSP (mg g−1) |
---|---|---|---|
0 | 0 | 37.35 ± 2.13 ABa | 0.79 ± 0.14 ABb |
40 | 35.94 ± 3.83 ABa | 1.05 ± 0.09 Aab | |
80 | 37.01 ± 0.78 Aa | 1.14 ± 0.14 Aa | |
120 | 31.52 ± 0.52 Aa | 0.94 ± 0.12 Aab | |
7.5 | 0 | 31.71 ± 2.13 Bb | 0.73 ± 0.06 Bb |
40 | 31.29 ± 3.80 Bb | 1.05 ± 0.1 Aa | |
80 | 38.34 ± 2.21 Aa | 0.84 ± 0.16 ABab | |
120 | 36.32 ± 3.59 Aab | 0.92 ± 0.03 Aab | |
15 | 0 | 37.44 ± 2.43 ABa | 0.93 ± 0.04 Aba |
40 | 38.22 ± 1.25 Aa | 1.01 ± 0.08 Aa | |
80 | 35.65 ± 4.50 Aa | 0.79 ± 0.11 Ba | |
120 | 35.21 ± 3.19 Aa | 0.88 ± 0.15 Aa | |
30 | 0 | 39.37 ± 4.28 Aa | 1.05 ± 0.27 ABa |
40 | 34.24 ± 0.87 ABa | 0.98 ± 0.24 Aa | |
80 | 36.96 ± 1.85 Aa | 0.97 ± 0.09 ABa | |
120 | 37.25 ± 1.97 Aa | 1.01 ± 0.06 Aa | |
60 | 0 | 37.62 ± 1.04 ABa | 1.06 ± 0.03 Aa |
40 | 35.19 ± 0.42 ABa | 1.02 ± 0.18 Aa | |
80 | 36.58 ± 2.89 Aa | 0.89 ± 0.18 ABa | |
120 | 36.95 ± 1.58 Aa | 1.03 ± 0.03 Aa | |
B | NS | NS | |
Anova | P | NS | NS |
B × P | * | NS |
Variables | Height | Leaves | Leaf Area | Biomass | Root | pH | E. Al | SOC | Total N | Soil AP | E. Na | E. K | E. Ca | E. Mg | CEC | PPC | EE-GRSP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Height | 1 | ||||||||||||||||
Leaves | 0.73 ** | 1 | |||||||||||||||
Leaf area | 0.63 ** | 0.70 ** | 1 | ||||||||||||||
Biomass | 0.78 ** | 0.91 ** | 0.80 ** | 1 | |||||||||||||
Root | 0.45 ** | 0.62 ** | 0.65 ** | 0.71 ** | 1 | ||||||||||||
pH | 0.37 ** | 0.26 * | 0.51 ** | 0.29 * | 0.39 ** | 1 | |||||||||||
E. Al | −0.12 | −0.06 | −0.34 | −0.12 | −0.18 | −0.76 | 1 | ||||||||||
SOC | 0.03 | −0.15 | 0.04 | −0.07 | −0.06 | 0.19 | −0.02 | 1 | |||||||||
Total N | 0.11 | 0.03 | 0.22 | 0.07 | 0.17 | 0.71 ** | −0.63 | 0.26 * | 1 | ||||||||
Soil AP | 0.50 ** | 0.60 ** | 0.58 ** | 0.62 ** | 0.41 ** | 0.28 * | −0.20 | 0.02 | 0.28 * | 1 | |||||||
E. Na | −0.23 | −0.36 | −0.06 | −0.33 | −0.04 | 0.61 ** | −0.62 | 0.21 | 0.81 ** | −0.02 | 1 | ||||||
E. K | 0.49 ** | 0.52 ** | 0.52 ** | 0.66 ** | 0.48 ** | 0.35 ** | −0.34 | 0.08 | 0.41 ** | 0.66 ** | 0.17 | 1 | |||||
E. Ca | −0.15 | −0.14 | −0.18 | −0.16 | −0.20 | −0.26 | 0.20 | 0.33 * | −0.03 | 0.34 ** | −0.09 | 0.10 | 1 | ||||
E. Mg | −0.36 | −0.40 | −0.46 | −0.36 | −0.24 | −0.55 | 0.53 ** | −0.07 | −0.41 | −0.29 | −0.21 | −0.36 | 0.30 * | 1 | |||
CEC | −0.44 | −0.55 | −0.39 | −0.51 | −0.25 | 0.00 | −0.02 | 0.28 * | 0.36 ** | −0.01 | 0.57 ** | −0.01 | 0.57 ** | 0.56 ** | 1 | ||
PPC | 0.61 ** | 0.77 ** | 0.67 ** | 0.78 ** | 0.47 ** | 0.23 | −0.16 | −0.04 | 0.12 | 0.89 ** | −0.21 | 0.68 ** | 0.18 | −0.29 | −0.22 | 1 | |
EE-GRSP | 0.20 | 0.20 | 0.26 * | 0.22 | 0.25 | 0.40 ** | −0.12 | 0.18 | 0.17 | 0.06 | 0.10 | 0.01 | −0.10 | −0.15 | −0.07 | 0.07 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braga, A.R.d.O.; John, V.; Danielli, C.K.A.d.O.; Sousa, H.M.; Danielli, F.E.; Marques-dos-Santos, C.S.d.C.; Oliveira, D.M.d.; Falcão, N.P.d.S. Açaí Waste Biochar Combined with Phosphorus Fertiliser and Phosphorus Use Efficiency in Cowpea (Vigna unguiculata (L.) Walp). Agronomy 2025, 15, 393. https://doi.org/10.3390/agronomy15020393
Braga ARdO, John V, Danielli CKAdO, Sousa HM, Danielli FE, Marques-dos-Santos CSdC, Oliveira DMd, Falcão NPdS. Açaí Waste Biochar Combined with Phosphorus Fertiliser and Phosphorus Use Efficiency in Cowpea (Vigna unguiculata (L.) Walp). Agronomy. 2025; 15(2):393. https://doi.org/10.3390/agronomy15020393
Chicago/Turabian StyleBraga, Ana Rita de Oliveira, Vinicius John, Criscian Kellen Amaro de Oliveira Danielli, Heiriane Martins Sousa, Filipe Eduardo Danielli, Cláudia Saramago de Carvalho Marques-dos-Santos, Danielle Monteiro de Oliveira, and Newton Paulo de Souza Falcão. 2025. "Açaí Waste Biochar Combined with Phosphorus Fertiliser and Phosphorus Use Efficiency in Cowpea (Vigna unguiculata (L.) Walp)" Agronomy 15, no. 2: 393. https://doi.org/10.3390/agronomy15020393
APA StyleBraga, A. R. d. O., John, V., Danielli, C. K. A. d. O., Sousa, H. M., Danielli, F. E., Marques-dos-Santos, C. S. d. C., Oliveira, D. M. d., & Falcão, N. P. d. S. (2025). Açaí Waste Biochar Combined with Phosphorus Fertiliser and Phosphorus Use Efficiency in Cowpea (Vigna unguiculata (L.) Walp). Agronomy, 15(2), 393. https://doi.org/10.3390/agronomy15020393