Maintaining Silage Corn Production Under Sodic Irrigation Water Conditions in a Semi-Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Model Preparation
2.2. Experimental Design
2.3. Irrigation and Field Management
2.4. Measurements and Data Collection
3. Results and Discussion
3.1. Soil Salinity (ECe)
3.2. SAR (Sodium Adsorption Ratio)
3.3. Soil pH
3.4. K+ (Potassium) Concentration
3.5. Total Biomass and Growth Components of Corn Maize
3.5.1. Corn Dry Weight (Total Aboveground Biomass)
3.5.2. IWUE
3.5.3. Stem Diameter
3.5.4. Stem Height
3.5.5. Leaf Area
3.5.6. Root Volume
3.5.7. Experimental Constraints and Future Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostad-Ali-Askari, K.; Shayannejad, M. Quantity and Quality Modelling of Groundwater to Manage Water Resources in Isfahan-Borkhar Aquifer. Environ. Dev. Sustain. 2021, 23, 15943–15959. [Google Scholar] [CrossRef]
- Gohari, A.; Eslamian, S.; Mirchi, A.; Abedi-Koupaei, J.; Massah Bavani, A.; Madani, K. Water Transfer as a Solution to Water Shortage: A Fix That Can Backfire. J. Hydrol. 2013, 491, 23–39. [Google Scholar] [CrossRef]
- Zamani, O.; Grundmann, P.; Libra, J.A.; Nikouei, A. Limiting and Timing Water Supply for Agricultural Production—The Case of the Zayandeh-Rud River Basin, Iran. Agric. Water Manag. 2019, 222, 322–335. [Google Scholar] [CrossRef]
- Nabavi, E. Failed Policies, Falling Aquifers: Unpacking Groundwater Overabstraction in Iran. Water Altern. 2018, 11, 699. [Google Scholar]
- Gheysari, M.; Sadeghi, S.-H.; Loescher, H.W.; Amiri, S.; Zareian, M.J.; Majidi, M.M.; Asgarinia, P.; Payero, J.O. Comparison of Deficit Irrigation Management Strategies on Root, Plant Growth and Biomass Productivity of Silage Maize. Agric. Water Manag. 2017, 182, 126–138. [Google Scholar] [CrossRef]
- Gheysari, M.; Pirnajmedin, F.; Movahedrad, H.; Majidi, M.M.; Zareian, M.J. Crop Yield and Irrigation Water Productivity of Silage Maize under Two Water Stress Strategies in Semi-Arid Environment: Two Different Pot and Field Experiments. Agric. Water Manag. 2021, 255, 106999. [Google Scholar] [CrossRef]
- Suarez, D.L. Use of Marginal-Quality Waters for Sustainable Crop Production. In Developments in Soil Salinity Assessment and Reclamation; Springer: Berlin/Heidelberg, Germany, 2013; pp. 367–381. [Google Scholar]
- Amini Najafabadi, M.; Fatahi Nafchi, R.; Salami, H.; Vanani, H.R.; Ostad-Ali-Askari, K. Effect of Different Managements with Drip Irrigation (Tape). Appl. Water Sci. 2023, 13, 37. [Google Scholar] [CrossRef]
- Chaganti, V.N.; Ganjegunte, G.; Niu, G.; Ulery, A.; Enciso, J.M.; Flynn, R.; Meki, N.; Kiniry, J.R. Yield Response of Canola as a Biofuel Feedstock and Soil Quality Changes under Treated Urban Wastewater Irrigation and Soil Amendment Application. Ind. Crops Prod. 2021, 170, 113659. [Google Scholar] [CrossRef]
- Ganjegunte, G.; Ulery, A.; Niu, G.; Wu, Y. Effects of Treated Municipal Wastewater Irrigation on Soil Properties, Switchgrass Biomass Production and Quality under Arid Climate. Ind. Crops Prod. 2017, 99, 60–69. [Google Scholar] [CrossRef]
- Soothar, R.K.; Zhang, W.; Liu, B.; Tankari, M.; Wang, C.; Li, L.; Xing, H.; Gong, D.; Wang, Y. Sustaining Yield of Winter Wheat under Alternate Irrigation Using Saline Water at Different Growth Stages: A Case Study in the North China Plain. Sustainability 2019, 11, 4564. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Q.; Hu, Y.; Zheng, Y.; Wu, X.; Wu, H.; Zhang, G.; Cai, D.; Manzur, C.L. An Alternative Water Source and Combined Agronomic Practices for Cotton Irrigation in Coastal Saline Soils. Irrig. Sci. 2012, 30, 221–232. [Google Scholar] [CrossRef]
- Zidan, K.; Mandi, L.; Hejjaj, A.; Ouazzani, N.; Assabbane, A. Soil Fertility and Agro-Physiological Responses of Maize (Zea mays) Irrigated by Treated Domestic Wastewater by Hybrid Multi-Soil-Layering Technology. J. Environ. Manag. 2024, 351, 119802. [Google Scholar] [CrossRef]
- Govada, D.S.; Anny Mrudhula, K.; Sunil Kumar, M.; Ramesh, G.; Kishore Babu, G.; Siddartha Naik, B. Evaluation of Saline Water Effects on Use Efficiency and Soil Nutrient Availability of Maize (Zea mays L.) under Drip Fertigation. Plant Sci. Today 2024, 11, 485–495. [Google Scholar] [CrossRef]
- Elmahdi, A. Addressing Water Scarcity in Agricultural Irrigation: By Exploring Alternative Water Resources for Sustainable Irrigated Agriculture. Irrig. Drain. 2024, 73, 1675–1683. [Google Scholar] [CrossRef]
- Karimidastenaei, Z.; Avellán, T.; Sadegh, M.; Kløve, B.; Haghighi, A.T. Unconventional Water Resources: Global Opportunities and Challenges. Sci. Total Environ. 2022, 827, 154429. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Smakhtin, V.; Koo-Oshima, S.; Guenther, E. Global Water Scarcity and Unconventional Water Resources. In Unconventional Water Resources; Springer International Publishing: Cham, Switzerland, 2022; pp. 3–17. [Google Scholar]
- Mohammad Rusan, M.J.; Hinnawi, S.; Rousan, L. Long Term Effect of Wastewater Irrigation of Forage Crops on Soil and Plant Quality Parameters. Desalination 2007, 215, 143–152. [Google Scholar] [CrossRef]
- Tripathi, V.K.; Rajput, T.B.S.; Patel, N.; Nain, L. Impact of Municipal Wastewater Reuse through Micro-Irrigation System on the Incidence of Coliforms in Selected Vegetable Crops. J. Environ. Manag. 2019, 251, 109532. [Google Scholar] [CrossRef]
- Yang, T.; Šimůnek, J.; Mo, M.; Mccullough-Sanden, B.; Shahrokhnia, H.; Cherchian, S.; Wu, L. Assessing Salinity Leaching Efficiency in Three Soils by the HYDRUS-1D and -2D Simulations. Soil Tillage Res. 2019, 194, 104342. [Google Scholar] [CrossRef]
- Letey, J.; Feng, G.L. Dynamic versus Steady-State Approaches to Evaluate Irrigation Management of Saline Waters. Agric. Water Manag. 2007, 91, 1–10. [Google Scholar] [CrossRef]
- Kramer, I.; Mau, Y. Review: Modeling the Effects of Salinity and Sodicity in Agricultural Systems. Water Resour. Res. 2023, 59, e2023WR034750. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; Volume 29. [Google Scholar]
- Minhas, P.S.; Qadir, M. Managing Saline-Sodic and Alkali Waters for Crop Production. In Irrigation Sustainability with Saline and Alkali Waters; Springer Nature: Singapore, 2024; pp. 161–190. [Google Scholar]
- Yin, X.; Feng, Q.; Liu, W.; Zhu, M.; Zhang, J.; Li, Y.; Yang, L.; Zhang, C.; Cui, M.; Zheng, X.; et al. Assessment and Mechanism Analysis of Plant Salt Tolerance Regulates Soil Moisture Dynamics and Controls Root Zone Salinity and Sodicity in Seasonally Irrigated Agroecosystems. J. Hydrol. 2023, 617, 129138. [Google Scholar] [CrossRef]
- Choudhary, O.P.; Ghuman, B.S.; Bijay-Singh; Thuy, N.; Buresh, R.J. Effects of Long-Term Use of Sodic Water Irrigation, Amendments and Crop Residues on Soil Properties and Crop Yields in Rice–Wheat Cropping System in a Calcareous Soil. Field Crops Res. 2011, 121, 363–372. [Google Scholar] [CrossRef]
- Peker, A.E.; Öztürk, H.S.; Mamedov, A.I. The Effect of Sodic Water Type on the Chemical Properties of Calcareous Soil in Semi-Arid Irrigated Land. Soil Syst. 2024, 8, 10. [Google Scholar] [CrossRef]
- Choudhary, O.P.; Ghuman, B.S.; Josan, A.S.; Bajwa, M.S. Effect of Alternating Irrigation with Sodic and Non-Sodic Waters on Soil Properties and Sunflower Yield. Agric. Water Manag. 2006, 85, 151–156. [Google Scholar] [CrossRef]
- Song, C.; Song, J.; Wu, Q.; Shen, X.; Hu, Y.; Hu, C.; Li, W.; Wang, Z. Effects of Applying River Sediment with Irrigation Water on Salinity Leaching during Wheat-Maize Rotation in the Yellow River Delta. Agric. Water Manag. 2023, 276, 108032. [Google Scholar] [CrossRef]
- El-Ramady, H.; Prokisch, J.; Mansour, H.; Bayoumi, Y.A.; Shalaby, T.A.; Veres, S.; Brevik, E.C. Review of Crop Response to Soil Salinity Stress: Possible Approaches from Leaching to Nano-Management. Soil Syst. 2024, 8, 11. [Google Scholar] [CrossRef]
- He, Z.; Cao, H.; Xing, X.; Hu, Q.; Li, Z. Optimization of Leaching Level and Alternating Drip Irrigation Start Time Improved Water Saving, Yield Enhancement, and Salt Leaching. Ind. Crops Prod. 2024, 222, 119537. [Google Scholar] [CrossRef]
- Qiu, R.; Liu, C.; Wang, Z.; Yang, Z.; Jing, Y. Effects of Irrigation Water Salinity on Evapotranspiration Modified by Leaching Fractions in Hot Pepper Plants. Sci. Rep. 2017, 7, 7231. [Google Scholar] [CrossRef] [PubMed]
- Mostafazadeh-Fard, B.; Mansouri, H.; Mousavi, S.; Feizi, M. Effects of Different Levels of Irrigation Water Salinity and Leaching on Yield and Yield Components of Wheat in an Arid Region. J. Irrig. Drain. Eng. 2009, 135, 32–38. [Google Scholar] [CrossRef]
- Howell, N. Comparative Water Qualities and Blending in the Ogallala and Dockum Aquifers in Texas. Hydrology 2021, 8, 166. [Google Scholar] [CrossRef]
- Öztürk, H.S.; Deviren Saygin, S.; Copty, N.K.; İzci, E.; Erpul, G.; Demirel, B.; Saysel, A.K.; Babaei, M. Hydro-Physical Deterioration of a Calcareous Clay-Rich Soil by Sodic Water in Central Anatolia, Türkiye. Geoderma Reg. 2023, 33, e00649. [Google Scholar] [CrossRef]
- Chaganti, V.N.; Crohn, D.M. Evaluating the Relative Contribution of Physiochemical and Biological Factors in Ameliorating a Saline–Sodic Soil Amended with Composts and Biochar and Leached with Reclaimed Water. Geoderma 2015, 259–260, 45–55. [Google Scholar] [CrossRef]
- Mostafazadeh-Fard, B.; Heidarpour, M.; Aghakhani, Q.A.; Feizi, M. Effects of Irrigation Water Salinity and Leaching on Soil Chemical Properties in an Arid Region. Int. J. Agric. Biol. 2007, 3, 166–469. [Google Scholar]
- Fathi, M.; Rezaei, M. Soil Salinity in the Central Arid Region of Iran: Esfahan Province. In Developments in Soil Salinity Assessment and Reclamation; Springer: Dordrecht, The Netherlands, 2013; pp. 141–153. [Google Scholar]
- Esmaeili, A.; Moore, F. Hydrogeochemical Assessment of Groundwater in Isfahan Province, Iran. Environ. Earth Sci. 2012, 67, 107–120. [Google Scholar] [CrossRef]
- Birouste, M.; Zamora-Ledezma, E.; Bossard, C.; Pérez-Ramos, I.M.; Roumet, C. Measurement of Fine Root Tissue Density: A Comparison of Three Methods Reveals the Potential of Root Dry Matter Content. Plant Soil 2014, 374, 299–313. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils. Soil Sci. 1954, 78, 154. [Google Scholar] [CrossRef]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of Soil, Plant, and Water Analysis: A Manual for the West, Asia and North Africa Region; ICARDA: Beirut, Lebanon, 2013. [Google Scholar]
- Payero, J.O.; Tarkalson, D.D.; Irmak, S.; Davison, D.; Petersen, J.L. Effect of Irrigation Amounts Applied with Subsurface Drip Irrigation on Corn Evapotranspiration, Yield, Water Use Efficiency, and Dry Matter Production in a Semiarid Climate. Agric. Water Manag. 2008, 95, 895–908. [Google Scholar] [CrossRef]
- Amer, K.H. Corn Crop Response under Managing Different Irrigation and Salinity Levels. Agric. Water Manag. 2010, 97, 1553–1563. [Google Scholar] [CrossRef]
- Keller, J.; Bliesner, R.D. Sprinkle and Trickle Irrigation; Van Nostrand Reinhold: New York, NY, USA, 1990. [Google Scholar]
- Chaganti, V.N.; Crohn, D.M.; Šimůnek, J. Leaching and Reclamation of a Biochar and Compost Amended Saline–Sodic Soil with Moderate SAR Reclaimed Water. Agric. Water Manag. 2015, 158, 255–265. [Google Scholar] [CrossRef]
- Hillel, D. Introduction to Environmental Soil Physics; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 008049577X. [Google Scholar]
- Heidarpour, M.; Mostafazadeh-Fard, B.; Abedi Koupai, J.; Malekian, R. The Effects of Treated Wastewater on Soil Chemical Properties Using Subsurface and Surface Irrigation Methods. Agric. Water Manag. 2007, 90, 87–94. [Google Scholar] [CrossRef]
- Rengasamy, P.; de Lacerda, C.F.; Gheyi, H.R. Salinity, Sodicity and Alkalinity. In Subsoil Constraints for Crop Production; Springer International Publishing: Cham, Switzerland, 2022; pp. 83–107. [Google Scholar]
- Simunek, J.; Van Genuchten, M.T.; Sejna, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media; University of California-Riverside Research Reports; Colorado School of Mines, International Ground Water Modeling Center: Golden, CO, USA, 2005; Volume 3, pp. 1–240. [Google Scholar]
- Ortez, O.A.; McMechan, A.J.; Hoegemeyer, T.; Ciampitti, I.A.; Nielsen, R.; Thomison, P.R.; Elmore, R.W. Abnormal Ear Development in Corn: A Review. Agron. J. 2022, 114, 1168–1183. [Google Scholar] [CrossRef]
- Arif, M.R.; Islam, M.T.; Robin, A.H.K. Salinity Stress Alters Root Morphology and Root Hair Traits in Brassica Napus. Plants 2019, 8, 192. [Google Scholar] [CrossRef]
Soil Physical Characteristics | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | Bulk Density (g/cm3) | Soil Texture | |||||
(%) | |||||||||
70 | 7 | 23 | 1.8 | Sandy clay loam | |||||
Soil chemical characteristics | |||||||||
EC (dS/m) | pH | NH4+ (mg/Kg) | NO3− (mg/Kg) | Ions (meq/L) | SAR | USSL classification | |||
Na+ | Ca2+ + Mg2+ | K+ | |||||||
2.13 | 8.5 | 84 | 165 | 9.62 | 9 | 2.20 | 3.2 | Non-saline and non-sodic soil |
Irrigation Waters | pH | EC (dS/m) | SAR | K+ (meq L−1) | Classification |
---|---|---|---|---|---|
S1 | 8.8 | 1 | 5.27 | 0.11 | Non-saline or non-sodic |
S2 | 8.76 | 4.7 | 16.56 | 0.53 | Saline–sodic |
S3 | 9.2 | 9 | 28.57 | 0.8 | Saline–sodic |
Depth | Irrigation Water Salinity | Leaching Fraction | ||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | LF1 | LF2 | LF3 | |
0–10 cm | 2.07 c | 3.46 b | 6.09 a | 4.57 a | 3.92 ab | 3.13 b |
10–25 cm | 1.78 c | 3.94 b | 5.77 a | 3.68 a | 3.86 a | 3.94 a |
25–40 cm | 1.27 c | 5.3 b | 6.46 a | 3.68 b | 4.7 a | 4.66 a |
Depth | Irrigation Water Salinity/Sodicity | Leaching Fraction | ||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | LF1 | LF2 | LF3 | |
0–10 cm | 6.09 c | 20.83 b | 37.92 a | 25.16 a | 21.75 ab | 17.93 b |
10–25 cm | 2.94 b | 8.98 a | 13.34 a | 9.35 a | 7.34 a | 8.57 a |
25–40 cm | 0.11 c | 3.95 b | 5.58 a | 3.11 a | 3.15 a | 3.37 a |
Irrigation Water Salinity | Leaching Fraction | |||||
---|---|---|---|---|---|---|
Depth | S1 | S2 | S3 | LF1 | LF2 | LF3 |
0–10 cm | 8.73 a | 8.82 a | 8.65 a | 8.71 ab | 8.60 b | 8.89 a |
10–25 cm | 8.81 a | 8.59 b | 8.39 c | 8.53 a | 8.68 a | 8.58 a |
25–40 cm | 8.49 a | 8.17 b | 8.07 b | 8.23 a | 8.31 a | 8.18 a |
Irrigation Water Salinity (Potassium Concentration) | Leaching Fraction | |||||
---|---|---|---|---|---|---|
Depth | S1 | S2 | S3 | LF1 | LF2 | LF3 |
0–10 cm | 0.81 a | 1.22 a | 1.03 a | 0.82 a | 0.92 a | 1.34 a |
10–25 cm | 0.82 b | 0.90 ab | 1.18 a | 0.93 a | 1.07 a | 0.90 a |
25–40 cm | 0.53 b | 1.06 a | 1.07 a | 0.87 a | 0.90 a | 0.90 a |
Irrigation Water Salinity | Leaching Fraction | |||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | LF1 | LF2 | LF3 | |
Total biomass—Dry Weight (g plant−1) | 34.22 a | 28.89 ab | 19.89 b | 26.00 a | 27.89 a | 29.11 a |
IWUE (kg/ha.mm) | 12.06 a | 10.44 ab | 7.03 b | 10.16 a | 10.00 a | 9.37 a |
Stem Diameter (mm) | 15.48 a | 13.66 b | 12.90 b | 13.56 a | 14.25 a | 14.24 a |
Stem Height (cm) | 56.70 a | 39.11 b | 39.55 b | 36.77 c | 43.04 b | 55.55 a |
Leaf Area (cm2) | 74.69 a | 60.26 b | 47.61 c | 54.67 b | 60.69 b | 67.20 a |
Root Volume (mm3) | 21.28 a | 15.06 b | 10.28 b | 15.51 a | 15.28 a | 15.83 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moghbel, F.; Fazel, F.; Aguilar, J.; Mostafazadeh-Fard, B.; Mosaedi, A.; Howell, N. Maintaining Silage Corn Production Under Sodic Irrigation Water Conditions in a Semi-Arid Environment. Agronomy 2025, 15, 400. https://doi.org/10.3390/agronomy15020400
Moghbel F, Fazel F, Aguilar J, Mostafazadeh-Fard B, Mosaedi A, Howell N. Maintaining Silage Corn Production Under Sodic Irrigation Water Conditions in a Semi-Arid Environment. Agronomy. 2025; 15(2):400. https://doi.org/10.3390/agronomy15020400
Chicago/Turabian StyleMoghbel, Farzam, Forough Fazel, Jonathan Aguilar, Behrouz Mostafazadeh-Fard, Abolfazl Mosaedi, and Nathan Howell. 2025. "Maintaining Silage Corn Production Under Sodic Irrigation Water Conditions in a Semi-Arid Environment" Agronomy 15, no. 2: 400. https://doi.org/10.3390/agronomy15020400
APA StyleMoghbel, F., Fazel, F., Aguilar, J., Mostafazadeh-Fard, B., Mosaedi, A., & Howell, N. (2025). Maintaining Silage Corn Production Under Sodic Irrigation Water Conditions in a Semi-Arid Environment. Agronomy, 15(2), 400. https://doi.org/10.3390/agronomy15020400