Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review
Abstract
:1. Introduction
2. Arsenic Uptake, Translocation and Accumulation in Rice Plant
2.1. Uptake and Transport of Inorganic Arsenic Species
2.2. Uptake and Transport of Organic Arsenic Species
2.3. Accumulation of Arsenic in Rice Grain
3. Factors Influencing Arsenic Mobilization and Intake in Rice Plant
3.1. Arsenic Speciation
3.2. Effect of Redox Condition and Soil Texture
3.3. Effect of Soil pH
3.4. Effect of Organic Matter
3.5. Genotype Variation in Rice
4. Arsenic Induced Oxidative Stress and Response in Rice Plant
5. Concentration of Arsenic Species in Rice Grain
6. Risk of Arsenic from Rice Diet to Human Health
7. Agronomic Strategies for Mitigating Arsenic Accumulation in Rice
- Fertilization of soil with minerals
- Water management and irrigation practices
- Bioremediation strategy
7.1. Fertilization of Soil with Minerals
7.1.1. Role of Fe
7.1.2. Role of Phosphorus
7.1.3. Role of Silica
7.1.4. Role of Sulfur
7.2. Water Management and Irrigation Practices
7.3. Bioremediation Strategy
7.3.1. Role of Soil Microorganism
7.3.2. Restriction of Arsenic at Underground Level
7.3.3. Increase AsIII Efflux Rate
7.3.4. Volatilization of Arsenic
8. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Martinez, V.D.; Vucic, E.A.; Becker-Santos, D.D.; Gil, L.; Lam, W.L. Arsenic exposure and the induction of human cancers. J. Toxicol. 2011, 2011, 431287. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, P.K.; Kim, K. A review of the arsenic concentration in paddy rice from the perspective of geoscience. Geosci. J. 2013, 17, 107–122. [Google Scholar] [CrossRef]
- Gupta, D.K.; Chatterjee, S. Arsenic Contamination in the Environment: The issues and Solutions; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Gupta, D.K.; Tiwari, S.; Razafindrabe, B.H.N.; Chatterjee, S. Arsenic contamination from historical aspects till present situation. In Arsenic Contamination in the Environment: The Issues and Solutions; Gupta, D.K., Chatterjee, S., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 1–12. [Google Scholar]
- Banerjee, M.; Banerjee, N.; Bhattacharjee, P.; Mondal, D.; Lythgoe, P.R.; Martínez, M.; Pan, J.; Polya, D.A.; Giri, A.K. High arsenic in rice is associated with elevated genotoxic effects in humans. Sci. Rep. 2013, 3, 2195. [Google Scholar] [CrossRef] [PubMed]
- Fahad, S.; Hussain, S.; Saud, S.; Tanveer, M.; Bajwa, A.A.; Hassan, S.; Shah, A.N.; Ullah, A.; Wu, C.; Khan, F.A.; et al. A biochar application protects rice pollen from high-temperature stress. Plant Physiol. Biochem. 2015, 96, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Fahad, S.; Hussain, S.; Saud, S.; Hassan, S.; Chauhan, B.S.; Khan, F.; Ihsan, M.Z.; Ullah, A.; Wu, C.; Bajwa, A.A.; et al. Responses of rapid Visco analyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS ONE 2016, 11, e0159590. [Google Scholar] [CrossRef] [PubMed]
- Ohno, K.; Yanase, T.; Matsuo, Y.; Kimura, T.; Rahman, M.H.; Magara, Y.; Matsui, Y. Arsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh. Sci. Total Environ. 2007, 381, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Mondal, D.; Polya, D.A. Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: A probabilistic risk assessment. Appl. Geochem. 2008, 23, 2987–2998. [Google Scholar] [CrossRef]
- Bakhat, H.F.; Zia, Z.; Fahad, S.; Abbas, S.; Hammad, H.M.; Shahzad, A.N.; Abbas, F.; Alharby, H.; Shahid, M. Arsenic uptake, accumulation and toxicity in rice plants: Possible remedies for its detoxification: A review. Environ. Sci. Pollut. Res. 2017, 24, 9142–9158. [Google Scholar] [CrossRef] [PubMed]
- Meharg, A.A.; Williams, P.N.; Adomako, E.; Lawgali, Y.Y.; Deacon, C.; Villada, A.; Cambell, R.C.J.; Sun, G.; Zhu, Y.G.; Feldmann, J.; et al. Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ. Sci. Technol. 2009, 43, 1612–1617. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; McGrath, S.P.; Meharg, A.A. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 2010, 61, 535–559. [Google Scholar] [CrossRef] [PubMed]
- Heikens, A. Arsenic Contamination of Irrigation Water, Soil and Crops in Bangladesh: Risk Implications for Sustainable Agriculture and Food Safety in Asia; Food and Agricultural Organization of the United Nations, Regional Office for Asia and the Pacific: Bangkok, Thailand, 2006. [Google Scholar]
- Dave, R.; Singh, P.; Tripathi, P.; Shri, M.; Dixit, G.; Dwivedi, S.; Chakrabarty, D.; Trivedi, P.K.; Sharma, Y.K.; Dhankher, O.P.; et al. Arsenite tolerance is related to proportional thiolic metabolite synthesis in rice (Oryza sativa L.). Arch. Environ. Contam. Toxicol. 2013, 64, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Abedin, M.J.; Feldmann, J.; Meharg, A.A. Uptake kinetics of arsenic species in rice plants. Plant Physiol. 2002, 128, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Carbonell-Barrachina, A.; Aarabi, M.A.; Delaune, R.D.; Gambrell, R.P.; Patrick, W.H.J. Bioavailability and uptake of arsenic by wetland vegetation: Effects on plant growth and nutrition. J. Environ. Sci. Health 1998, 33, 45–66. [Google Scholar] [CrossRef]
- Garg, N.; Singla, P. Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. Environ. Chem. Lett. 2011, 9, 303–321. [Google Scholar] [CrossRef]
- Duxbury, J.M.; Panaullah, G.M. Remediation of Arsenic for Agriculture Sustainability, Food Security and Health in Bangladesh; FAO: Rome, Italy, 2007; pp. 1–28. [Google Scholar]
- Stoeva, N.; Bineva, T. Oxidative changes and photosynthesis in Oat plants grown in As- contaminated soil. Bulg. J. Plant Physiol. 2003, 29, 87–95. [Google Scholar]
- Tripathi, P.; Mishra, A.; Dwivedi, S.; Chakrabarty, D.; Trivedi, P.K.; Singh, R.P.; Tripathi, R.D. Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol. Environ. Saf. 2012, 79, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Inouhe, M.; Rodríguez-Serrano, M.; Romero-Puerta, M.C.; Sandalio, L.M. Oxidative stress and arsenic toxicity: Role of NADPH oxidases. Chemosphere 2013, 90, 1987–1996. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.W.; Chen, Y.Y.; Kao, Y.H.; Maji, S.K. Bioaccumulation and translocation of arsenic in the ecosystem of the Guandu Wetland, Taiwan. Wetlands 2014, 34, 129–140. [Google Scholar] [CrossRef]
- Liu, W.J.; McGrath, S.P.; Zhao, F.J. Silicon has opposite effects on the accumulation of inorganic and methylated arsenic species in rice. Plant Soil 2014, 376, 423–431. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Jovanovic, D.; Polya, D. Best Practice Guide on the Control of Arsenic in Drinking Water; IWA Publishing: London, UK, 2014. [Google Scholar]
- Liu, Z.J.; Boles, E.; Rosen, B.P. Arsenic trioxide uptake by hexosepermeases in Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279, 17312–17318. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Ma, J.F.; McGrath, S.P.; Meharg, A.A. Arsenic uptake and metabolism in plants. New Phytol. 2009, 181, 777–794. [Google Scholar] [CrossRef] [PubMed]
- Rascio, N.; NavariIzzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Hassler, C. Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquat. Toxicol. 2014, 146, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Sharma, S.; Gupta, D.K. Arsenic and its effect on major crop plants: Stationary awareness to paradigm with special reference to rice crop. In Arsenic Contamination in the Environment; Gupta, D.K., Chatterjee, S., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 123–143. [Google Scholar]
- Peng, S.B.; Bouman, B.; Visperas, R.A.; Castaneda, A.; Nie, L.X.; Park, H.K. Comparison between aerobic and flooded rice in the tropics: Agronomic performance in an eight-season experiment. Field Crop Res. 2006, 96, 252–259. [Google Scholar] [CrossRef]
- Meharg, A.A.; Zhao, F.J. Arsenic & Rice; Springer International Publishing AG: Cham, Switzerland, 2012. [Google Scholar]
- Li, R.Y.; Stroud, J.L.; Ma, J.F.; Mcgrath, S.P.; Zhao, F.J. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ. Sci. Technol. 2009, 43, 3778–3783. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Y.; McGrath, S.P.; Meharg, A.A.; Zhao, F.J. Growing rice aerobically decreases arsenic accumulation. Environ. Sci. Technol. 2008, 42, 5574–5579. [Google Scholar] [CrossRef] [PubMed]
- Arao, T.; Kawasaki, A.; Baba, K.; Mori, S.; Matsumoto, S. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ. Sci. Technol. 2009, 43, 9361–9367. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, D.D.; Cottingham, K.L.; Gruber, J.F.; Punshon, T.; Sayarath, V.; Gandolfi, A.J.; Baker, E.R.; Jackson, B.P.; Folt, C.L.; Karagas, M.R. Rice consumption contributes to arsenic exposure in US women. Proc. Natl. Acad. Sci. USA 2011, 108, 20656–20660. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Islam, F.; Ali, B.; Najeeb, U.; Mao, B.; Gill, R.A.; Yan, G.; Siddique, K.H.M.; Zhou, W. Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environ. Exp. Bot. 2016, 132, 42–52. [Google Scholar] [CrossRef]
- Gupta, D.K.; Srivastava, S.; Huang, H.G.; Romero-Puertas, M.C.; Sandalio, L.M. Arsenic tolerance and detoxification mechanisms in plants. In Detoxification of Heavy Metals; Sherameti, I., Varma, A., Eds.; Springer International Publishing AG: Cham, Switzerland; pp. 169–180.
- Wu, Z.; Ren, H.; McGrath, S.P.; Wu, P.; Zhao, F.J. Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol. 2011, 157, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Paszkowski, U.; Kroken, S.; Roux, C.; Briggs, S.P. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA 2002, 99, 13324–13329. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, T.; Islam, M.R.; Duan, G.; Uraguchi, S.; Fujiwara, T. Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci. Plant Nutr. 2013, 59, 580–590. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, W.; Mao, C.; Xu, G.; Zhao, F.J. The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J. Exp. Bot. 2016, 67, 6051–6059. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Yamaji, N.; Mitani, N.; Xu, X.Y.; Su, Y.H.; McGrath, S.P.; Zhao, F.J. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. USA 2008, 105, 9931–9935. [Google Scholar] [CrossRef] [PubMed]
- Li, R.Y.; Ago, Y.; Liu, W.J.; Mitani, N.; Feldmann, J.; McGrath, S.P.; Ma, J.F.; Zhao, F.J. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol. 2009, 150, 2071–2080. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006, 11, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, P.S.; Talano, M.A.; Oller, A.L.W.; Ibanez, S.G.; Medina, M.I.; Agostini, E. Update on mechanisms involved in arsenic and chromium accumulation, translocation and homeostasis in plants. In Heavy Metal Remediation: Transport and Accumulation in Plants; Gupta, D.K., Chatterjee, S., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 45–72. [Google Scholar]
- Mitra, A.; Chatterjee, S.; Datta, S.; Sharma, S.; Veer, V.; Razafindrabe, B.H.M.; Walther, C.; Gupta, D.K. Mechanism of metal transporter in plants In Heavy Metal Remediation: Transport and Accumulation in Plants; Gupta, D.K., Chatterjee, S., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 1–27. [Google Scholar]
- Zhao, X.Q.; Mitani, N.; Yamaji, N.; Shen, R.F.; Ma, J.F. Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol. 2010, 153, 1871–1877. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Huang, H.; Zhong, M.; Wang, F.H.; Zhang, L.M.; Zhu, Y.G. Microbial arsenic methylation in soil and rice rhizosphere. Environ. Sci. Technol. 2013, 47, 3141–3148. [Google Scholar] [CrossRef] [PubMed]
- Raab, A.; Williams, P.N.; Meharg, A.; Feldmann, J. Uptake and translocation of inorganic and methylated arsenic species by plants. Environ. Chem. 2007, 4, 197–203. [Google Scholar] [CrossRef]
- Huang, J.H.; Fecher, P.; Ilgen, G.; Hu, K.N.; Yang, J. Speciation of arsenite and arsenate in rice grain-Verification of nitric acid based extraction method and mass sample survey. Food Chem. 2012, 130, 453–459. [Google Scholar] [CrossRef]
- Norton, G.J.; Deacon, C.M.; Xiong, L.; Huang, S.; Meharg, A.A.; Price, A.H. Genetic mapping of the rice ionome in leaves and grain: Identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 2010, 329, 139–153. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, J.F.; Meharg, A.A.; Mc Grath, S.P. Arsenic uptake and metabolism in plants. New Phytol. 2008, 181, 777–794. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Chatterjee, S.; Gupta, D.K. Uptake, transport, and remediation of arsenic by algae and higher plants. In Arsenic Contamination in the Environment; Gupta, D.K., Chatterjee, S., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 145–169. [Google Scholar]
- Yamaji, N.; Ma, J.F. Further characterization of a rice silicon efflux transporter, Lsi2. Soil Sci. Plant Nutr. 2011, 57, 259–264. [Google Scholar] [CrossRef]
- Carey, A.M.; Scheckel, K.G.; Lombi, E.; Newville, M.; Choi, Y.; Norton, G.J.; Charnock, J.M.; Feldmann, J.; Price, A.H.; Meharg, A.A. Grain unloading of arsenic species in rice. Plant Physiol. 2010, 152, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Wang, T.; Chen, Z.; Tang, Z.; Wu, Z.; Salt, D.E. OsHAC1; 1 and OsHAC1; 2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol. 2016, 172, 1708–1719. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shi, S.; Wang, L.; Tang, Z.; Lv, T.; Zhu, X.; Ding, X.; Wang, Y.; Zhao, F.J.; Wu, Z. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol. 2017, 215, 1090–1101. [Google Scholar] [CrossRef] [PubMed]
- Song, W.Y.; Yamaki, T.; Yamaji, N.; Ko, D.; Jung, K.H.; Fujii-Kashino, M.; An, G.; Martinoia, E.; Lee, Y.; Ma, J.F. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc. Natl. Acad. Sci. USA 2014, 111, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, L.E.; Sobrino-Plata, J.; Montero-Palmero, M.B.; Carrasco-Gil, S.; Flores-Caceres, M.L.; Ortega-Villasante, C.; Escobar, C. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J. Exp. Bot. 2015, 66, 2901–2911. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gao, M.X.; Hu, H.; Ding, X.M.; Lin, H.W.; Wang, L. OsCLT1, a CRT-like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice. New Phytol. 2016, 211, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Carey, A.M.; Norton, G.J.; Deacon, C.; Scheckel, K.G.; Lombi, E.; Punshon, T.; Guerinot, M.L.; Lanzirotti, A.; Newville, M.; Choi, Y.; et al. Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol. 2011, 192, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.Z.; Li, G.; Sun, G.X.; Shim, H.; Cai, C. Differential toxicity and accumulation of inorganic and methylated arsenic in rice. Plant Soil 2013, 365, 227–238. [Google Scholar] [CrossRef]
- Bastías, J.M.; Beldarrain, T. Arsenic translocation in rice cultivation and its implication for human health. Chil. J. Agric. Res. 2016, 76, 114–122. [Google Scholar] [CrossRef]
- Pinson, S.R.M.; Tarpley, L.; Yan, W.; Yeater, K.; Lahner, B.; Yakubova, E.; Huang, X.Y.; Zhang, M.; Guerinot, M.L.; Salt, D.E. Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Sci. 2015, 55, 294–311. [Google Scholar] [CrossRef]
- Syu, C.H.; Huang, C.C.; Jiang, P.Y.; Lee, C.H.; Lee, D.Y. Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils. J. Hazard. Mater. 2015, 286, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Delgado, A.; Go’mez, J.A. The soil. Physical, chemical and biological properties. In Principles of Agronomy for Sustainable Agriculture; Villalobos, F.J., Fereres, E., Eds.; Springer International Publishing AG: Cham, Switzerland, 2016; pp. 15–26. [Google Scholar]
- Azam, S.M.G.G.; Sarker, T.C.; Sabrina, N. Factors affecting the soil arsenic bioavailability, accumulation in rice and risk to human health: A review. Toxicol. Mech. Method 2016, 26, 565–579. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, W.W. Rhizosphere processes and management in plant assisted bioremediation (phytoremediation) of soils. Plant Soil 2009, 321, 385–408. [Google Scholar] [CrossRef]
- Baig, J.A.; Kazi, T.G.; Shah, A.Q.; Kandhro, G.A.; Afridi, H.I.; Khan, S.; Kolachi, N.F. Biosorption studies on powder of stem of Acacia nilotica: Removal of arsenic from surface water. J. Hazard. Mater. 2010, 178, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.S.; Gault, A.G.; Boothman, C.; Polya, D.A.; Charnock, J.M.; Chatterjee, D.; Lloyd, J.R. Role of metal-reducing bacteria in arsenic release from Bengal delta sediment. Nature 2004, 430, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Marin, A.R.; Masscheleyn, P.H.; Patrick, W.H. The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 1992, 139, 175–183. [Google Scholar] [CrossRef]
- Williams, P.N.; Villada, A.; Deacon, C.; Raab, A.; Figuerola, J.; Green, A.J.; Feldmann, J.; Meharg, A.A. Greatly enhanced arsenic shoot assimilation in rice leads elevated grain levels compared to wheat and barley. Environ. Sci. Technol. 2007, 41, 6854–6859. [Google Scholar] [CrossRef] [PubMed]
- Lauren, J.G.; Duxbury, J.M. Management strategies to reduce arsenic uptake by rice. In Proceedings of the International Symposium on Behavior of Arsenic in Aquifers, Soils and Plants: Implications for management, Dhaka, Bangladesh, 16–18 January 2005; Centro Internacional de Mejoramiento de Maíz y Trigo and the U.S. Geological Survey: Reston, VA, USA. [Google Scholar]
- Takahashi, Y.; Minamikawa, R.; Hattori, K.H.; Kurishima, K.; Kihou, N.; Yuita, K. Arsenic behaviour in paddy fields during the cycle of flooded and non-flooded periods. Environ. Sci. Technol. 2004, 38, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, S. Iron oxide dissolution and solubility in the presence of siderophores. Aquat. Sci. Res. 2004, 66, 3–18. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Gupta, K.; Debnath, S.; Ghosh, U.C.; Chattopadhyay, D.J.; Mukhopadhyay, A. Arsenic bioaccumulation in rice and edible plants and subsequent transmission through food chain in Bengal basin: A review of the perspectives for environmental health. Toxicol. Environ. Chem. 2012, 94, 429–441. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Mukherjee, A.B.; Bundschuh, J.; Zevenhoven, R.; Loeppert, R. Arsenic in Soil and Groundwater Environment: Biogeochemical Interactions, Health Effects and Remediation; Elsevier: Amsterdam, The Netherlands, 2007; Volume 9. [Google Scholar]
- Adriano, D.C. Trace Elements in the Terrestrial Environments: Biogeochemistry Bioavailability, and Risks of Metals; Springer: New York, USA, 2001; pp. 47–71. [Google Scholar]
- Quazi, S.; Datta, R.; Sarkar, D. Effect of soil types and forms of arsenical pesticide on rice growth and development. Int. J. Environ. Sci. Technol. 2011, 8, 450–460. [Google Scholar] [CrossRef]
- Chatterjee, S.; Datta, S.; Halder, M.P.; Mitra, A.; Veer, V.; Mukhopadhyay, S.K. Use of wetland plants in bioaccumulation of heavy metals. In Plant-Based Remediation Processes; Gupta, D.K., Ed.; Springer: Berlin, Heidelberg, Germany, 2013; pp. 117–139. [Google Scholar]
- Signes-Pastor, A.; Burló, F.; Mitra, K.; Carbonell-Barrachina, A.A. Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a West Bengal (India) soil. Geoderma 2007, 137, 504–510. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Samal, A.C.; Majumdar, J.; Santra, S.C. Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in gangetic West Bengal, India. Paddy Water Environ. 2010, 8, 63–70. [Google Scholar] [CrossRef]
- Campbell, J.A.; Stark, J.H.; Carlton-Smith, C.H. International Symposium on Heavy Metals in the Environment; CEP Consultants: Athens, Greece, 1985; Volume 1. [Google Scholar]
- Ahmed, Z.U.; Panaullah, G.M.; Gauch, H.G.; McCouch, S.R.; Ytagi, W.; Kabir, M.S.; Duxbury, J.M. Genotype and environment effect rice (Orza sativa L.) grain arsenic concentration in Bangladesh. Plant Soil 2011, 338, 367–382. [Google Scholar] [CrossRef]
- Williams, P.N.; Zhang, H.; Davison, W.; Mehrag, A.A.; Hossain, M.; Norton, G.; Brammer, H.; Islam, M.R. Organic matter solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Environ. Sci. Technol. 2011, 45, 6080–6087. [Google Scholar] [CrossRef] [PubMed]
- Pikaray, S.; Banerjee, S.; Mukherji, S. Sorption of arsenic onto Vindhyan shales: Role of pyrite and organic carbon. Curr. Sci. 2005, 88, 1580–1585. [Google Scholar]
- Rahaman, S.; Sinha, A.C.; Mukhopadhyay, D. Effect of water regimes and organic matters on transport of arsenic in summer rice (Oryza sativa L.). J. Environ. Sci. 2011, 23, 633–639. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, M.; Bi, X.; He, Y.; Ren, L.; Xiang, W.; Qiao, S.; Yan, S.; Li, Z.; Ma, Z. Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan Island, China. Environ. Pollut. 2011, 159, 1757–1762. [Google Scholar] [CrossRef] [PubMed]
- Turpeinen, R.; Pantsar-Kallio, M.; Haggblom, M.; Kairesalo, T. Influence of microbes on the mobilization, toxicity and Biomethylation of Arsenic in soil. Sci. Total Environ. 1999, 236, 173–180. [Google Scholar] [CrossRef]
- Selim Reza, A.H.M.; Jena, J.S.; Yang, H.J.; Lee, M.K.; Woodall, B.; Liu, C.C.; Lee, J.F.; Luo, S.D. Occurrence of arsenic in core sediments and groundwater in the Chapai-nawabgang District, northwestern Bangladesh. Water Res. 2010, 44, 2021–2037. [Google Scholar] [CrossRef] [PubMed]
- Meharg, A.A.; Rahman, M.D.M. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environ. Sci. Technol. 2003, 37, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.; Samal, A.C.; Majumdar, J.; Santra, S.C. Uptake of arsenic in rice plant varieties cultivated with arsenic rich groundwater. Environ. Asia 2010, 3, 34–37. [Google Scholar]
- Zhang, J.; Duan, G.L. Genotypic difference in arsenic and cadmium accumulation by rice seedlings grown in hydroponics. J. Plant Nutr. 2008, 31, 2168–2182. [Google Scholar] [CrossRef]
- Norton, G.J.; Duan, G.; Dasgupta, T.; Islam, M.R.; Lei, M.; Zhu, Y.; Deacon, C.M.; Moran, A.C.; Islam, S.; Zhao, F.J.; et al. Environmental and genetic control of arsenic accumulation and speciation in rice grain: Comparing a range of common cultivars grown in contaminated sites across Bangladesh, china and India. Environ. Sci. Technol. 2009, 43, 8381–8386. [Google Scholar] [CrossRef] [PubMed]
- Norton, G.J.; Islam, M.R.; Deacon, C.M.; Zhao, F.J.; Stroud, J.L.; Mcgrath, S.P.; Islam, S.; Jahiruddin, M.; Feldmann, J.; Price, A.H.; et al. Identification of low inorganic and total grain arsenic rice cultivars from Bangladesh. Environ. Sci. Technol. 2009, 43, 6070–6075. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Zhu, Y.G.; Smith, F.A.; Smith, S.E. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J. Exp. Bot. 2004, 55, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Duan, G.L.; Hu, Y.; Liu, W.J.; Kneer, R.; Zhao, F.J.; Zhu, Y.G. Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ. Exp. Bot. 2011, 71, 416–421. [Google Scholar] [CrossRef]
- Dasgupta, T.; Hossain, S.A.; Meharg, A.A.; Price, A.H. An arsenate tolerance gene on chromosome 6 of rice. New Phytol. 2004, 163, 45–49. [Google Scholar] [CrossRef]
- Hall, J.L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 2002, 53, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Villasante, C.; Herna´ndez, L.E.; A´lvarez, R.R.; Del Campo, F.F.; Carpena-Ruiz, R.O. Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol. 2007, 176, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.J.; Zhang, X.H.; Wong, M.H.; Ye, Z.H.; Lou, L.Q.; Wang, Y.S.; Zhu, Y.G. Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Envirn. Geochem. Health 2007, 29, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, S.; Shan, X.Q.; Christie, P. Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination. Ecotoxicol. Environ. Saf. 2007, 68, 305–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaman, K.; Pardini, R.S. An overview of the relationship between oxidative stress and mercury and arsenic. Toxic Subst. Mech. 1996, 15, 151–181. [Google Scholar]
- Sharma, I. Arsenic induced oxidative stress in plants. Biologia 2012, 67, 447–453. [Google Scholar] [CrossRef]
- Shi, H.; Shi, X.; Liu, K.J. Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol. Cell. Biochem. 2004, 255, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, N.; Lee, D.G.; Kim, K.H.; Alam, I.; Lee, S.H.; Lee, K.W.; Lee, H.; Lee, B.H. Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere 2010, 78, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Mallick, S.; Sinam, G.; Sinha, S. Study on arsenate tolerant and sensitive cultivars of Zea mays L.: Differential detoxification mechanism and effect on nutrients status. Ecotoxicol. Environ. Saf. 2011, 74, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Moller, I.M.; Jensen, P.E.; Hansson, A. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 2007, 58, 459–481. [Google Scholar] [CrossRef] [PubMed]
- Finnegan, P.M.; Chen, W. Arsenic toxicity: The effects on plant metabolism. Front. Physiol. 2012, 3, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.; Ma, L.Q.; Singh, N.; Singh, S. Antioxidant responses of hyperaccumulator and sensitive fern species to arsenic. J. Exp. Bot. 2005, 56, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Shri, M.; Kumar, S.; Chakrabarty, D.; Trivedi, P.K.; Mallick, S.; Misra, P.; Shukla, D.; Mishra, S.; Srivastava, S.; Tripathi, R.D.; et al. Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol. Environ. Saf. 2009, 72, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Tohoyama, H.; Joho, M.; Inouhe, M. Changes in the levels of phytochelatins and related metal binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions. J. Plant Res. 2004, 117, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Tripathi, R.D.; Mishra, S.; Srivastava, S.; Dwivedi, S.; Rai, U.N.; Yang, X.E.; Huang, H.; Inouhe, M. Arsenic accumulation in roots and shoots vis-à-vis its effects on growth and level of phytochelatins in seedlings of Cicer arietinum L. J. Environ. Biol. 2008, 29, 281–286. [Google Scholar] [PubMed]
- Gupta, D.K.; Huang, H.G.; Nicoloso, F.T.; Schetinger, M.R.C.; Farias, J.G.; Li, T.Q.; Razafindrabe, B.H.N.; Aryal, N.; Inouhe, M. Effect of Hg, As and Pb on biomass production, photosynthetic rate, nutrients uptake and phytochelatin induction in Pfaffia glomerata. Ecotoxicology 2013, 22, 1403–1412. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Ahmad, A.; Iqbal, M. Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol. Environ. Saf. 2009, 72, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Catarecha, P.; Segura, M.D.; Franco-Zorrilla, J.M.; García-Ponce, B.; Lanza, M.; Solano, R.; Leyva, A. A mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic accumulation. Plant Cell 2007, 19, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Mitra, A.; Datta, S.; Veer, V. Phytoremediation protocols: An overview. In Plant-Based Remediation Processes; Gupta, D.K., Ed.; Springer: Berlin, Heidelberg, Germany, 2013; pp. 1–18. [Google Scholar]
- Gautam, N.; Verma, P.K.; Verma, S.; Tripathi, R.D.; Trivedi, P.K.; Adhikari, B.; Chakrabarty, D. Genome-wide identification of rice class I metallothionein gene: Tissue expression patterns and induction in response to heavy metal stress. Funct. Integr. Genom. 2012, 12, 635–647. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Panda, P.; Mishra, S.; Dey, M.; Choudhury, S.; Sahoo, L.; Panda, S.K. Arsenic stress in rice: Redox consequences and regulation by iron. Plant Physiol. Biochem. 2014, 80, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.N.; Price, A.H.; Raab, A.; Hossain, S.A.; Feldmann, J.; Meharg, A.A. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ. Sci. Technol. 2005, 39, 5531–5540. [Google Scholar] [CrossRef] [PubMed]
- Zavala, Y.J.; Duxbury, J.M. Arsenic in rice. 1. Estimating normal levels of total arsenic in rice grain. Environ. Sci. Technol. 2008, 42, 3856–3860. [Google Scholar] [CrossRef] [PubMed]
- Meharg, A.A.; Lombi, E.; Williams, P.N.; Scheckel, K.G.; Feldmann, J.; Raab, A. Speciation and localization of arsenic in white and brown rice grains. Environ. Sci. Technol. 2008, 42, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.Y.; Yu, S.D.; Seoub, H.Y. Environmental source of arsenic exposure. J. Prev. Med. Pub. Health 2014, 47, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Rahman, M.; Naidu, R. Arsenic in rice: Sources and human health risk. In Wheat and Rice in Disease Prevention and Health Benefits, Risks and Mechanisms of Whole Grains in Health Promotion; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Elsevier: Oxford, UK, 2014; pp. 365–375. [Google Scholar]
- Melkonian, S.; Argos, M.; Hall, M.N.; Chen, Y.; Parvez, F.; Pierce, B.; Cao, H.; Aschebrook Kilfo, B.; Ahmed, A.; Islam, T.; et al. Urinary and dietary analysis of 18,470 Bangladeshis reveal a correlation of rice consumption with arsenic exposure and toxicity. PLoS ONE 2013, 8, e80691. [Google Scholar] [CrossRef] [PubMed]
- Koch, I.; Dee, J.; House, K.; Sui, J.; Zhang, J.; McKnight-Whitford, A.; Reimer, K.J. Bioaccessibility and speciation of arsenic in country foods from contaminated sites in Canada. Sci. Total Environ. 2013, 449, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Alava, P.; Laing, G.D.; Tack, F.; De Ryck, T.; de Wiele, T.V. Westernized diets lower arsenic gastrointestinal bioaccessibility but increase microbial arsenic speciation changes in the colon. Chemosphere 2015, 119, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Peng, B.; Tan, C.; Ma, L.; Rathinasabapathi, B. Recent advances in arsenic bioavailability, transport, and speciation in rice. Environ. Sci. Pollut. Res. 2015, 22, 5742–5750. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Zhu, Y.G.; Meharg, A.A. Methylated arsenic species in rice: Geographical variation, origin, and uptake mechanisms. Environ. Sci. Technol. 2013, 47, 3957–3966. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Hsieh, Y.C.; Lin, T.H.; Lee, D.Y. Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice. Plant Soil 2013, 363, 231–241. [Google Scholar] [CrossRef]
- Syu, C.H.; Lee, C.H.; Jiang, P.Y.; Chen, M.K.; Lee, D.Y. Comparison of As sequestration in iron plaque and uptake by different genotypes of rice plants grown in As-contaminated paddy soils. Plant Soil 2014, 374, 411–422. [Google Scholar] [CrossRef]
- Matsumoto, S.; Kasuga, J.; Taiki, N.; Makino, T.; Arao, T. Inhibition of arsenic accumulation in Japanese rice by the application of iron and silicate materials. Catena 2015, 135, 328–335. [Google Scholar] [CrossRef]
- Xie, Z.M.; Naidu, R. Factors Influencing Bioavailability of Arsenic to Crops; CSIRO Publishing: Clayton, Australia, 2006; pp. 223–234. [Google Scholar]
- Inskeep, W.P.; McDermott, T.R.; Fendorf, S. Arsenic (V)/(III) cycling in soils and natural waters: Chemical and microbiological processes. In Environmental Chemistry of Arsenic; Frankenberger, W.T., Jr., Ed.; Marcel Dekker: New York, NY, USA, 2002; pp. 183–215. [Google Scholar]
- Liu, C.; Yu, H.Y.; Liu, C.; Li, F.; Xu, X.; Wang, Q. Arsenic availability in rice from a mining area: Is amorphous iron oxide-bound arsenic a source or sink? Environ. Pollut. 2015, 199, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, P.; Tripathi, R.D.; Singh, R.P.; Dwivedi, S.; Goutam, D.; Shri, M.; Trivedi, P.K.; Chakrabarty, D. Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol. Eng. 2013, 52, 96–103. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Zhu, Y.G.; Li, M.; Zhang, L.G.; Cao, Z.H.; Smith, F.A. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ. Pollut. 2007, 147, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Dixit, G.; Singh, A.P.; Kumar, A.; Mishra, S.; Dwivedi, S.; Kumar, S.; Trivedi, P.K.; Pandey, V.; Tripathi, R.D. Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol. Biochem. 2016, 99, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Han, Y.H.; Cao, Y.; Zhu, Y.G.; Rathinasabapathi, B.; Ma, L.Q. Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front. Plant Sci. 2017, 8, 268. [Google Scholar] [CrossRef] [PubMed]
- Peryea, F.J.; Kammereck, R. Phosphate-enhanced movement of arsenic out of lead arsenate-contaminated top soil and through uncontaminated sub soil. Water Air Soil Pollut. 1995, 93, 243–254. [Google Scholar] [CrossRef]
- Smith, E.; Naidu, R.; Alston, A.M. Chemistry of arsenic in soils: II. Effect of phosphorous, sodium and calcium on arsenic sorption. J. Environ. Qual. 2002, 31, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.N.; Zhu, Y.G.; Liu, W.J.; Smith, S.E. Arsenate uptake and translocation in seedlings of two genotypes of rice are affected by external phosphate concentrations. Aquat. Bot. 2005, 83, 321–331. [Google Scholar] [CrossRef]
- Bogdan, K.; Schenk, M.K. Evaluation of soil characteristics potentially affecting arsenic concentration in paddy rice (Oryza sativa L.). Environ. Pollut. 2009, 157, 2617–2621. [Google Scholar] [CrossRef] [PubMed]
- Meharg, A.A.; Macnair, M.R. Suppression of the high affinity phosphate uptake system: A mechanism of arsenate tolerance in Holcus lanatus. J. Exp. Bot. 1992, 43, 519–524. [Google Scholar] [CrossRef]
- Pigna, M.; Cozzolino, V.; Caporale, A.G.; Mora, M.L.; Meo, V.D.; Jara, A.A.; Violante, A. Effect of phosphurs fertilization on arsenic uptake by while grown in polluted soils. J. Soil Sci. Plant Nutr. 2010, 10, 428–442. [Google Scholar] [CrossRef]
- Lee, C.H.; Wu, C.H.; Syu, C.H.; Jiang, P.Y.; Huang, C.C.; Lee, D.Y. Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils. Geoderma 2016, 270, 60–67. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, F.; Deacon, C.; Hjun, C.; Raab, A.; Meharg, A.A. Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China. Environ. Pollut. 2010, 158, 1536–1541. [Google Scholar] [CrossRef] [PubMed]
- Neupane, G.; Donahoe, R.J. Calcium-phosphate treatment of contaminated soil for arsenic immobilization. Appl. Geochem. 2013, 28, 145–154. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Lyons, G.; English, P.; Guppy, C.N. Silicon nutrition of rice is affected by soil pH, weathering and silicon fertilisation. J. Plant Nutr. Soil Sci. 2011, 174, 437–446. [Google Scholar] [CrossRef]
- Epstein, E. Silicon: Its manifold roles in plants. Ann. Appl. Biol. 2009, 155, 155–160. [Google Scholar] [CrossRef]
- Korndörfer, G.H.; Nolla, A.; Ramos, L.A. Available silicon in tropical soils and crop yield. In III Silicon in Agriculture Conference; Universidade Federal de Uberlandia: Uberlandia, Brazil, 2005; pp. 76–85. [Google Scholar]
- Tamai, K.; Ma, J.F. Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant. Plant Soil 2008, 307, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Detmann, K.C.; Araújo, W.L.; Martins, S.C.; Sanglard, L.M.; Reis, J.V.; Detmann, E.; Rodrigues, F.Á.; Nunes-Nesi, A.; Fernie, A.R.; DaMatta, F.M. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol. 2012, 196, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, K.; Schenk, M.K. Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environ. Sci. Technol. 2008, 42, 7885–7890. [Google Scholar] [CrossRef] [PubMed]
- Marmiroli, M.; Pigoni, V.; Savo-Sardaro, M.L.; Marmiroli, N. The effect of silicon on the uptake and translocation of arsenic in tomato (Solanum lycopersicum L.). Environ. Exp. Bot. 2014, 99, 9–17. [Google Scholar] [CrossRef]
- Saud, S.; Li, X.; Chen, Y.; Zhang, L.; Fahad, S.; Hussain, S.; Sadiq, A.; Chen, Y. Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morpho physiological functions. Sci. World J. 2014, 2014, 368694. [Google Scholar] [CrossRef] [PubMed]
- Saud, S.; Chen, Y.; Fahad, S.; Hussain, S.; Na, L.; Xin, L.; Alhussien, S. Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environ. Sci. Pollut. Res. 2016, 23, 17647–17655. [Google Scholar] [CrossRef] [PubMed]
- Sanglard, L.M.V.P.; Martins, S.C.V.; Detmann, K.C.; Silva, P.E.M.; Lavinsky, A.O.; Silva, M.M.; Detmann, E.; Araujo, W.L.; DaMatta, F.M. Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: An analysis of the key limitations of photosynthesis. Physiol. Plant 2014, 152, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Sanglard, L.M.V.P.; Detmann, K.C.; Martins, S.C.V.; Teixeira, R.A.; Pereira, L.F.; Sanglard, M.L.; Fernie, A.R.; Araujo, W.L.; DaMatta, F.M. The role of silicon in metabolic acclimation of rice plants challenged with arsenic. Environ. Exp. Bot. 2016, 123, 22–36. [Google Scholar] [CrossRef]
- Fleck, A.T.; Mattusch, J.; Schenk, M.K. Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J. Plant Nutr. Soil Sci. 2013, 176, 785–794. [Google Scholar] [CrossRef]
- Muñoz-Bertomeu, J.; Cascales-Miñana, B.; Mulet, J.M.; Baroja-Fernández, E.; Pozueta-Romero, J.; Kuhn, J.M.; Segura, J.; Ros, R. Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol. 2009, 151, 541–558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, Q.Z.; Duan, G.L.; Huang, Y.C. Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environ. Exp. Bot. 2011, 72, 34–40. [Google Scholar] [CrossRef]
- Dixit, G.; Singh, A.P.; Kumar, A.; Singh, P.K.; Kumar, S.; Dwivedi, S.; Trivedi, P.K.; Pandey, V.; Norton, G.J.; Dhankher, O.P.; et al. Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J. Hazard. Mater. 2015, 298, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Song, W.Y.; Park, J.; Mendoza-Cózatl, D.G.; Suter-Grotemeyer, M.; Shim, D.; Hörtensteiner, S.; Geisler, M.; Weder, B.; Rea, P.A.; Rentsch, D.; et al. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc. Natl. Acad. Sci. USA 2010, 107, 21187–21192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Akkarakaran, J.J.; Sounderajan, S.; Shrivastava, M.; Suprasanna, P. Arsenic toxicity in rice (Oryza sativa L.) is influenced by sulfur supply: Impact on the expression of transporters and thiol metabolism. Geoderma 2016, 270, 33–42. [Google Scholar] [CrossRef]
- Somenahally, A.C.; Hollister, E.B.; Loeppert, R.H.; Yan, W.; Gentry, T.J. Microbial communities in rice rhizosphere altered by intermittent and continuous flooding in fields with long-term arsenic application. Soil Biol. Biochem. 2011, 43, 1220–1228. [Google Scholar] [CrossRef]
- Roberts, L.C.; Hug, S.J.; Voegelin, A.; Dittmar, J.; Kretzschmar, R.; Wehrli, B.; Saha, G.; Badruzzaman, A.B.M.; Ali, M.A. Arsenic dynamics in pore water of an intermittently irrigated paddy field in Bangladesh. Environ. Sci. Technol. 2011, 45, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Talukder, A.S.; Meisner, C.A.; Sarkar, M.A.; Islam, M.S. Effect of water management, tillage options and phosphorus status on arsenic uptake in rice. Ecotoxicol. Environ. Saf. 2011, 74, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Spanu, A.; Daga, L.; Orlandoni, A.M.; Sanna, G. The role of irrigation techniques in arsenic bioaccumulation in rice (Oryza sativa L.). Environ. Sci. Technol. 2012, 46, 8333–8340. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Jiménez, E.; Meharg, A.A.; Smolders, E.; Manzano, R.; Becerra, D.; Sanchez-Llerena, J.; Albarran, A.; Lopez-Pinero, A. Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Sci. Total. Environ. 2014, 485–486, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Horneman, A.; van Geen, A.; Kent, D.V.; Mathe, P.E.; Zheng, Y.; Dhar, R.K.; O’Connell, S.; Hoque, M.A.; Aziz, Z.; Shamsudduha, M.; et al. Decoupling of As and Fe release to Bangladesh ground water under reducing conditions. Part I: Evidence from sediment profiles. Geochim. Cosmochim. Acta 2004, 68, 3459–3473. [Google Scholar] [CrossRef]
- Dittmar, J.; Voegelin, A.; Roberts, L.C.; Hug, S.J.; Saha, G.C.; Ali, M.A.; Badruzzaman, A.B.M.; Kretzschmar, R. Arsenic accumulation in a paddy field in Bangladesh: Seasonal dynamics and trends over a three-year monitoring period. Environ. Sci. Technol. 2010, 44, 2925–2931. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.H. Impact of microorganisms on arsenic biogeochemistry: A Review. Water Air Soil Pollut. 2014, 1848, 2–25. [Google Scholar] [CrossRef]
- Williams, G.P.; Gnanadesigan, M.; Ravikumar, S. Biosorption and biokinetic properties of Solar Saltern Halobacterial strains for managing Zn2+, As2+ and Cd2+ metals. Geomicrobiol. J. 2013, 30, 497–500. [Google Scholar] [CrossRef]
- Yang, T.; Chen, M.L.; Liu, L.H.; Wang, J.H.; Dasgupta, P.K. Iron (III) modification ofBacillus subtilis membranes provides record sorption capacity for arsenic and endows unusual selectivity for As(V). Environ. Sci. Technol. 2012, 46, 2251–2256. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, H.; Chan, W.F.; Wu, C.; Wu, F.; Wu, S.; Wong, M.H. Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere 2012, 89, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Li, H.; Ye, Z.; Wu, F.; Wong, M.H. Effects of As levels on radial oxygen loss and As speciation in rice. Environ. Sci. Pollut. Res. 2013, 20, 8334–8341. [Google Scholar] [CrossRef] [PubMed]
- Grill, E.; Mishra, S.; Srivastava, S. Tripathi, R.D. Role of phytochelatins in phytoremediation of heavy metals. In Environmental Bioremediation Technologies; Singh, S.N., Tripathi, R.D., Eds.; Springer: Berlin, Heidelberg, Germany, 2006; pp. 101–146. [Google Scholar]
- Sharma, S.; Chatterjee, S.; Datta, S.; Mitra, A.; Vairale, M.G.; Veer, V.; Chaurasia, A.; Gupta, D.K. In vitro selection of plants for the removal of toxic metals from contaminated soil: Role of genetic variation in phytoremediation. In Heavy Metal Remediation Transport and Accumulation in Plants; Gupta, D.K., Chattejee, S., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2014; pp. 155–177. [Google Scholar]
- Dhankher, O.P.; Pilon-Smit, E.A.H.; Meagher, R.H.; Doty, S. Biotechnological approaches for phytoremediation. In Plant Biotechnology and Agriculture; Altman, A., Hasegawa, P.M., Eds.; Oxford Academic Press: Oxford, UK, 2011; pp. 309–328. [Google Scholar]
- Shri, M.; Dave, R.; Diwedi, S.; Shukla, D.; Kesari, R.; Tripathi, R.D.; Trivedi, P.K.; Chakrabarty, D. Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci. Rep. 2014, 5784. [Google Scholar] [CrossRef] [PubMed]
- Duan, G.; Kamiya, T.; Ishikawa, S.; Arao, T.; Fujiwara, T. Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol. 2012, 53, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Rosen, B.P.; Zhang, Y.; Wang, G.J.; Franke, S.; Rensing, C. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethioninemethyltransferase. Proc. Natl. Acad. Sci. USA 2006, 103, 2075–2080. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.Y.; Qin, J.; Wang, L.H.; Duan, G.L.; Sun, G.X.; Wu, H.L.; Chu, C.C.; Ling, H.Q.; Rosen, B.P.; Zhu, Y.G. Arsenic biotransformation and volatilization in transgenic rice. New Phytol. 2011, 191, 49–56. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitra, A.; Chatterjee, S.; Moogouei, R.; Gupta, D.K. Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review. Agronomy 2017, 7, 67. https://doi.org/10.3390/agronomy7040067
Mitra A, Chatterjee S, Moogouei R, Gupta DK. Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review. Agronomy. 2017; 7(4):67. https://doi.org/10.3390/agronomy7040067
Chicago/Turabian StyleMitra, Anindita, Soumya Chatterjee, Roxana Moogouei, and Dharmendra K. Gupta. 2017. "Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review" Agronomy 7, no. 4: 67. https://doi.org/10.3390/agronomy7040067
APA StyleMitra, A., Chatterjee, S., Moogouei, R., & Gupta, D. K. (2017). Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review. Agronomy, 7(4), 67. https://doi.org/10.3390/agronomy7040067