Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Biotype Origin and Verification
2.3. Experiment I. Response of A. toschiella to M. destructor Resistance Genes in No-Choice Tests
2.4. Experiment II. Response of A. toschiella to M. destructor Resistance Genes in Choice Tests
2.5. Experiment III. Response of A. toschiella to the D. noxia-Resistant Dn7 Gene in No-Choice Tests
3. Statistical Analysis
4. Results
4.1. Response of A. toschiella to M. destructor-Resistance Genes in No-Choice Tests
4.2. Response of A. toschiella to M. destructor-Resistance Genes in Choice Tests
4.3. Response of A. toschiella to the D. noxia-Resistant Dn7 Genes in No-Choice Tests
5. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dixon, J.; Braun, H.-J.; Kosina, P.; Crouch, J. Wheat Facts and Futures 2009; CIMMYT: Texcoco de Mora, Mexico, 2009. [Google Scholar]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Berzonsky, W.A.; Ding, H.; Haley, S.D.; Lamb, R.J.; McKenzie, R.I.H.; Ohm, H.W.; Patterson, F.L.; Peairs, F.B.; Porter, D.R.; Ratcliffe, R.H.; et al. Breeding wheat for resistance to insects. Plant Breed. Rev. 2003, 22, 221–296. [Google Scholar]
- Slykhuis, J.T. Aceria tulipae Keifer (Acarina: Eriophyidae) in relation to the spread of wheat streak mosaic. Phytopathology 1955, 45, 116–128. [Google Scholar]
- Seifers, D.L.; Martin, T.; Harvey, T.L.; Fellers, J.P.; Michaud, J. Identification of the wheat curl mite as the vector of Triticum mosaic virus. Plant Dis. 2009, 93, 25–29. [Google Scholar] [CrossRef]
- Bockus, W.W.; Appel, J.A.; Bowden, R.L.; Fritz, A.K.; Gill, B.S.; Martin, T.J.; Sears, R.G.; Seifers, D.L.; Brown-Guedira, G.L.; Eversmeyer, M.G. Success stories: Breeding for wheat disease resistance in Kansas. Plant Dis. 2001, 85, 453–461. [Google Scholar] [CrossRef]
- French, R.; Stenger, D.C. Evolution of wheat streak mosaic virus: Dynamics of population growth within plants may explain limited variation. Annu. Rev. Phytopathol. 2003, 41, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M. Plant Resistance to Arthropods—Molecular and Conventional Approaches; Springer: Dordrecht, The Netherlands, 2005; 423p. [Google Scholar]
- Smith, C.M.; Clement, S.L. Molecular bases of plant resistance to arthropods. Annu. Rev. Entomol. 2012, 57, 309–328. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, R.; Kynast, R. Confirmation of a 1A/1R wheat-rye chromosome translocation in the wheat variety ‘Amigo’. Plant Breed. 1987, 98, 57–60. [Google Scholar] [CrossRef]
- Whelan, E.D.P.; Thomas, J.B. Chromosomal location in common wheat of a gene (Cmc1) from Aegilops squarrosa that conditions resistance to colonization by the wheat curl mite. Genome 1989, 32, 1033–1036. [Google Scholar] [CrossRef]
- Malik, R.; Smith, C.M.; Brown-Guedira, G.L.; Harvey, T.L.; Gill, B.S. Assessment of Aegilops tauschii for reistance to biotypes of wheat curl mite (Acari; Eriophyidae). J. Econ. Entomol. 2003, 96, 1329–1333. [Google Scholar] [CrossRef] [PubMed]
- Turanli, F.; Ilker, E.; Dogan, F.E.; Askan, L.; Istipiller, D. Inheritance of resistance to Russian Wheat Aphid (Diuraphis noxia Kurdjumov) in bread wheat (Triticum aestivum L.). Turk. J. Field Crops 2012, 17, 171–176. [Google Scholar]
- Du Toit, F. Resistance in wheat (Triticum aestivum) to Diuraphis noxia (Homoptera: Aphididae). Cereal Res. Commun. 1987, 15, 175–179. [Google Scholar]
- Du Toit, F. Inheritance of resistance in two Triticum aestivum lines to Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol. 1989, 82, 1251–1253. [Google Scholar] [CrossRef]
- Liu, X.M.; Brown-Guedira, G.L.; Hatchett, J.H.; Owuoche, J.O.; Chen, M.S. Genetic characterization and molecular mapping of a Hessian fly-resistance gene transferred from T. turgidum ssp. dicoccum to common wheat. Theor. Appl. Genet. 2005, 111, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Fritz, A.K.; Reese, J.C.; Wilde, G.E.; Gill, B.S.; Chen, M.S. H9, H10, and H11 compose a cluster of Hessian fly-resistance genes in the distal gene-rich region of wheat chromosome 1AS. Theor. Appl. Genet. 2005, 110, 1473–1480. [Google Scholar] [CrossRef] [PubMed]
- Harvey, T.L.; Seifers, D.L.; Martin, T.J.; Brown-Guedira, G.L.; Gill, B.S. Survival of wheat curl mites on different sources of resistance in wheat. Crop Sci. 1999, 39, 1887–1889. [Google Scholar] [CrossRef]
- Haley, S.D.; Peairs, F.B.; Walker, C.B.; Rudolph, J.B.; Randolph, T.L. Occurrence of new Russian wheat aphid biotype in Colorado. Crop Sci. 2004, 44, 1589–1592. [Google Scholar] [CrossRef]
- Thomas, J.B.; Conner, R.L. Resistance to colonization by the wheat curl mite in Aegilops squarrosa and its inheritance after transfer to common wheat. Crop Sci. 1986, 26, 527–530. [Google Scholar] [CrossRef]
- Malik, R.; Brown-Guedira, G.L.; Smith, C.M.; Harvey, T.L.; Gill, B.S. Genetic mapping of wheat curl mite resistance genes Cmc3 and Cmc4 in common wheat. Crop Sci. 2003, 43, 644–650. [Google Scholar] [CrossRef]
- Whelan, E.D.P.; Hart, G.E. A spontaneous translocation that confers wheat curl mite resistance from decaploid Agropyron elongatum to common wheat. Genome 1988, 30, 289–292. [Google Scholar] [CrossRef]
- Sebesta, E.E.; Wood, E.A.; Porter, D.R.; Webster, J.A.; Smith, E.L. Registration of Amigo wheat germplasm resistant to greenbug. Crop Sci. 1994, 34, 293. [Google Scholar] [CrossRef]
- Lu, H.; Rudd, J.C.; Burd, J.D.; Weng, Y. Molecular mapping of greenbug resistance genes Gb2 and Gb6 in T1AL.1RS wheat-rye translocations. Plant Breed. 2010, 129, 472–476. [Google Scholar]
- Chen, M.S.; Echegaray, E.; Whitworth, J.; Wang, H.; Sloderbeck, P.; Knutson, A.; Giles, K.; Royer, T. Virulence analysis of Hessian fly populations from Texas, Oklahoma, and Kansas. J. Econ. Entomol. 2009, 102, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Cox, T.S.; Hatchett, J.H. Hessian fly resistance gene H26 transferred from Triticum tauschii to common wheat. Crop Sci. 1994, 34, 958–960. [Google Scholar] [CrossRef]
- Amri, A.; Hatchett, J.H.; Cox, T.S.; El Bouhssini, M.; Sears, R.G. Resistance to Hessian fly from North African durum wheat germplasm. Crop Sci. 1990, 30, 378–381. [Google Scholar] [CrossRef]
- Friebe, B.; Hatchett, J.H.; Sears, R.G.; Gill, B.S. Transfer of Hessian fly resistance from ‘Chaupon’ rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation. Theor. Appl. Genet. 1990, 79, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Friebe, B.; Hatchett, J.H.; Gill, B.S.; Mukai, Y.; Sebesta, E.E. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations. Theor. Appl. Genet. 1991, 83, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Cainong, J.C.; Zavatsky, L.E.; Chen, M.S.; Johnson, J.; Friebe, B.; Gill, B.S.; Lukaszewski, A.J. Wheat-rye T2BS·2BL-2RL recombinants with resistance to Hessian Fly (H21). Crop Sci. 2010, 50, 920–925. [Google Scholar] [CrossRef]
- Chen, J.; Souza, E.J.; Zemetra, R.S.; Bosque-Pérez, N.A.; Guttieri, M.J.; Schotzko, D.; O’Brien, K.L.; Windes, J.M.; Guy, S.O.; Brown, B.D.; et al. Registration of ‘Cataldo’ Wheat. J. Plant Reg. 2009, 3, 264–268. [Google Scholar] [CrossRef]
- Marais, G.F.; Horn, M.; DuToit, F. Intergeneric transfer (rye to wheat) of a gene(s) for Russian wheat aphid resistance. Plant Breed. 1994, 113, 265–271. [Google Scholar] [CrossRef]
- Lapitan, N.L.V.; Li, Y.-C.; Peng, J.; Botha, A.-M. Fractionated extracts of Russian wheat aphid eliciting defense responses in wheat. J. Econ. Entomol. 2007, 100, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Weiland, A.A.; Peairs, F.B.; Randolph, T.L.; Rudolph, J.B.; Haley, S.D.; Puterka, G.J. Biotypic diversity in Colorado Russian wheat aphid populations. J. Econ. Entomol. 2008, 101, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Jankielsohn, A. Changes in the Russian wheat aphid (Hemiptera: Aphididae) biotype complex in South Africa. J. Econ. Entomol. 2016, 109, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Garcés Carrera, S.; Davis, H.; Aguirre-Rojas, L.; Murugan, M.; Smith, C.M. Multiple categories of resistance to wheat curl mite (Acari: Eriophyidae) expressed in accessions of Aegilops tauschii. J. Econ. Entomol. 2012, 105, 2180–2186. [Google Scholar] [CrossRef]
- Murugan, M.; Cardona, P.S.; Duraimurugan, P.; Whitfield, A.E.; Schneweis, D.; Starkey, S.; Smith, C.M. Wheat curl mite resistance: Interactions of mite feeding with wheat streak mosaic virus infection. J. Econ. Entomol. 2011, 104, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Malik, R. Molecular Genetic Characterization of Wheat Curl Mite, Aceria tosichella Keifer (Acari: Eriophyidae), and Wheat Genes Conferring Wheat Curl Mite Resistance. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2001; 144p. [Google Scholar]
- Dixon, A.G.O.; Bramel-Cox, P.J.; Reese, J.C.; Harvey, T.L. Mechanisms of resistance and their interactions in twelve sources of resistance to biotype E Greenbug (Homoptera: Aphididae) in sorghum. J. Econ. Entomol. 1990, 83, 234–240. [Google Scholar] [CrossRef]
- Massey, F.J. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Gbur, E.E.; Stroup, W.W.; McCarter, K.; Durham, S.; Young, L.J.; Christman, M.; West, M.; Kramer, M. Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences; American Society of Agronomy/Soil Science Society of America/Crop Science Society of America: Madison, WI, USA, 2012. [Google Scholar]
- Kenward, M.G.; Roger, J.H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 1997, 53, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Stroup, W.W. Rethinking the analysis of non-normal data in plant and soil science. Agron. J. 2015, 107, 811–827. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Milliken, G.A.; Johnson, D.E. Designed Experiments. In Analysis of Messy Data, 2nd ed.; Chapman & Hall: New York, NY, USA, 2009; Volume 1. [Google Scholar]
- SAS Institute. The GLIMMIX Procedure. In SAS/STAT 9.2 User’s Guid; SAS Institue Inc.: Cary, NC, USA, 2008. [Google Scholar]
- SAS Institute. The FREQ procedure. In SAS/STAT 9.2 User’s Guid; SAS Institue Inc.: Cary, NC, USA, 2009. [Google Scholar]
- Coutts, B.A.; Strickland, G.R.; Kehoe, M.A.; Severtson, D.L.; Jones, R.A.C. The epidemiology of Wheat streak mosaic virus in Australia: Case histories, gradients, mite vectors, and alternative hosts. Aust. J. Agric. Res. 2008, 59, 844–853. [Google Scholar] [CrossRef]
- Morgan, G.; Patrick, C.; Steddom, K.; Rush, C.M. Wheat Streak Mosaic Virus and High Plains Virus; Texas Cooperative Extension Publication: College Station, TX, USA, 2005; E-337. [Google Scholar]
- Velandia, M.; Rejesus, R.M.; Jones, D.C.; Price, J.A.; Workneh, Z.F.; Rush, C.M. Economic impact of Wheat streak mosaic virus in the Texas High Plains. Crop Prot. 2010, 29, 699–703. [Google Scholar] [CrossRef]
- Carver, B.F.; Smith, C.M.; Chuang, W.-P.; Hunger, R.M.; Edwards, J.T.; Yan, L.; Brown-Guedira, G.; Gill, B.S.; Bai, G.; Bowden, R.L. Registration of OK05312, a high-yielding hard winter wheat donor of Cmc4 for wheat curl mite resistance. J. Plant Reg. 2016, 10, 75–79. [Google Scholar] [CrossRef]
Genotype | Resistance Gene | Mean (Lower, Upper 95% CI) | ||
---|---|---|---|---|
Mean Number of A. tosichella c | % Dry Weight Change c | Tolerance Index d | ||
OK05312 | Cmc4 | 4.7 (1.7, 13.2) a | 8 (−4.7, 20.7) a | 3.6 (−0.9, 8.1) b,c |
Hamlet | H21 | 5.8 (2.1, 16.1) a | 2 (−38.2, 42.2) a,b | 5.4 (0.9, 10) c |
KSWGRC26 | H26 | 61.7 (23, 165.4) b | −3.3 (−16, 9.4) a,b | −1.4 (−3.9, 1.1) a |
Molly | H13 | 68 (25.2, 183.7) b | 4 (−8.7, 16.7) b | −1.3 (−3.8, 1.2) a,b |
Ike | None | 94.7 (35.8, 250.5) b | 11.8 (−0.9, 24.4) b | 0.1 (−0.05, 0.3) a,b |
KS92WGRC20 | H25 | 125.5 (47.4, 332) b | 15.8 (3.1, 28.5) b | 0.3 (0.1, 0.4) a,b |
KS99WGRC42 | Hdic | 151.5 (57.3, 400.2) b | −8.3 (−21, 4.4) a,b | −0.03 (−0.2, 0.1) a,b |
Redland | H18 | 177.7 (67.2, 469.6) b | −25.5 (−38.2, −12.8) a | −0.5 (−1.5, 0.4) a,b |
Genotype | H Gene | % Folded Leaf Plants | χ2 Fisher’s Exact Test | |
---|---|---|---|---|
Ike | OK05312 | |||
OK05312 | Cmc4 | 0 | ns | - |
Hamlet | H21 | 10 | ns | ns |
KSWGRC26 | H26 | 50 | ns | * |
Molly | H13 | 60 | ns | * |
KS99WGRC42 | Hdic | 80 | ns | ** |
KS92WGRC20 | H25 | 90 | * | ** |
Redland | H18 | 80 | ns | ** |
Ike | None | 30 | - | ns |
Genotype | Resistance Gene | Mean ± SE Number of A. tosichella Adults | % Leaf Folding | χ2 Fisher’s Exact Test | |
---|---|---|---|---|---|
Jagger | OK05312 | ||||
OK05312 | Cmc4 | 32.4 ± 60.8 a | 0 | ** | - |
Hamlet | H21 | 88.1 ± 64.1 a,b | 0 | ** | ns |
KS99WGRC42 | Hdic | 89.7 ± 55.9 a,b | 20 | ** | ns |
KS92WGRC20 | H25 | 96.0 ± 58.2 a,b | 0 | ** | ns |
KSWGRC26 | H26 | 218.2 ± 55.9 a,b,c | 60 | ns | * |
Redland | H18 | 246.5 ± 55.9 a,b,c | 100 | ns | ** |
Molly | H13 | 261.8 ± 55.9 b,c | 50 | ns | * |
Jagger | None | 328.1 ± 55.9 c | 90 | - | ** |
Genotype | Resistance Gene | Mean ± SE Number of A. toschiella | |||
---|---|---|---|---|---|
Biotype 1 | Biotype 2 | ||||
Assay 1 | Assay 2 | Assay 1 | Assay 2 | ||
OK05315 | Cmc4 | 21.4 ± 7.1 b | 22.8 ± 17.1 b | 36.1 ± 30.2 b | 83.6 ± 34.0 a,b |
93M370 | Dn7 | 41.9 ± 7.1 b | 16.6 ± 17.1 b | 28.6 ± 30.2 b | 14.3 ± 34.0 b |
Jagger | none | 153.8 ± 7.1 a | 133.5 ± 17.1 a | 257.3 ± 30.2 a | 163.1 ± 34.0 a |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguirre-Rojas, L.M.; Khalaf, L.K.; Garcés-Carrera, S.; Sinha, D.K.; Chuang, W.-P.; Smith, C.M. Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines. Agronomy 2017, 7, 74. https://doi.org/10.3390/agronomy7040074
Aguirre-Rojas LM, Khalaf LK, Garcés-Carrera S, Sinha DK, Chuang W-P, Smith CM. Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines. Agronomy. 2017; 7(4):74. https://doi.org/10.3390/agronomy7040074
Chicago/Turabian StyleAguirre-Rojas, Lina Maria, Luaay Kahtan Khalaf, Sandra Garcés-Carrera, Deepak K. Sinha, Wen-Po Chuang, and C. Michael Smith. 2017. "Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines" Agronomy 7, no. 4: 74. https://doi.org/10.3390/agronomy7040074
APA StyleAguirre-Rojas, L. M., Khalaf, L. K., Garcés-Carrera, S., Sinha, D. K., Chuang, W. -P., & Smith, C. M. (2017). Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines. Agronomy, 7(4), 74. https://doi.org/10.3390/agronomy7040074