Functional Analogues of Salicylic Acid and Their Use in Crop Protection
Abstract
:1. Introduction
2. Mode of Action of SA in Plant Defense
3. Functional Analogues of SA
3.1. β-Aminobutyric Acid
3.2. Salicylate and Benzoate Derivatives
3.3. Nicotinic Acid Derivatives: 2,6-dichloro-isonicotinic Acid (INA) and N-cyanomethyl-2-chloro isonicotinic Acid (NCI)
3.4. Pyrazole, Thiazole and Thiadiazole Derivatives
3.5. Pyrimidine Derivatives
3.6. Neonicotinoid Compounds
4. Limitations of the Use of Functional Analogues of SA: Towards a New Generation of Compounds
4.1. Allocation Fitness Cost
4.2. Priming Effect
4.3. Screening for New Compounds
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Burketova, L.; Trda, L.; Ott, P.G.; Valentova, O. Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol. Adv. 2015, 33, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Postel, S.; Kommerling, B. Plant systems for recognition of pathogen-associated molecular patterns. Semin. Cell Dev. Biol. 2009, 20, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Spoel, S.H.; Dong, X. How do plants achieve immunity defense without specialized immune cells. Nat. Rev. Immunol. 2012, 12, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Pitecschke, A.; Hirt, H. Disentangling the complexicity of mitogen-activated protein kinase and oxygen species signaling. Plant Physiol. 2009, 149, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Zhang, S. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 2013, 51, 245–266. [Google Scholar] [CrossRef] [PubMed]
- Henry, E.; Yadeta, K.A.; Coaker, G. Recognition of bacterial plant pathogens: Local, systemic and transgenerational immunity. New Phytol. 2013, 199, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Vlot, A.C.; Dempsey, D.A.; Klessig, D.F. Salicylic acid, a multi-faceted hormone to combat disease. Annu. Rev. Phytopathol. 2009, 47, 177–206. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, C.M.J.; Leon-Reyes, A.; van der Does, D.; Verhage, A.; Koornneef, A.; van Pelt, J.A.; van Wees, S.C.M. Networking by small-molecule hormones in plant immunity. Induced resistance against insects and diseases. IOBC-WPRS Bull. 2012, 83, 77–80. [Google Scholar]
- Bektas, Y.; Eulgem, T. Synthetic plant defense elicitors. Front. Plant Sci. 2015, 5, 804. [Google Scholar] [CrossRef] [PubMed]
- Canet, J.V.; Dobon, A.; Ibanez, F.; Perales, L.; Tornero, P. Resistance and biomass in Arabidopsis: A new model for salicylic acid perception. Plant Biotechnol. J. 2010, 8, 126–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noutoshi, Y.; Okazaki, M.; Kida, T.; Nishina, Y.; Morishita, Y.; Ogawa, T. Novel plant immune-priming compounds identified via high throughput chemical screening target salicylic acid glucosyltransferase in Arabidopsis. Plant Cell 2012, 24, 3795–3804. [Google Scholar] [CrossRef] [PubMed]
- Noutoshi, Y.; Okazaki, M.; Shirasu, K. Isolation and characterization of the plant immune-priming compounds Imprimatin B3 and-B4, potentiators of disease resistance in Arabidopsis thaliana. Plant Signal. Behav. 2012, 7, 1526–1528. [Google Scholar] [CrossRef] [PubMed]
- Noutoshi, Y.; Ikeda, M.; Saito, T.; Osada, H.; Shirasu, K. Sulfonamides identified as plant immune-priming compounds in high throughput chemical screening increased disease resistance in Arabidopsis thaliana. Front. Plant Sci. 2012, 3, 245. [Google Scholar] [CrossRef] [PubMed]
- Love, A.J.; Yun, B.W.; Laval, V.; Loake, G.J.; Milner, J.J. Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defence signaling pathways and activates rapid systemic generation of reactive oxygen species. Plant Physiol. 2005, 139, 935–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kachroo, P.; Yoshioka, K.; Shah, J.; Dooner, H.K.; Klessig, D.F. Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and Jasmonate independent. Plant Cell 2000, 12, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.; Uppalapati, S.R.; Ryu, C.M.; Allen, S.N.; Kang, L.; Tang, Y.H.; Mysore, K.S. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol. 2008, 146, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Sparla, F.; Rotino, L.; Valgimigli, M.C.; Pupillo, P.; Trost, P. Systemic resistance induced by benzothiadiazole in pear inoculated with the agent of fire blight (Erwinia amylovora). Sci. Hortic. 2004, 101, 269–279. [Google Scholar] [CrossRef]
- Thomma, B.P.H.J.; Tierens, K.F.M.; Penninck, I.A.M.A.; Mauch-Mani, B.; Broekaert, W.F.B.; Cammue, B.P.A. Different micro-organisms differentially induce Arabidopsis disease response pathways. Plant Physiol. Biochem. 2001, 39, 673–680. [Google Scholar] [CrossRef]
- Genger, R.; Jurkowski, G.; McDowell, J.; Lu, H.; Jung, H.; Greenberg, J.; Bent, A. Signaling pathways that regulate the enhanced disease resistance of Arabidopsis “defense, no death” mutants. Mol. Plant-Microbe Interact. 2008, 21, 1285–1296. [Google Scholar] [CrossRef] [PubMed]
- Nakashita, H.; Yoshioka, K.; Yasuda, M.; Nitta, T.; Arai, Y.; Yoshida, S.; Yamaguchi, I. Probenazole induces systemic acquired resistance in tobacco through salicylic acid accumulation. Physiol. Mol. Plant Pathol. 2002, 61, 197–203. [Google Scholar] [CrossRef]
- Spletzer, M.E.; Enyedi, A.J. Salicylic acid induces resistance to Alternaria solani in hydroponica. Phytopathology 1999, 89, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.J.; Tian, S.P. Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. J. Appl. Microbiol. 2005, 98, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.; Plotnikova, J.M.; De Lorenzo, G.; Ausubel, F.M. Arabidopsis local resistance to Botrytis cinérea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J. 2003, 35, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.I.; Leon, J.; Raskin, I. Biosynthesis and metabolism of salicylic acid. Proc. Natl. Acad. Sci. USA 1995, 92, 4076–4079. [Google Scholar]
- Wildermuth, M.C.; Dewdney, J.; Wu, G.; Ausubel, F.M. Isochorismate synthesis is required to synthesize salicylic acid for plant defense. Nature 2001, 414, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.S.N.; Ali, G.S.; Celesnik, H.; Day, I.S. Coping with stresses: Roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 2011, 23, 2010–2032. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Vivancos, P.; Bernal-Vicente, A.; Cantabella, D.; Petri, C.; Hernandez, J.A. Metabolomics and biochemical approaches link salicylic acid biosynthesis to cyanogenesis in peach plants. Plant Cell Physiol. 2017, 58, 2057–2066. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Gobbato, E.; Kracher, B.; Qui, J.; Parker, J.E. A core function of EDS1 with PAD4 is to protect salicylic acid defense sector in Arabidopsis immunity. New Phytol. 2017, 213, 1802–1817. [Google Scholar] [CrossRef] [PubMed]
- Rustérucci, C.; Aviv, D.H.; Holt, B.F.; Dangl, J.L.; Parker, J.E. The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 2001, 13, 2211–2224. [Google Scholar] [CrossRef] [PubMed]
- Rietz, S.; Stamm, A.; Malonek, S.; Wagner, S.; Becker, D.; Medina-Escobar, N.; Vlot, A.C.; Feys, B.J.; Niefind, K.; Parker, J.E. Different roles of enhanced disease susceptibility 1 (EDS1) bound to and dissociated from phytoalexin deficient 4 (PAD4) in Arabidopsis immunity. New Phytol. 2011, 191, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Nawrath, C.; Heck, S.; Parinthawong, N.; Metraux, J.P. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 2002, 14, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Willits, M.G.; Glazebrook, J. Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: Evidence for inhibition of jasmonic acid signaling by SA. Mol. Plant-Microbe Interact. 2000, 13, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Motomura, Y.; Yagi, Y.; Nomura, H.; Kikuchi, S.; Nakai, M.; Shiina, T. Chloroplast envelope localization of EDS5, an essential factor for salicylic acid biosynthesis in Arabidopsis thaliana. Plant Signal. Behav. 2013, 8, e23603. [Google Scholar] [CrossRef] [PubMed]
- Park, S.W.; Kaimoyo, E.; Kumar, D.; Mosher, S.; Klessig, D.F. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 2007, 318, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Návarová, H.; Bernsdorff, F.; Döring, A.C.; Zeier, J. Pipecolic acid, an endogenous mediator of defense amplifi cation and priming, is a critical regulator of inducible plant immunity. Plant Cell 2012, 24, 5123–5141. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.W.; Tschaplinski, T.J.; Wang, L.; Glazebrook, J.; Greenberg, J.T. Priming in systemic plant immunity. Science 2009, 324, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, R.; Venables, B.; Petros, R.A.; Nalam, V.; Li, M.; Wang, X.; Takemoto, L.J.; Shah, J. An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant J. 2012, 71, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Q.; Staswick, P.E.; Wang, M.; Zhu, Y.; He, Z. Dual regulation role of GH3.5 in salicylic acid and auxin signaling Arabidopsis-Pseudomonas syringae interaction. Plant Physiol. 2007, 145, 450–464. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.Q.; Yang, S.; Saleh, A.; Wang, W.; Ruble, J.; Oka, N.; Mohan, R.; Spoel, S.H.; Tada, Y.; Zheng, N.; et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 2012, 486, 228–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Zhang, D.; Chu, J.Y.; Boyle, P.; Wang, Y.; Brindle, I.D.; De Luca, V.; Despres, C. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 2012, 1, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Lebel, E.; Heifetz, P.; Thorne, L.; Uknes, S.; Ryals, J.; Ward, E. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 1998, 16, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Moreau, M.; Tian, M.; Klessig, D.F. Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Res. 2012, 22, 1631–1633. [Google Scholar] [CrossRef] [PubMed]
- Conrath, U.; Beckers, G.S.M.; Langenbach, C.J.G.; Jaskiewicz, M.R. Priming for enhanced defense. Annu. Rev. Phytopathol. 2015, 53, 97–119. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, L.; Jakab, C.; Métraux, J.P.; Mauch-Mani, B. Potentiation of pathogen specific defense mechanisms in Arabidopsis by beta-amino butyric acid. Proc. Natl. Acad. Sci. USA 2000, 97, 12920–12925. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, L.; Métraux, J.P.; Mauch-Mani, B. Beta amino butyric acid induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 2001, 126, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Y.; Rubin, A.E.; Kilfin, G. Mechanisms of induced resistance in lettuce against Bremia lactuca by DL-beta-amino-butyric acid (BABA). Eur. J. Plant Pathol. 2010, 130, 13–27. [Google Scholar] [CrossRef]
- Sharma, K.; Bruns, C.; Butz, A.F.; Finckh, M.R. Effect of fertilizers and plant strengthners on the susceptibility of tomatoes to single and mixed isolates of Phytophthora infestans. Eur. J. Plant Pathol. 2012, 133, 739–751. [Google Scholar] [CrossRef]
- Sasek, V.; Novakova, M.; Dobrev, R.I.; Valentova, O.; Burketova, L. B-amino butyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect. Eur. J. Plant Pathol. 2012, 133, 279–289. [Google Scholar] [CrossRef]
- Harm, A.; Kassemeyer, H.H.; Seibicke, T.; Regner, F. Evolution of chemical and natural resistance inducers against downy mildew (Plasmopara viticola) in grapevine. Am. J. Enol. Vitic. 2011, 62, 184–192. [Google Scholar] [CrossRef]
- Liljeroth, E.; Bengtsson, T.; Wiik, L.; Andreasson, E. Induced resistance in potato to Phytphthora infestans—Effects of BABA in greenhouse and field tests with different potato varieties. Eur. J. Plant Pathol. 2010, 127, 171–183. [Google Scholar] [CrossRef]
- Bengtsson, T.; Weighill, D.; Proux-Wera, E.; Levander, F.; Resjö, S.; Dahar Burra, D.; Moushib, L.I.; Hedley, P.; Liljeroth, E.; Jacobson, D.; et al. Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach. BMC Genom. 2014, 15, 315. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, T.; Holefors, A.; Witzell, J.; Andreasson, E.; Liljeroth, E. Activation of defence responses to Phytophthora infestans in potato by BABA. Plant Pathol. 2014, 63, 193–202. [Google Scholar] [CrossRef]
- Knoth, C.; Salus, M.S.; Girke, T.; Eulgem, T. The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis. Plant Physiol. 2009, 150, 333–347. [Google Scholar] [CrossRef] [PubMed]
- Conrath, U.; Chen, Z.; Ricigliano, J.R.; Klessig, D.F. Two inducers of plant defense responses, 2,6-dichloroisonicotinec acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl. Acad. Sci. USA 1995, 92, 7143–7147. [Google Scholar] [CrossRef] [PubMed]
- Enyong, A.B. Synthesis of Novel Agrochemicals as Potential Plant Immunization Agents. Master’s Thesis, East Tennessee State University, Johnson City, TN, USA, 2008. [Google Scholar]
- Cui, Z.; Ito, J.; Dohi, H.; Amemiya, Y.; Nishida, Y. Molecular design and synthesis of novel salicyl glycoconjugates as elicitors against plant diseases. PLoS ONE 2014, 9, e108338. [Google Scholar] [CrossRef] [PubMed]
- Song, G.C.; Choi, H.K.; Ryu, C.M. The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis. Ann. Bot. 2013, 111, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, K.K.; Atamian, H.S.; Kaloshia, I.; Eulgem, T. WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1. Plant J. 2010, 63, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Metraux, J.P.; Ahlgoy, P.; Staub, T.; Speich, J.; Steinemann, A.; Ryals, J.; Ward, E. Induced systemic resistance in cucumber in response to 2,6-dichloro-isonicotinic acid and pathogens. In Advances in Molecular Genetics of Plant-Microbe Interactions; Hennecke, H., Verma, D., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Ward, E.R.; Uknes, S.J.; Williams, S.C.; Dincher, S.S.; Wiederhold, D.L.; Alexander, D.C.; Ahl-Goy, P.; Métraux, J.P.; Ryals, J.A. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 1991, 3, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Delaney, T.P.; Friedrich, L.; Ryals, J.A. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA 1995, 92, 6602–6606. [Google Scholar] [CrossRef] [PubMed]
- Vernooij, B.; Friedrich, L.; Goy, P.A.; Staub, T.; Kessmann, H.; Ryals, J. 2,6-dicholoroisonicotinic acid-induced resistance to pathogens without the accumulation of saliciylic acid. Mol. Plant-Microbe Interact. 1995, 8, 228–234. [Google Scholar] [CrossRef]
- Durner, J.; Klessig, D.F. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc. Natl. Acad. Sci. USA 1995, 92, 11312–11316. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Konishi, K.; Koike, K.; Nakagawa, T.; Sekido, S.; Yamaguchi, I. Effect of N-cyanomethyl-2-chloroisonicotinamide for control of rice blast. J. Pestic. Sci. 1990, 15, 413–417. [Google Scholar] [CrossRef]
- Yasuda, M. Regulation mechanisms of systemic acquired resistance induced by plant activators. J. Pestic. Sci. 2007, 32, 281–282. [Google Scholar] [CrossRef]
- Naim, M.J.; Alam, O.; Nawaz, F.; Alam, M.J.; Alam, P. Current status of pyrazole and its biological activities. J. Pharm. Bioallied Sci. 2016, 8, 2–17. [Google Scholar] [PubMed]
- Jee Kashyap, S.; Kumar Garg, V.; Kumar Sharma, P.; Kumar, N.; Dudher, R.; Kumar Gupta, J. Thiadiazoles: Having diverse biological activities. Med. Chem. Res. 2012, 21, 2123–2132. [Google Scholar] [CrossRef]
- Kumar Jain, A.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R.K. 1,3,4-thiadiazole and its derivatives: A review on recent progress in biological activities. Chem. Biol. Drug Dis. 2013, 81, 557–576. [Google Scholar] [CrossRef] [PubMed]
- Nakashita, H.; Yoshioka, K.; Takayama, M.; Kuga, R.; Midon, N.; Usami, R.; Horikoshi, K.; Yoneyama, K.; Yamaguchi, I. Characterization of PBZ1, a probenazole-inducible gene, in suspension-cultured rice cells. Biosci. Biotechnol. Biochem. 2001, 65, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Kunz, W.; Schurter, R.; Maetzke, T. The chemistry of benzothiadiazole plant activators. Pest Manag. Sci. 1997, 50, 275–282. [Google Scholar] [CrossRef]
- Nakashita, A.; Inoue, E.; Watanabe-Takahashi, A.; Yamaya, T.; Takahashi, H. Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effect on sulfur nutrition on multiple metabolic pathways. Plant Physiol. 2003, 132, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, M.; Nakashita, H.; Yasuda, M.; Yoshida, S.; Yamaguchi, I. Induction of resistance against rice bacterial leaf blight by 3-chloro-1-methyl-1-pyrazole-5-carboxylic acid. J. Pestic. Sci. 2005, 30, 47–49. [Google Scholar] [CrossRef]
- Yasuda, M.; Nishioka, M.; Nakashita, H.; Yamaguchi, I.; Yoshida, S. Pyrazole carboxylic acid derivative induces systemic acquired resistance in tobacco. Biosci. Biotechnol. Biochem. 2003, 67, 2614–2620. [Google Scholar] [CrossRef] [PubMed]
- Oostendorp, M.; Kunz, W.; Dietrich, B.; Staub, T. Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 2001, 107, 19–28. [Google Scholar] [CrossRef]
- Boyle, C.; Walters, D.R. Saccharin-induced protection against powdery mildew in barley: Effects on growth and phenylpropanoid metabolism. Plant Pathol. 2006, 55, 82–91. [Google Scholar] [CrossRef]
- Boyle, C.; Walters, D.R. Induction of systemic protection against rust infection in broad bean by saccharin: Effects on plant growth and development. New Phytol. 2005, 167, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, G.S.; Marois, J.J.; Wright, D.L.; Walker, D.R. Saccharin-induced systemic acquired resistance against rust (Phakopsora pachyrhizi) infection in soybean: Effects on growth and development. Crop Prot. 2011, 30, 726–732. [Google Scholar] [CrossRef]
- Ogava, M.; Kadowaki, A.; Yamada, T.; Kadooka, O. Applied Development of a Novel Fungicide Isotianil (Stout); R&D Report, No.I; Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd.: Takarazuka, Japan, 2011; pp. 1–16. [Google Scholar]
- Toquin, V.; Sirven, C.; Assmann, L.; Sawada, H. Host defense inducers. In Modern Crop Protection Compounds 2, 2nd ed.; Kramer, W., Schrimer, U., Jeschke, P., Witschel, M., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2012. [Google Scholar]
- Schirmer, U.; Jeschke, P.; Witschel, M. Modern Crop Protection Compounds; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Brisset, M.N.; Faize, M.; Heintz, C.; Cesbro, S.; Tharaud, M.; Paulin, J.P. Induced resistance to Erwinia amylovora in apple and pear. Acta Hortic. 2002, 590, 449–450. [Google Scholar] [CrossRef]
- Graham, J.H.; Myers, M.E. Soil application of SAR inducers imidacloprid, thiamethoxam, and Acibenzolar-S-methyl for citrus canker control in young grapefruit trees. Plant Dis. 2011, 95, 725–728. [Google Scholar] [CrossRef]
- Potlakayala, S.D.; Reed, D.W.; Covello, P.S.; Fobert, P.R. Systemic acquired resistance in canola is linked with pathogenesis-related gene expression and requires salicylic acid. Phytopathology 2007, 97, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Faize, M.; Faize, L.; Koike, N.; Ishizaka, M.; Ishii, H. Acibenzolar-S-methyl-induced resistance to Japanese pear scab is associated with potentiation of multiple defense responses. Phytopathology 2004, 94, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Latunde-Dada, A.O.; Lucas, J.A. The plant defence activator acidbenzolar-S-methyl primes cowpea [Vigna unguiculata (L.) Walp.] seedlings for rapid induction of resistance. Physiol. Mol. Plant Pathol. 2001, 58, 199–208. [Google Scholar] [CrossRef]
- Friedrich, L.; Lawton, K.; Ruess, W.; Masner, P.; Specker, N.; Rella, M.G.; Meier, B.; Dincher, S.; Staub, T.; Uknes, S.; et al. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J. 1996, 10, 61–70. [Google Scholar] [CrossRef]
- Mandal, B.; Mandal, S.; Csinos, A.S.; Martinez, N.; Culbreath, A.K.; Pappu, H.R. Biological and molecular analyses of the acibenzolar-S-methyl-induced systemic acquired resistance in flue-cured tobacco against Tomato spotted wilt virus. Phytopathology 2008, 98, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Anfoka, G.H. Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum Mill cv. Vollendung) to Cucumber mosaic virus. Crop Prot. 2000, 19, 401–405. [Google Scholar] [CrossRef]
- Soylu, S.; Baysal, O.; Soylu, E.M. Induction of disease resistance by the plant activator, acibenzolar-S-methyl (ASM), against bacterial canker (Clavibacter michiganensis subsp. michiganensis) in tomato seedlings. Plant Sci. 2003, 165, 1069–1075. [Google Scholar] [CrossRef]
- Zine, H.; Rifai, L.A.; Faize, M.; Smaili, A.; Makroum, K.; Belfaiza, M.; Kabil, E.M.; Koussa, T. Duality of acibenzolar-S-methyl in the inhibition of pathogen growth and induction of resistance during the interaction tomato/Vertcillium dahliae. Eur. J. Plant Pathol. 2016, 145, 61–69. [Google Scholar] [CrossRef]
- Liu, S.Y.; Liu, Z.; Fitt, B.D.L.; Evans, N.; Foster, S.J.; Huang, Y.J.; Latunde-Dada, A.O.; Lucas, J.A. Resistance to Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape) induced by L. biglobosa and chemical defence activators in field and controlled environments. Plant Pathol. 2006, 55, 401–412. [Google Scholar] [CrossRef]
- Du, Q.; Zhu, W.; Zhao, Z.; Qian, X.; Xu, Y. Novel benzo-1,2,3-thiadiazole-7-carboxylate derivatives as plant activators and the development of their agricultural applications. J. Agric. Food Chem. 2012, 60, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, M.; Kusajima, M.; Nakajima, M.; Akutsu, K.; Kudo, T.; Yoshida, S.; Nakashita, H. Thiadiazole carboxylic acid moiety of tiadinil, SV-03, induces systemic acquired resistance in tobacco without salicylic acid accumulation. J. Pestic. Sci. 2006, 31, 329–334. [Google Scholar] [CrossRef]
- Yoshida, K.; Ogino, A.; Yamada, K.; Sonoda, R. Induction of disease resistance in tea (Camellia sinensis L.) by plant activators. JARQ 2010, 44, 391–398. [Google Scholar] [CrossRef]
- Zine, H.; Rifai, L.A.; Faize, M.; Bentiss, F.; Guesmi, S.; Laachir, A.; Smaili, A.; Makroum, K.; Sahibed-Dine, A.; Koussa, T. Resistance induced in tomato plants against Vertcillium wilt by the binuclear nickel coordination complex of the ligand 2,5-bis(pyridine-2-yl)-1,3,4-thiadiazole. J. Agric. Food Chem. 2016, 64, 2661–2667. [Google Scholar] [CrossRef] [PubMed]
- Zine, H.; Rifai, L.A.; Koussa, T.; Bentiss, F.; Guesmi, S.; Laachir, A.; Makroum, K.; Belfaiza, M.; Faize, M. The mononuclear nickel (II) complex bis(azido-kN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ(2)N(2),N(3)]nickel(II) protects tomato from Verticillium dahliae by inhibiting the fungal growth and activating plant defenses. Pest Manag. Sci. 2017, 73, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Smaili, A.; Rifai, L.A.; Koussa, T.; Bentiss, F.; Laachir, A.; Guesmi, S.; Faize, M. Copper complexes of the 1,3,4-thiadiazole derivatives modulate antioxidant defense responses and resistance in tomato plants against fungal and bacterial diseases. Pestic. Biochem. Physiol. 2017, 143, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Umemura, K.; Satou, J.; Iwata, M.; Uozumi, N.; Koga, J.; Kawano, T.; Anzai, H.; Mitomi, M. Contribution of salicylic acid glucosyltransferase, OSSGT1, to chemically induced disease resistance in rice plants. Plant J. 2009, 57, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Nakashita, H.; Klessig, D.F.; Yamaguchi, I. Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant J. 2001, 25, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Molina, A.; Hunt, M.D.; Ryals, J.A. Impaired fungicide activity in plants blocked in disease resistance signal transduction. Plant Cell 1998, 10, 1903–1914. [Google Scholar] [CrossRef] [PubMed]
- Lawton, K.A.; Friedrich, L.; Hunt, M.; Weymann, K.; Delaney, T.; Kessmann, H.; Staub, T.; Ryals, J. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 1996, 10, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Wendehenne, D.; Durner, J.; Chen, Z.; Klessig, D.F. Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phytochemistry 1998, 47, 651–657. [Google Scholar] [CrossRef]
- Tripathi, D.; Jiang, Y.L.; Kumar, D. SABP2, a methylsalicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants. FEBS Lett. 2010, 584, 3458–3463. [Google Scholar] [CrossRef] [PubMed]
- Faize, M.; Faize, L.; Ishii, H. Gene expression during acibenzolar-S-methyl-induced priming for potentiated responses to Venturia nashicola Japanese pear. J. Phytopathol. 2009, 157, 137–144. [Google Scholar] [CrossRef]
- Faize, M.; Faize, L.; Ishii, H. Characterization of a leucine-rich repeat receptor like kinase (LRPK) gene from Japanese pear and its expression analysis upon scab infection and acibenzolar-S-methyl treatment. J. Gen. Plant Pathol. 2007, 73, 104–112. [Google Scholar] [CrossRef]
- Deepak, S.A.; Ishii, H.; Park, P. Acibenzolar-S-methyl primes cell wall strengthening genes and reactive oxygen species forming/scavenging enzymes in cucumber after fungal pathogen attack. Physiol. Mol. Plant Pathol. 2006, 69, 52–61. [Google Scholar] [CrossRef]
- Azami-Sardooei, Z.; Seifi, H.S.; De Vleesschauwer, D.; Hofte, M. Benzothiadiazole (BTH) induced resistance against Botrytis cinerea is inversely correlated with vegetative and generative growth in bean and cucumber but not in tomato. Aust. Plant Pathol. 2013, 42, 485–490. [Google Scholar] [CrossRef]
- Momol, M.T.; Olson, S.M.; Funderburk, J.E.; Stavisky, J.; Marois, J.J. Integrated management of tomato spotted wilt on field-grown tomatoes. Plant Dis. 2004, 88, 882–890. [Google Scholar] [CrossRef]
- Tsubata, K.; Kuroda, K.; Yamamoto, Y.; Yasokawa, N. Development of a novel plant activator for rice diseases, Tiadinil. J. Pestic. Sci. 2006, 31, 161–162. [Google Scholar] [CrossRef]
- Sun, T.J.; Lu, Y.; Narusaka, M.; Shi, C.; Yang, Y.B.; Wu, J.X.; Zeng, H.Y.; Narusaka, Y.; Yao, N. A novel pyrimidin-like plant activator stimulates plant disease resistance and promotes growth. PLoS ONE 2015, 10, e0123227. [Google Scholar] [CrossRef] [PubMed]
- Narusaka, M.; Narusaka, Y. Thienopyrimidine-type compounds protect Arabidopsis plants against the hemibiotrophic fungal pathogen Colletotrichum higginsianum and bacterial pathogen Pseudomonas syringae pv. maculicola. Plant Signal. Behav. 2017, 12, e1293222. [Google Scholar] [CrossRef] [PubMed]
- Ford, K.A.; Casida, J.E.; Chandran, D.; Gulevich, A.G.; Okrent, R.A.; Durkin, K.A.; Sarpong, R.; Bunnelle, E.M.; Wildermuth, M.C. Neonicotinoid insicticides induce salicylate-associated plant defense responses. Proc. Natl. Acad. Sci. USA 2010, 107, 17527–17532. [Google Scholar] [CrossRef] [PubMed]
- Francis, M.I.; Redondo, A.; Burns, J.K.; Graham, J.H. Soil application of imidacloprid and related SAR-inducing compounds produces effective and persistent control of citrus canker. Eur. J. Plant Pathol. 2009, 22, 283–292. [Google Scholar] [CrossRef]
- Heil, M.; Baldwin, I.T. Fitness costs of induced resistance: Emerging experimental support for a slippery concept. Trends Plant Sci. 2002, 7, 61–67. [Google Scholar] [CrossRef]
- Shirano, Y.; Kachroo, P.; Shah, J.; Klessig, D.F. A gain-of-function mutation in an Arabidopsis Toll Interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 2002, 14, 3149–3162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Goritschnig, S.; Dong, X.; Li, X. A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 2003, 15, 2636–2646. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.; Heil, M. Costs and trade-offs associated with induced resistance. Physiol. Mol. Plant Pathol. 2007, 71, 3–17. [Google Scholar] [CrossRef]
- Huot, B.; Yao, J.; Montgomery, B.L.; He, S.Y. Growth–defense tradeoffs in plants: A balancing act to optimize fitness. Mol. Plant 2014, 7, 1267–1287. [Google Scholar] [CrossRef] [PubMed]
- Heil, M.; Hilpert, A.; Kaiser, W.; Linsenmair, K.E. Reduced growth and seed set following chemical induction of pathogen defence: Does systemic acquired resistance (SAR) incur allocation costs? J. Ecol. 2000, 88, 645–654. [Google Scholar] [CrossRef]
- Cipollini, D.F. Does competition magnify the fitness costs of induced responses in Arabidopsis thaliana? A manipulative approach. Oecologia 2002, 131, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Heidel, A.J.; Clarke, J.D.; Antonovics, J.; Dong, X. Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. Genetics 2004, 168, 2197–2206. [Google Scholar] [CrossRef] [PubMed]
- Abreu, M.E.; Munné-Bosch, S. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J. Exp. Bot. 2009, 60, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Prats, E.; Rubiales, D.; Jorrín, J. Acibenzolar-S-methyl-induced resistance to sunflower rust (Puccinia helianthi) is associated with an enhancement of coumarins on foliar surface. Physiol. Mol. Plant Pathol. 2002, 60, 155–162. [Google Scholar] [CrossRef]
- Romero, A.M.; Kousik, C.S.; Ritchie, D.F. Resistance to bacterial spot in bell pepper induced by acibenzolar-S-methyl. Plant Dis. 2001, 85, 189–194. [Google Scholar] [CrossRef]
- Heidel, A.J.; Dong, X. Fitness benefits of systemic acquired resistance during Hyaloperonospora parasitica infection in Arabidopsis thaliana. Genetics 2006, 173, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Amornsiripanitch, N.; Dong, X. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog. 2006, 2, e123. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Pajerowska-Mukhtar, K.; Hendrickson Culler, A.; Dong, X. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Biol. 2007, 17, 1784–1790. [Google Scholar] [CrossRef] [PubMed]
- Staswick, W.P.E.; Serban, B.; Rowe, M.; Tiryaki, I.; Maldonado, M.T.; Maldonado, M.C.; Suzaa, W. Characterization of an Arabidopsis Enzyme Family That Conjugates Amino Acids to Indole-3-Acetic Acid. Plant Cell 2005, 17, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Cipollini, D.; Heil, M. Costs and benefits of induced resistance to herbivores and pathogens in plants. Plant Sci. Rev. 2010, 5, 1–25. [Google Scholar] [CrossRef]
- Ton, J.; Mauch-Mani, B. Beta amino butyric acid induced resistance against necrotrophic pathogen is based on ABA-dependent priming for callose. Plant J. 2004, 38, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Conrath, U.; Beckers, G.J.M.; Flors, V.; García-Agustín, P.; Jakab, G.; Mauch, F.; Newman, M.A.; Pieterse, C.M.; Poinssot, B.; Pozo, M.J.; et al. Priming: Getting ready for battle. Mol. Plant-Microbe Interact. 2006, 19, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Kohler, A.; Schwindling, S.; Conrath, U. Benzothiazole induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol. 2002, 128, 1046–1056. [Google Scholar] [CrossRef] [PubMed]
- Beckers, G.J.; Jaskiewicz, M.; Liu, Y.; Underwood, W.R.; He, S.Y.; Zhang, S.; Conrath, U. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 2009, 21, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, V.; Lopez, A.; Mauch-Mani, B.; Gil, M.J.; Vera, P. An Extracellular Subtilase Switch for Immune Priming in Arabidopsis. PLoS Pathog. 2013, 9, e1003445. [Google Scholar] [CrossRef] [PubMed]
- Jaskiewicz, M.; Conrath, U.; Peterhansel, C. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep. 2011, 12, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Ramirez, V.; Garcia-Andrade, J.; Flors, V.; Vera, P. The RNA Silencing Enzyme RNA Polymerase V Is Required for Plant Immunity. PLoS Genet. 2011, 7, e1002434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slaughter, A.; Daniel, X.; Flors, V.; Luna, E.; Hohn, B.; Mauch-Mani, B. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 2012, 158, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Lankinen, A.; Abreha, K.B.; Alexandersson, E.; Andersson, S.; Andreasson, E. Nongenetic inheritance of induced resistance in a wild annual plant. Phytopathology 2016, 106, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, K.J.; Nasmith, C.G.; Allard, G.; Singh, J.; Subramaniam, R.; Desveaux, D. Found in translation: High-throughput chemical screening in Arabidopsis thaliana identifies small molecules that reduce Fusarium head blight disease in wheat. Mol. Plant-Microbe Interact. 2011, 24, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Furlan, C.; Salinas-Grenet, H.; Sandoval, O.; Recabarren, C.; Arrano-Salinas, P.; Soto-Alvear, S.; Orellana, A.; Blanco Herrera, F. The root hair specific syp123 regulates the localization of cell wall components and contributes to rizhobacterial priming of induced systemic resistance. Front. Plant Sci. 2016, 7, 1081. [Google Scholar] [CrossRef] [PubMed]
- Bektas, Y.; Rodriguez-Salus, M.; Schroeder, M.; Gomez, A.; Kaloshian, I.; Eulgem, T. The Synthetic Elicitor DPMP (2,4-dichloro-6-{(E)-[(3-methoxyphenyl) imino]methyl}phenol) triggers strong immunity in Arabidopsis thaliana and tomato. Sci. Rep. 2016, 6, 29554. [Google Scholar] [CrossRef] [PubMed]
- Narusaka, Y.; Narusaka, M.; Abe, H.; Hosaka, N.; Kobayashi, M.; Shiraishi, T.; Iwabuchi, M. High-throughput screening for plant defense activators using a β-glucuronidase-reporter gene assay in Arabidopsis thaliana. Plant Biotechnol. 2009, 26, 345–349. [Google Scholar] [CrossRef]
- Noutoshi, Y.; Jikumaru, Y.; Kamiya, Y.; Shiharu, K. Imprimantin C1, a novel plant immune-priming compound, function as a partial agonist of salicylic acid. Sci. Rep. 2012, 2, 705. [Google Scholar] [CrossRef] [PubMed]
- Kuai, X.; Barraco, C.; Després, C. Combining Fungicides and Prospective NPR1-Based “Just-in-Time” Immunomodulating Chemistries for Crop Protection. Front. Plant Sci. 2017, 8, 1715. [Google Scholar] [CrossRef] [PubMed]
Chemical Name | Chemical Structure | Plant/Pathogen Interaction Laboratory/Field Experiments) | Reference |
---|---|---|---|
β-Aminobutyric acid | Arabidopsis/hyaloperonospora parasitica, Botrytis cinerea (Laboratory) | [46] | |
Brassica napus/Leptosphaeria maculans (Laboratory) | [49] | ||
Lettuce/Bremia lactucae (Laboratory) | [47] | ||
Tomato/Phytophthora infestans (Laboratory) | [48] | ||
Potato/Phytophthora infestans (Laboratory/Field) | [51,52] | ||
Grapevine/Plasmopara viticola | [50] |
Chemical/Trade Name | Chemical Structure | Plant/Pathogen Interaction Laboratory/Field Experiments) | Reference |
---|---|---|---|
3-chlorosalicylic acid, 4-chlorosalicylic acid, 5-chlorosalicylic acid, 3,5-dichlorsalicylic acid | Tobacco/TMV (Laboratory) | [55] | |
3-fluorosalicylic acid, 5-fluorosalicylic acid | Tobacco/TMV (Laboratory) | [56] | |
2-(3,4-dihydroxy-6-(hydroxymethyl)-5-(3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)thio)benzohydrazide: SA glucoconjugate hydrazine | Cucumber/Colletotrichum orbiculare, Fusarium oxysporum, Ralstonia solani, Phytophthora capsici (Laboratory) | [57] | |
3-chlorobenzoic acid, 3,5-dichlorobenzoic acid | Arabidopsis/Hyaloperonospora parasitica, Pseudomonas syringae (Laboratory) | [54] | |
Para amino benzoic acid | Pepper/CMV, Xanthomonas axonopodis pv. Vesicatoria (Laboratory) | [58] |
Chemical/Common or Trade Name | Chemical Structure | Plant/Pathogen Interaction (Laboratory/Field Experiments) | Reference |
---|---|---|---|
2,6-dichloro-isonicotinic acid (INA)(CGA41396), CGA41397 | Tobacco/TMV, Cercospora nicotiana, Peronospora tabacina (Laboratory) Cucumber/Colletotrichum lagenarium Sphaerotheca fuliginea (Laboratory) Bean/Uromyces appendiculatus (Laboratory) | [60,61] | |
N-cyanomethyl-2-chloro isonicotinic acid (NCI) | Tobacco/Tobacco mosaic virus, Oidium lycopersici, Pseudomans syringae pv. tabaci (Laboratory) Rice/Xanthomonas oryzae pv. oryzae, Magnatoporthe grisea (Field) | [65] |
Chemical/Trade Name | Chemical Structure | Plant/Pathogen Interaction (Laboratory/Field Experiments) | Reference |
---|---|---|---|
3-chloro-1-methyl-1H-pyrazole-5-carboxylic acid (CMPA) | Tobacco/Pseudomonas syringae pv. tabaci, Oidium sp. (Laboratory) | [72,74] | |
Rice/Xanthomonas oryzae pv. Oryzae (Field) | [73] | ||
3-allyloxy-1,2-benzithiazole1-1-dioxide (Probenazole, PBZ/Oryzemate®) | Rice/Magnaporthe oryzae (Field) | [70] | |
1,2-benzisothiazolin-3-one-1,1-dioxide (BIT, Saccharin) | Tobacco/TMV (Laboratory) Rice/Magnaporthe grisea, Xanthomonas oryzae pv. Oryzae (Field) Barley/Blumeria graminis f. sp. Hordei (Laboratory) Cucumber/Colletotrichum lagenarium Bean/Uromyces faba (Laboratory) Soybean/Phakospora pachirhizi (Laboratory) | [75,76,77,78] | |
3,4-dichloro-2′-cyano-1,2-thiazole-5-carboxanilide Isothianil (Isotianil/Stout®) | Rice/Xanthomonas oryzae pv. oryzae, Magnaporthe grisea (Field) Wheat/Blumeria graminis f. sp. Tritici (Laboratory) Cucumber/Colletotrichum orbiculare, Xanthomonas campestris pv. Cucurbitae (Laboratory) | [71] | |
Chinese cabbage/Alternaria brassicae (Laboratory) Pumpkin/Sphaerotheca fuliginea (Laboratory) Strawberry/Colletotrichum acutatum (Laboratory) Peach/Xanthomonas campestris pv. Pruni (Laboratory) | [79,80,81] | ||
Benzo-1,2,3-thiadiazole-7-carbothionic acibenzolar-S-methyl ester (BTH/Bion®/Actigrad®) | Apple/Erwinia amylovora (Field) | [82] | |
Citrus/Xanthomonas citri, Xanthomonas axonopodis pv. Citrucula (Field) | [83] | ||
Rape/Pseudomonas syrngae pv. maculicola, leptosphaera maculans (Laboratory) | [84] | ||
Japanese pear/Venturia nashicola (Laboratory) | [85] | ||
Cowpea/Colletotrichum destructivum (Laboratory) | [86] | ||
Tobacco/TMV, CMV, Tomato spotted wilt virus (Laboratory) | [87,88] | ||
Cucumber/Colletotrichum orbiculare, CMV (Laboratory) | [85,89] | ||
Tomato/Clavibacter michighanensis subs. michiganensis, Verticillium dahliae (Laboratory/Field) | [90,91] | ||
Oil seed rape/Leptosphaeria maculans (Laboratory/Field) | [92] | ||
2,2-2trifluoroethylbenzo(d) (1,2,3) thiadiazole-7-carboxylatic acid | Cucumber/Erysiphae cichoracearum, Colletotrichum lagenarium (Field) | [93] | |
N-(3-Chloro-4-Methylphenyl)-4-Methyl-1,2,3-thiadiazole-5-Carboxamide Tiadinil (TDL, V-GET®) | Rice/Magnoporthe grisea (Field) | [80] | |
Tobacco/Tobacco mosaic virus, Pseudomonas syringae pv. tabaci, Erysiphae cichoracearum (Laboratory) | [66,94] | ||
Tea/Colletotrichum theaasinensis, Pestalotiopsis longista (Field) | [95] | ||
2,5-bis (pyridi-2-yl)-1,3,4-thiadiazol | Tomato/Verticillium dahliae (Laboratory) | [96] | |
Bis(μ-2,5-bis(pyridin-2-yl)-1,3,4-thiadiazoleκ4N2,N3:N4,N5)bis(dihydrato-κO)nickel(II)) (NiL2) | Tomato/Verticillium dahliae (Laboratory) | [96] | |
bis(azido-κN)bis(2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ2N2,N3)nickel(II) (NiL2(N3)2) | Tomato/Verticillium dahliae (Laboratory) | [97] | |
Bis((2,5-bis(pyridine-2-yl)-1,3,4-thiadiazole-di-azido copper(II)) (CuLN3)2 | Tomato/Verticillium dahliae, Agrobacterium tumefaciens (Laboratory) | [98] |
Chemical/Trade Name | Chemical Structure | Plant/Pathogen Interaction | Reference |
---|---|---|---|
2-((E)-2-(2-bromo-4-hydroxy-5-methoxyphenyl)ethenyl) quinolin-8-ol: Imprimatin A1 | Arabidopsis thaliana/Pseudomonas syringae pv. tomato DC3000 avrRp m1 | [11] | |
7-chloro-2-((E)-2- (4-nitrophenyl)ethenyl)-4H-3,1-benzoxazin-4-one: Imprimatin A2 | Arabidopsis thaliana/Pseudomonas syringae pv. tomato DC3000 avrRp m1 | ||
4-((E)-2-(quinolin-2-yl)ethenyl)phenol: Imprimatin A3 | Arabidopsis thaliana/Pseudomonas syringae pv. tomato DC3000 avrRp m1 | ||
2-(3-(2-furyl)-3-phenylpropyl)benzo(c)azoline-1,3-dione: Imprimatin B1 | Arabidopsis thaliana/Pseudomonas syringae pv. tomato DC3000 avrRp m1 | ||
3-(2-furyl)-3-phenylpropylamine: Imprimatin B2 | Arabidopsis thaliana/Pseudomonas syringae pv. tomato DC3000 avrRp m1 | ||
((E)-(1-amino-2-(2-oxopyrrolidin-1-yl)ethylidene)amino) 4-chlorobenzoate: Imprimatin C1 | Arabidopsis thaliana/Pseudomonas syringae pv. tomato DC3000 avrRp m1 | [144] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faize, L.; Faize, M. Functional Analogues of Salicylic Acid and Their Use in Crop Protection. Agronomy 2018, 8, 5. https://doi.org/10.3390/agronomy8010005
Faize L, Faize M. Functional Analogues of Salicylic Acid and Their Use in Crop Protection. Agronomy. 2018; 8(1):5. https://doi.org/10.3390/agronomy8010005
Chicago/Turabian StyleFaize, Lydia, and Mohamed Faize. 2018. "Functional Analogues of Salicylic Acid and Their Use in Crop Protection" Agronomy 8, no. 1: 5. https://doi.org/10.3390/agronomy8010005
APA StyleFaize, L., & Faize, M. (2018). Functional Analogues of Salicylic Acid and Their Use in Crop Protection. Agronomy, 8(1), 5. https://doi.org/10.3390/agronomy8010005