Yield and Quality Characteristics of Different Quinoa (Chenopodium quinoa Willd.) Cultivars Grown under Field Conditions in Southwestern Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Conditions
2.3. Experimental Design
2.4. Harvest
2.5. Chemical Analysis
2.6. Statistics
3. Results
3.1. Yield Parameters
3.2. Quality Parameters
3.2.1. Amino Acids
3.2.2. Crude Fat and Fatty Acids
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruiz, K.B.; Biondi, S.; Oses, R.; Acuña-Rodríguez, I.S.; Antognoni, F.; Martinez-Mosqueira, E.A.; Coulibaly, A.; Canahua-Murillo, A.; Pinto, M.; Zurita-Silva, A.; et al. Quinoa biodiversity and sustainability for food security under climate change. A review. Agron. Sustain. Dev. 2014, 34, 349–359. [Google Scholar] [CrossRef]
- Fuentes, F.F.; Bazile, D.; Bhargava, A.; Martínez, E.A. Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J. Agric. Sci. 2012, 150, 702–716. [Google Scholar] [CrossRef] [Green Version]
- Nowak, V.; Du, J.; Charrondière, R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem. 2016, 193, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Martínez, E.A.; Fuentes, F.F.; Bazile, D. History of Quinoa: Its Origin, Domestication, Diversification, and Cultivation with Particular Reference to the Chilean Context. In Quinoa: Improvement and Sustainable Production, 1st ed.; Murphy, K., Matanguihan, J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 19–24. ISBN 978-1-118-62805-8. [Google Scholar]
- Cusack, D.F. Quinua: Grain of the Incas. Ecologist 1984, 14, 21–31. [Google Scholar]
- Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E.A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. J. Sci. Food Agric. 2010, 90, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Abugoch James, L.E. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Adv. Food Nutr. Res. 2009, 58, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Pasko, P.; Barton, H.; Zagrodzki, P.; Gorinstein, S.; Folta, M.; Zachwieja, Z. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem. 2009, 115, 994–998. [Google Scholar] [CrossRef]
- Peñas, E.; Uberti, F.; di Lorenzo, C.; Ballabio, C.; Brandolini, A.; Restani, P. Biochemical and Immunochemical Evidences Supporting the Inclusion of Quinoa (Chenopodium quinoa Willd.) as a Gluten-free Ingredient. Plant Foods Hum. Nutr. 2014, 69, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Bazile, D.; Jacobsen, S.E.; Verniau, A. The Global Expansion of Quinoa: Trends and Limits. Front. Plant Sci. 2016, 7, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perreault, T. Dispossession by Accumulation? Mining, Water and the Nature of Enclosure on the Bolivian Altiplano. Antipode 2013, 45, 1050–1069. [Google Scholar] [CrossRef]
- Jacobsen, S.E. The Situation for Quinoa and Its Production in Southern Bolivia: From Economic Success to Environmental Disaster. J. Agron. Crop Sci. 2011, 197, 390–399. [Google Scholar] [CrossRef]
- Biodiversity International 2007. Quinoa: A delicate balancing act. In Biodiversity International Annual Report; Biodiversity International: Rome, Italy, 2006; pp. 17–19. [Google Scholar]
- Jacobsen, S.E. The scope for adaptation of quinoa in Northern Latitudes of Europe. J. Agron. Crop Sci. 2017, 203, 603–613. [Google Scholar] [CrossRef]
- Jacobsen, S.E. The Worldwide Potential for Quinoa (Chenopodium quinoa Willd.). Food Rev. Int. 2003, 19, 167–177. [Google Scholar] [CrossRef]
- Jacobsen, S.E.; Mujica, A.; Jensen, C.R. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse, abiotic factors. Food Rev. Int. 2003, 19, 99–109. [Google Scholar] [CrossRef]
- Bertero, H.D. Effects of photoperiod, temperature and radiation on the rate of leaf appearance in quinoa (Chenopodium quinoa Willd.) under field conditions. Ann. Bot. 2001, 87, 495–502. [Google Scholar] [CrossRef]
- Bendevis, M.A.; Sun, Y.; Rosenqvist, E.; Shabala, S.; Liu, F.; Jacobsen, S.E. Photoperiodic effects on short-pulse 14C assimilation and overall carbon and nitrogen allocation patterns in contrasting quinoa cultivars. Environ. Exp. Bot. 2014, 104, 9–15. [Google Scholar] [CrossRef]
- Christiansen, J.L.; Jacobsen, S.E.; Jørgensen, S.T. Photoperiodic effect on flowering and seed development in quinoa (Chenopodium quinoa Willd.). ACTA AGR. SCAND. B-S.P. 2010, 60, 539–544. [Google Scholar] [CrossRef]
- Bertero, H.D.; de la Vega, A.J.; Correa, G.; Jacobsen, S.E.; Mujica, A. Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of multi-environmental trials. Field Crops Res. 2004, 89, 299–318. [Google Scholar] [CrossRef]
- Bertero, H.D.; King, R.W.; Hall, A.J. Photoperiod-sensitive development phases in quinoa (Chenopodium quinoa Willd.). Field Crops Res. 1999, 60, 231–243. [Google Scholar] [CrossRef]
- Jacobsen, S.E. Adaptation of quinoa (Chenopodium quinoa) to Northern European agriculture: Studies on developmental pattern. Euphytica 1997, 96, 41–48. [Google Scholar] [CrossRef]
- Jacobsen, S.E.; Stølen, O. Quinoa—Morphology and phenology and prospects for its production as a new crop in Europe. Europ. J. Agron. 1993, 2, 19–29. [Google Scholar] [CrossRef]
- Murphy, K.M.; Bazile, D.; Kellogg, J.; Rahmanian, M. Development of a worldwide consortium on evolutionary participatory breeding in Quinoa. Front. Plant Sci. 2016, 7, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wimalasekera, R. Role of seed quality in improving crop yields. In Crop production and Global Environmental Issues, 1st ed.; Hakeem, K.R., Ed.; Springer International Publishing: Basel, Switzerland, 2015; pp. 153–168. ISBN 978-3-319-23162-4. [Google Scholar]
- Bazile, D.; Pulvento, C.; Verniau, A.; Al-Nusari, M.S.; Ba, D.; Breidy, J.; Hassan, L.; Mohammed, M.I.; Mambetov, O.; Sepahvand, N.A.; et al. Worldwide Evaluations of Quinoa: Preliminary Results from Post International Year of Quinoa FAO Projects in Nine Countries. Front. Plant Sci. 2016, 7, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reguera, M.; Conesa, C.M.; Gil-Gomez, A.; Haros, C.M.; Pérez-Casas, M.A.; Briones-Labarca, V.; Bolaños, L.; Bonilla, I.; Álvarez, R.; Pinto, K.; et al. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ 2018, 6, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.A.; Konishi, Y.; Bruno, M.; Valoy, M.; Prado, F.E. Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. J. Sci. Food Agric. 2012, 92, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Pulvento, C.; Riccardi, M.; Lavini, A.; Lafelice, G.; Marconi, E.; d´Andria, R. Yield and Quality Characteristics of Quinoa Grown in Open Field Under Different Saline and Non-Saline Irrigation Regimes. J. Agron. Crop Sci. 2012, 198, 254–263. [Google Scholar] [CrossRef]
- Lesjak, J.; Calderini, D.F. Increased Night Temperature Negatively Affects Grain Yield, Biomass and Grain Number in Chilean Quinoa. Front. Plant Sci. 2017, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Aloisi, I.; Parrotta, L.; Ruiz, K.B.; Landi, C.; Bini, L.; Cai, G.; Biondi, S.; Del Duca, S. New insight into quinoa seed quality under salinity: Changes in proteomic and amino acid profiles, phenolic content, and antioxidant activity of protein extracts. Front. Plant Sci. 2016, 7, 1–21. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006, First Update 2007. In World Soil Resources Reports No. 103; FAO: Rome, Italy, 2007. [Google Scholar]
- Driessen, P.; Deckers, J.; Spaargaren, O.; Nachtergaele, F. Lecture notes on the major soils of the world. In Word Soil Resources Reports No. 94; FAO: Rome, Italy, 2001. [Google Scholar]
- Gimplinger, D.M.; Dobos, G.; Schoenlechner, R.; Kaul, H.P. Yield and quality of grain amaranth (Amaranthus sp.) in Eastern Austria. Plant Soil Environ. 2007, 53, 105–112. [Google Scholar] [CrossRef]
- Bassler, R.; Hoffmann, G. Bestimmung von mineralischem, (Nitrat-) Stickstoff in Bodenprofilen, Nmin-Labormethode. In VDLUFA Methodenbuch Band I, 4th ed.; Deller, B., Ed.; VDLUFA-Verlag: Darmstadt, Germany, 1997; pp. A6.1.4.1.1–Ag.1.4.1.20. ISBN 978-3-941273-21-4. [Google Scholar]
- Dumas, A. Stickstoffbestimmung nach Dumas (N-determination according to Dumas). In Die Praxis des Organischen Chemikers, 41st ed.; Gattermann, L., Wieland, H., Eds.; De Gruyter: Berlin, Germany, 1962; pp. 45–51. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists, Inc.: Arlington, TX, USA, 1990; p. 70. ISBN 0-935584-42-0. [Google Scholar]
- Koziol, M.J. Afrosimetric Estimation of Threshold Saponin Concentration for Bitterness in Quinoa (Chenopodium quinoa Willd.). J. Sci. Food Agric. 1991, 54, 211–219. [Google Scholar] [CrossRef]
- European Commission Directive EC/152. laying down the methods of sampling and analysis for the official control of feed. Off. J. EU 2009, 54, 23–39. [Google Scholar]
- Metcalfe, L.D.; Schmitz, A.A.; Pelka, J.R. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem. 1966, 38, 514–515. [Google Scholar] [CrossRef]
- DGF. Fettsäuremethylester. In Einheitsmethoden zur Untersuchung von Fetten, Fettprodukten, Tensiden und verwandten Stoffen, 2nd ed.; Deutsche Gesellschaft für Fettwissenschaft e.V., Ed.; Wissenschaftliche Verlagsgesellschaft mbH: Stuttgart, Germany, 2018; sect. C-VI 11d/ 1998, 978-3-8047-3024-3. [Google Scholar]
- Thurnhofer, S.; Vetter, W. A Gas Chromatography/Electron Ionization−Mass Spectrometry−Selected Ion Monitoring Method for Determining the Fatty Acid Pattern in Food after Formation of Fatty Acid Methyl Esters. J. Agric. Food Chem. 2005, 53, 8896–8903. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, J.; Schirmer, B.; Horr, J. Near-Infrared Reflectance Spectroscopy (NIRS) Enables the Fast and Accurate Prediction of Essential Amino Acid Contents. 2. Results for Wheat, Barley, Corn, Triticale, Wheat Bran/Middlings, Rice Bran, and Sorghum. J. Agric. Food Chem. 2002, 50, 3902–3911. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Heisterkamp, S.; Van Willigen, B.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3. 1–137. 2018. Available online: http://CRAN.R-project.org/package=nlme (accessed on 3 August 2018).
- R Core Team. The R Project for Statistical Computing. 2018. Available online: https://www.R-project.org/ (accessed on 3 August 2018).
- Bhargava, A.; Shukala, S.; Ohri, D. Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Res. 2007, 101, 104–116. [Google Scholar] [CrossRef]
- Delgado, A.I.; Palacios, J.H.; Betancourt, C. Evaluation of 16 genotypes of sweet quinoa (Chenopodium quinoa Willd.) in the municipality of Iles, Nariño (Colombia). Agron. Colomb. 2009, 27, 159–167. [Google Scholar]
- De Santis, G.; D´Ambrosio, T.; Rinaldi, M.; Rasico, A. Heritabilities of morphological and quality traits and interrelationships with yield in quinoa (Chenopodium quinoa Willd.) genotypes in the Mediterranean environment. J. Cereal Sci. 2016, 70, 177–185. [Google Scholar] [CrossRef]
- Stikic, R.; Glamoclija, D.; Demin, M.; Vucelic-Radovic, B.; Jovanovic, Z.; Milojkovic-Opsenica, D.; Jacobsen, S.E.; Milovanovic, M. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J. Cereal Sci. 2012, 55, 132–138. [Google Scholar] [CrossRef]
- Pulvento, C.; Riccardi, M.; Lavini, A.; d´Andria, R.; Lafelice, G.; Marconi, E. Field Trial Evaluation of Two Chenopodium quinoa Genotypes Grown Under Rain-Fed Conditions in a Typical Mediterranean Environment in South Italy. J. Agron. Crop Sci. 2010, 196, 407–411. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D.; Garcia, M.; Vacher, J.; Mamani, R.; Mendoza, J.; Huanca, R.; Morales, B.; Miranda, R.; Cusicanqui, J.; et al. Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa Willd.). Europ. J. Agron. 2008, 28, 427–436. [Google Scholar] [CrossRef]
- Curti, R.N.; De la Vega, A.J.; Andrade, A.J.; Bramardi, S.J.; Bertero, H.D. Multi-environmental evaluation for grain yield and its physiological determinants of quinoa genotypes across Northwest Argentina. Field Crops Res. 2014, 166, 46–57. [Google Scholar] [CrossRef]
- Miranda, M.; Vega-Gálvez, A.; Martinez, E.; López, J.; Rodríguez, M.J.; Henríquez, K.; Fuentes, F. Genetic diversity and comparison of physicochemical and nutritional characteristics of six quinoa (Chenopodium quinoa Willd.) genotypes cultivated in Chile. Food Sci. Tech. 2012, 32, 835–843. [Google Scholar] [CrossRef]
- Graf, B.L.; Rojas-Silva, P.; Rojo, L.E.; Delatorre-Herrera, J.; Baldeón, M.E.; Raskin, I. Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Compr. Rev. Food Sci. Food Saf. 2015, 14, 431–445. [Google Scholar] [CrossRef] [PubMed]
- De Geyter, E.; Lambert, E.; Geelen, D.; Smagghe, G. Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol. 2007, 1, 96–105. [Google Scholar]
- Augustin, J.M.; Drok, S.; Shinoda, T.; Sanmiya, K.; Nielsen, J.K.; Khakimov, B.; Olsen, C.E.; Hansen, E.H.; Kuzina, V.; Ekstrøm, C.T.; et al. UDP-glycosyltransferases from the UGT73C Subfamily in Barbarea vulgaris catalyse Sapogenin 3-O-glucosylation in Saponin-mediated Insect resistance. Plant Physiology 2012, 160, 1881–1895. [Google Scholar] [CrossRef] [PubMed]
- De Santis, G.; Maddaluno, C.; D’Ambrosio, T.; Rascio, A.; Rinaldi, M.; Troisi, J. Characterisation of quinoa (Chenopodium quinoa Willd.) accessions for the saponin content in Mediterranean environment. Ital. J. Agron. 2016, 11, 277–281. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Iafelice, G.; Lavini, A.; Pulvento, C.; Caboni, M.F.; Marconi, E. Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. J. Agric. Food. Chem. 2012, 60, 4620–4627. [Google Scholar] [CrossRef]
- Ridout, C.L.; Price, K.R.; Dupont, M.S.; Parker, M.L.; Fenwick, G.R. Quinoa saponins—Analysis and preliminary investigations into the effects of reduction by processing. J. Sci. Food Agric. 1991, 54, 165–176. [Google Scholar] [CrossRef]
- Ando, H.; Chen, Y.C.; Tang, H.; Shimizu, M.; Watanabe, K.; Mitsunaga, T. Food components in fractions of quinoa seed. Food Sci. Technol. Res. 2002, 8, 80–84. [Google Scholar] [CrossRef]
- Ruiz, K.B.; Khakimov, B.; Engelsen, S.B.; Bak, S.; Biondi, S.; Jacobsen, S.E. Quinoa seed coats as an expanding and sustainable source of bioactive compounds: An investigation of genotypic diversity in saponin profiles. Ind. Crops Prod. 2017, 104, 156–163. [Google Scholar] [CrossRef]
- Repo-Carrasco, R.; Espinoza, C.; Jacobsen, S.E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev. Int. 2003, 19, 179–189. [Google Scholar] [CrossRef]
- Filho, A.M.M.; Pirozi, M.R.; Borges, J.T.D.S.; Pinheiro Sant’Ana, H.M.; Chaves, J.B.P.; Coimbra, J.S.D.R. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 2017, 57, 1618–1630. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.; Vega-Gálvez, A.; Martínez, E.A.; López, J.; Marín, R.; Aranda, M.; Fuentes, F. Influence of contrasting environments on seed composition of two quinoa genotypes: Nutritional and functional properties. Chil. J. Agric. Res. 2013, 73, 108–116. [Google Scholar] [CrossRef]
- Miranda, M.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Rodríguez, M.J.; Maureira, H.; Martínez, E.A. Nutritional aspects of six quinoa (Chenopodium quinoa Willd.) ecotypes from three geographical areas of Chile. Chil. J. Agric. Res. 2012, 72, 175–181. [Google Scholar] [CrossRef]
- World Health Organization. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint WHO/FAO/UNU Expert Consultation. In World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 2007; p. 29. [Google Scholar]
- Mota, C.; Santos, M.; Mauro, R.; Samman, N.; Matos, A.S.; Torres, D.; Castanheira, I. Protein content and amino acids profile of pseudocereals. Food Chem. 2016, 193, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Joung, J.G.; Fei, Z.; Jander, G. Interdependence of threonine, methionine and isoleucine metabolism in plants: Accumulation and transcriptional regulation under abiotic stress. Amino Acids 2010, 39, 933–947. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.H.; Pike, O.A.; Fairbanks, D.J.; Huber, C.S. Composition of Atriplex hortensis, sweet and bitter Chenopodium quinoa seeds. J. Food Sci. 2002, 67, 1383–1385. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Chen, P.X.; Zhang, B.; Liu, R.; Hernandez, M.; Draves, J.; Massimo, F.M.; Tsao, R. Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. J. Agric. Food Chem. 2016, 64, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Origin | Breeder | Note |
---|---|---|---|
Puno | Denmark | Quinoa Quality 1 | Bitter 4 |
Titicaca | Denmark | Quinoa Quality 1 | Bitter 4 |
Jessie | France | AbbottAgra 2 | Sweet 4 |
Zeno | Austria | Zeno Projekte 3 | Bitter 4 |
Year | Depth (cm) | Clay (%) | Sand (%) | Silt (%) | pH | Nmin 1 (kg ha−1) |
---|---|---|---|---|---|---|
2015 | 0–30 | 26.6 | 13.8 | 59.6 | 7.2 | 9.3 |
2015 | 30–60 | 32.8 | 16.5 | 50.7 | - | 10.7 |
2015 | 60–90 | 37.6 | 14.8 | 47.6 | - | 11.9 |
2016 | 0–30 | 25.3 | 14.6 | 60.1 | 7.5 | 6.5 |
2016 | 30–60 | 16.4 | 28.6 | 55.0 | - | 5.1 |
2016 | 60–90 | - | - | - | - | 11.3 |
Cultivar | 2015 | 2016 | ||||
---|---|---|---|---|---|---|
Harvest (DD.MM.YY) | Harvest (DAS) 1 | Harvest (GDD, °Cd) 2 | Harvest (DD.MM.YY) | Harvest (DAS) | Harvest (GDD, °Cd) | |
Zeno | 01.09.2015 | 125 | 1793.48 | 29.08.2016 | 122 | 1574.31 |
Jessie | 01.09.2015 | 125 | 1793.48 | 29.08.2016 | 122 | 1574.31 |
Puno | 30.09.2015 | 154 | 2067.55 | 08.09.2016 | 133 | 1721.28 |
Titicaca | 10.09.2015 | 134 | 1874.34 | 08.09.2016 | 133 | 1721.28 |
Mean | - | 134.5 | 1882.21 | - | 127.5 | 1647.80 |
Factors | DF 1 | Grain Yield | Grain TKW 2 | Grain Saponin | |
---|---|---|---|---|---|
Non-Polished | Polished | ||||
Year | 1 | <0.0001 | <0.0001 | 0.6780 | <0.0001 |
Cultivar | 3 | 0.0012 | <0.0001 | <0.0001 | 0.0003 |
Year × Cultivar | 3 | 0.2083 | 0.0098 | 0.0004 | 0.0254 |
Block | 4 | 0.1876 | 0.1471 | 0.0764 | 0.3240 |
Factors | DF | Grain crude fat | Fatty acids | ||
C 16:0 | C 18:0 | C18:1 ol. 3 | |||
Year | 1 | 0.0043 | 0.4416 | 0.0934 | 0.0984 |
Cultivar | 3 | <0.0001 | 0.1899 | 0.0795 | 0.2635 |
Year × Cultivar | 3 | 0.1622 | 0.2629 | 0.0644 | 0.3333 |
Block | 4 | 0.7438 | 0.7223 | 0.9848 | 0.9498 |
Factors | DF | Fatty acids | Grain protein | ||
C 18:1 vac. 4 | C 18:2 | C 18:3 | |||
Year | 1 | 0.1906 | 0.0495 | 0.0751 | 0.0001 |
Cultivar | 3 | 0.0609 | 0.1795 | 0.1204 | <0.0001 |
Year × Cultivar | 3 | 0.0692 | 0.6351 | 0.4908 | <0.0001 |
Block | 4 | 0.6618 | 0.9351 | 0.8471 | 0.1771 |
Factors | DF | Amino acids | |||
Essential | Semi-essential | Non-essential | |||
Year | 1 | <0.0001 | <0.0001 | 0.0651 | |
Cultivar | 3 | <0.0001 | <0.0001 | <0.0001 | |
Year × Cultivar | 3 | 0.0045 | 0.0406 | 0.0983 | |
Block | 4 | 0.1308 | 0.4607 | 0.9646 |
AAessential | Zeno | Jessie | Puno | Titicaca | Meancultivars |
---|---|---|---|---|---|
2015 | |||||
Ile | 2.00 (±0.11) | 2.42 (±0.14) | 3.21 (±0.03) | 2.67 (±0.09) | 2.58 (±0.09) |
Leu | 3.67 (±0.15) | 4.26 (±0.15) | 5.41 (±0.04) | 4.81 (±0.10) | 4.54 (±0.11) |
Lys | 2.77 (±0.12) | 3.46 (±0.10) | 3.95 (±0.03) | 3.70 (±0.05) | 3.47 (±0.08) |
Met | 1.10 (±0.04) | 1.39 (±0.02) | 1.51 (±0.07) | 1.39 (±0.03) | 1.35 (±0.04) |
Phe | 2.20 (±0.10) | 2.66 (±0.22) | 3.55 (±0.12) | 2.96 (±0.08) | 2.84 (±0.13) |
Thr | 2.13 (±0.12) | 2.55 (±0.07) | 3.27 (±0.02) | 2.83 (±0.04) | 2.70 (±0.06) |
Trp | 0.97 (±0.16) | 0.85 (±0.05) | 1.02 (±0.02) | 0.89 (±0.09) | 0.93 (±0.08) |
Val | 4.18 (±0.14) | 4.38 (±0.25) | 4.00 (±0.05) | 4.88 (±0.05) | 4.36 (±0.12) |
His | 1.33 (±0.05) | 1.79 (±0.04) | 1.89 (±0.02) | 1.87 (±0.02) | 1.72 (±0.03) |
total | 20.35 Aa (±0.67) | 23.76 Ab (±0.67) | 27.81 Ac (±0.67) | 26.00 Abc (±0.67) | 24.49 (±0.67) |
2016 | |||||
Ile | 2.51 (±0.06) | 2.82 (±0.14) | 3.19 (±0.06) | 2.57 (±0.11) | 2.77 (±0.09) |
Leu | 4.50 (±0.10) | 5.25 (±0.18) | 5.55 (±0.12) | 4.64 (±0.13) | 4.99 (±0.13) |
Lys | 3.98 (±0.06) | 4.90 (±0.19) | 4.99 (±0.08) | 4.22 (±0.12) | 4.52 (±0.11) |
Met | 1.43 (±0.06) | 1.80 (±0.03) | 1.80 (±0.02) | 1.63 (±0.06) | 1.67 (±0.04) |
Phe | 2.75 (±0.10) | 3.17 (±0.12) | 3.50 (±0.22) | 2.81 (±0.11) | 3.06 (±0.14) |
Thr | 2.63 (±0.06) | 3.15 (±0.10) | 3.20 (±0.07) | 2.72 (±0.06) | 2.93 (±0.07) |
Trp | 0.88 (±0.01) | 0.98 (±0.02) | 1.11 (±0.03) | 1.01 (±0.02) | 1.00 (±0.02) |
Val | 4.40 (±0.18) | 5.67 (±0.42) | 3.80 (±0.09) | 4.94 (±0.04) | 4.70 (±0.18) |
His | 1.89 (±0.03) | 2.29 (±0.07) | 2.48 (±0.05) | 2.03 (±0.06) | 2.17 (±0.05) |
total | 24.97 Ba (±0.67) | 30.02 Bb (±0.67) | 29.63 Ab (±0.67) | 26.57 Aa (±0.67) | 27.81 (±0.67) |
AAsemi-essential | Zeno | Jessie | Puno | Titicaca | Meancultivars |
---|---|---|---|---|---|
2015 | |||||
Cys | 0.95 (±0.04) | 1.18 (±0.01) | 1.33 (±0.02) | 1.23 (±0.02) | 1.17 (±0.02) |
Tyr | 1.64 (±0.09) | 1.98 (±0.07) | 2.30 (±0.02) | 2.01 (±0.05) | 1.98 (±0.06) |
Gly | 2.95 (±0.11) | 3.75 (±0.03) | 4.68 (±0.05) | 4.11 (±0.07) | 3.87 (±0.07) |
Arg | 3.79 (±0.17) | 5.17 (±0.03) | 5.21 (±0.08) | 5.16 (±0.05) | 4.83 (±0.08) |
Pro | 2.25 (±0.07) | 2.70 (±0.01) | 3.14 (±0.03) | 3.17 (±0.11) | 2.82 (±0.06) |
total | 11.58 Aa (±0.48) | 14.78 Ab (±0.48) | 16.66 Ab (±0.48) | 15.68 Ab (±0.48) | 14.67 (±0.48) |
2016 | |||||
Cys | 1.13 (±0.03) | 1.40 (±0.03) | 1.49 (±0.02) | 1.33 (±0.03) | 1.34 (±0.03) |
Tyr | 1.92 (±0.05) | 2.33 (±0.08) | 2.38 (±0.05) | 2.01 (±0.07) | 2.16 (±0.06) |
Gly | 3.71 (±0.08) | 4.57 (±0.18) | 4.99 (±0.08) | 4.12 (±0.10) | 4.35 (±0.11) |
Arg | 5.57 (±0.10) | 6.56 (±0.24) | 7.51 (±0.20) | 5.98 (±0.16) | 6.41 (±0.18) |
Pro | 2.85 (±0.07) | 3.24 (±0.15) | 3.34 (±0.06) | 2.98 (±0.20) | 3.10 (±0.12) |
total | 15.18 Ba (±0.48) | 18.10 Bbc (±0.48) | 19.71 Bc (±0.48) | 16.42 Aab (±0.48) | 17.36 (±0.48) |
AAnon-essential | Zeno | Jessie | Puno | Titicaca | Meancultivars |
---|---|---|---|---|---|
Ser | 2.77 (±0.15) | 3.34 (±0.14) | 3.75 (±0.05) | 3.27 (±0.05) | 3.28 (±0.10) |
Asp | 5.18 (±0.26) | 6.04 (±0.25) | 7.07 (±0.10) | 5.93 (±0.12) | 6.06 (±0.18) |
Glu | 6.89 (±0.54) | 8.54 (±0.49) | 11.81 (±0.44) | 8.28 (±0.24) | 8.88 (±0.43) |
Ala | 2.78 (±0.14) | 3.34 (±0.16) | 3.88 (±0.04) | 3.33 (±0.08) | 3.33 (±0.11) |
total | 17.62 a (±0.69) | 21.26 b (±0.69) | 26.51 c (±0.69) | 20.81 b (±0.69) | 21.55 (±0.69) |
Fatty Acids | Zeno | Jessie | Puno | Titicaca | Meancultivars |
---|---|---|---|---|---|
C16:0 | 6.96 a (±0.66) | 8.56 a (±0.66) | 8.48 a (±0.66) | 6.97 a (±0.66) | 7.74 (±0.66) |
C18:0 | 0.45 a (±0.07) | 0.65 a (±0.07) | 0.71 a (±0.07) | 0.45 a (±0.07) | 0.57 (±0.07) |
C18:1oleate | 13.14 a (±1.32) | 16.55 a (±1.32) | 14.41 a (±1.32) | 13.08 a (±1.32) | 14.30 (±1.32) |
C18:1vaccean | 0.92 a (±0.07) | 1.04 a (±0.07) | 1.07 a (±0.07) | 0.79 a (±0.07) | 0.95 (±0.07) |
C18:2 | 40.67 a (±3.73) | 45.68 a (±3.73) | 40.39 a (±3.73) | 33.07 a (±3.73) | 39.95 (±3.73) |
C18:3 | 4.55 a (±0.48) | 4.98 a (±0.48) | 4.59 a (±0.48) | 3.29 a (±0.48) | 4.35 (±0.48) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Präger, A.; Munz, S.; Nkebiwe, P.M.; Mast, B.; Graeff-Hönninger, S. Yield and Quality Characteristics of Different Quinoa (Chenopodium quinoa Willd.) Cultivars Grown under Field Conditions in Southwestern Germany. Agronomy 2018, 8, 197. https://doi.org/10.3390/agronomy8100197
Präger A, Munz S, Nkebiwe PM, Mast B, Graeff-Hönninger S. Yield and Quality Characteristics of Different Quinoa (Chenopodium quinoa Willd.) Cultivars Grown under Field Conditions in Southwestern Germany. Agronomy. 2018; 8(10):197. https://doi.org/10.3390/agronomy8100197
Chicago/Turabian StylePräger, Achim, Sebastian Munz, Peteh Mehdi Nkebiwe, Benjamin Mast, and Simone Graeff-Hönninger. 2018. "Yield and Quality Characteristics of Different Quinoa (Chenopodium quinoa Willd.) Cultivars Grown under Field Conditions in Southwestern Germany" Agronomy 8, no. 10: 197. https://doi.org/10.3390/agronomy8100197
APA StylePräger, A., Munz, S., Nkebiwe, P. M., Mast, B., & Graeff-Hönninger, S. (2018). Yield and Quality Characteristics of Different Quinoa (Chenopodium quinoa Willd.) Cultivars Grown under Field Conditions in Southwestern Germany. Agronomy, 8(10), 197. https://doi.org/10.3390/agronomy8100197