Sustainability Evaluation of the Maize–Soybean Intercropping System and Maize Monocropping System in the North China Plain Based on Field Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Raw Data Sources
2.3.1. Emergy Accounting
2.3.2. Soil Emergy Input
2.3.3. Emergy Indices
3. Results
3.1. Emergy Input Structure
3.2. Emergy-Based Indices
3.2.1. Unit Emergy Value (UEV)
3.2.2. Unit Nonrenewable Emergy Value (UNV)
3.2.3. Emergy Yield Ratio (EYR)
3.2.4. Environmental Loading Ratio (ELR)
3.2.5. Emergy Sustainability Index (ESI)
3.3. Multiple Nitrogen Fertilizer Application Levels on Intercropping
4. Discussion
4.1. Sustainability on Cropping Systems from Emergy Evaluation
4.2. Reduction on Fertilizer for Intercropping
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). The State of Food Insecurity in The World; Food and Agriculture Organization: Rome, Italy, 2009. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities, 1st ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Veldkamp, T.I.E.; Wada, Y.; Aerts, J.C.J.H.; Döll, P.; Gosling, S.N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 2017, 8, 15697. [Google Scholar] [CrossRef] [PubMed]
- Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural intensification and ecosystem properties. Science 1997, 277, 504. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.P.; Cui, Z.L.; Vitousek, P.M.; Cassman, K.G.; Matson, P.A.; Bai, J.S.; Meng, Q.F.; Hou, P.; Yue, S.C.; Römheld, V.; et al. Integrated soil–crop system management for food security. Proc. Natl. Acad. Sci. USA 2011, 108, 6399–6404. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.J.; Zhang, Z.X.; Carlson, K.M.; MacDonald, G.K.; Brauman, K.A.; Liu, Y.C.; Zhang, W.; Zhang, H.Y.; Wu, W.B.; Zhao, X.L.; et al. Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain. 2018, 1, 304–313. [Google Scholar] [CrossRef]
- Liu, X.J.; Ju, X.T.; Zhang, F.S.; Pan, J.R.; Christie, P. Nitrogen dynamics and budgets in a winter wheat–maize cropping system in the North China Plain. Field Crop Res. 2003, 83, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.C.; Zhao, N.; Huang, F.; Lv, Y.Z. Long-term effects of different organic and inorganic fertilizer treatments on soil organic carbon sequestration and crop yields on the North China Plain. Soil Tillage Res. 2015, 146, 47–52. [Google Scholar] [CrossRef]
- Shen, Y.W.; Sui, P.; Huang, J.X.; Wang, D.; Whalen, J.K.; Chen, Y.Q. Greenhouse gas emissions from soil under maize–soybean intercrop in the North China Plain. Nutr. Cycl. Agroecosyst. 2018, 110, 451–465. [Google Scholar] [CrossRef]
- Wang, X.L.; Chen, Y.Q.; Sui, P.; Gao, W.S.; Qin, F.; Zhang, J.S.; Wu, X. Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA. Agric. Syst. 2014, 128, 66–78. [Google Scholar] [CrossRef]
- Li, H.; Qiu, J.J.; Wang, L.G.; Tang, H.J.; Li, C.S.; Ranst, E.V. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat–maize rotation system in China. Agric. Ecosyst. Environ. 2010, 135, 24–33. [Google Scholar] [CrossRef]
- Yang, Y.H.; Watanabe, M.; Zhang, X.Y.; Hao, X.H.; Zhang, J.Q. Estimation of groundwater use by crop production simulated by DSSAT-wheat and DSSAT-maize models in the piedmont region of the North China Plain. Hydrol. Process. 2006, 20, 2787–2802. [Google Scholar] [CrossRef]
- Yang, X.L.; Chen, Y.Q.; Pacenka, S.; Gao, W.S.; Zhang, M.; Sui, P.; Steenhuis, T.S. Recharge and groundwater use in the North China Plain for six irrigated crops for an eleven year period. PLoS ONE 2015, 10, e115269. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.N.; Hu, K.; Li, K.J.; Wang, P.; Ma, Y.L.; Stahr, K. Effect of optimal irrigation, different fertilization, and reduced tillage on soil organic carbon storage and crop yields in the North China Plain. J. Plant Nutr. Soil Sci. 2012, 176, 89–98. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Pu, C.; Zhao, X.; Xue, J.F.; Zhang, R.; Nie, Z.J.; Chen, F.; Lal, R.; Zhang, H.L. Tillage effects on carbon footprint and ecosystem services of climate regulation in a winter wheat–summer maize cropping system of the North China Plain. Ecol. Indic. 2016, 67, 821–829. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Sun, J.H.; Zhang, F.S.; Li, X.L.; Yang, S.C.; Rengel, Z. Wheat/maize or wheat/soybean strip intercropping: I. yield advantage and interspecific interactions on nutrients. Field Crop Res. 2001, 71, 123–137. [Google Scholar] [CrossRef]
- Ghanbari, A. Effect of maize (Zea mays L.)-cowpea (Vigna unguiculata L.) intercropping on light distribution, soil temperature and soil moisture in arid environment. J. Food Agric. Environ. 2010, 8, 102–108. [Google Scholar]
- Coll, L.; Cerrudo, A.; Rizzalli, R.; Monzon, J.P.; Andrade, F.H. Capture and use of water and radiation in summer intercrops in the south-east Pampas of Argentina. Field Crop Res. 2012, 134, 105–113. [Google Scholar] [CrossRef]
- Gao, Y.; Duan, A.W.; Qiu, X.Q.; Sun, J.S.; Zhang, J.P.; Liu, H.; Wang, H.Z. Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agron. J. 2010, 102, 1149–1157. [Google Scholar] [CrossRef]
- Cheng, X.F.; Zhang, F.Y. Present conditions and countermeasures of soybean production in Huang-Huai-Hai regions. Soybean Sci. 2010, 1, 157–160. (In Chinese) [Google Scholar]
- Shen, Y.W.; Sui, P.; Huang, J.X.; Wang, D.; Whalen, J.K.; Chen, Y.Q. Global warming potential from maize and maize-soybean as affected by nitrogen fertilizer and cropping practices in the North China Plain. Field Crop Res. 2018, 225, 117–127. [Google Scholar] [CrossRef]
- Adeniyi, O.R. An economic evaluation of intercropping with tomato and okra in a rain forest zone of Nigeria. J. Hortic. Sci. Biotechnol. 2001, 76, 347–349. [Google Scholar] [CrossRef]
- Koocheki, A.; Seyyedi, S.M.; Gharaei, S. Evaluation of the effects of saffron–cumin intercropping on growth, quality and land equivalent ratio under semi-arid conditions. Sci. Hortic. 2016, 201, 190–198. [Google Scholar] [CrossRef]
- Himmelstein, J.; Ares, A.; Gallagher, D.; Myers, J. A meta-analysis of intercropping in Africa: impacts on crop yield, farmer income, and integrated pest management effects. Int. J. Agric. Sustain. 2017, 15, 1–10. [Google Scholar] [CrossRef]
- Martin-Guay, M.; Paquette, A.; Dupras, J.; Rivest, D. The new green revolution: Sustainable intensification of agriculture by intercropping. Sci. Total Environ. 2018, 615, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, E.; Bazot, M.; Makowski, D.; Corre-Hellou, G.; Naudin, C.; Al Rifaï, M.; Baranger, E.; Bedoussac, L.; Biarnès, V.; Boucheny, P.; et al. Pea–wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. Eur. J. Agron. 2012, 40, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.C.; Shen, H.Y.; Zhang, L.X.; Zhang, Y.X.; Guo, X.T.; Wang, P.F.; Duan, P.G.; Ji, C.Q.; Zhong, L.N.; Zhang, F.S.; et al. Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping. J. Proteom. 2013, 78, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Naudin, C.; Werf, H.M.G.V.D.; Jeuffroy, M.; Corre-Hellou, G. Life cycle assessment applied to pea-wheat intercrops: A new method for handling the impacts of co-products. J. Clean. Prod. 2014, 73, 80–87. [Google Scholar] [CrossRef]
- Huang, J.X.; Sui, P.; Gao, W.S.; Chen, Y.Q. Effect of maize-soybean intercropping on soil nitrous oxide emissions in silt loam soil of the North China Plain. Pedosphere 2017, in press. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision-Making, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1996. [Google Scholar]
- Chen, S.; Chen, B. Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: An emergy synthesis. Renew. Sustain. Energy Rev. 2012, 16, 3948–3959. [Google Scholar] [CrossRef]
- Wang, X.L.; Wu, X.; Yan, P.; Gao, W.S.; Chen, Y.Q.; Sui, P. Integrated analysis on economic and environmental consequences of livestock husbandry on different scale in China. J. Clean. Prod. 2016, 119, 1–12. [Google Scholar] [CrossRef]
- Castellini, C.; Bastianoni, S.; Granai, C.; Bosco, A.D.; Brunetti, M. Sustainability of poultry production using the emergy approach: Comparison of conventional and organic rearing systems. Agric. Ecosyst. Environ. 2006, 114, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Agostinho, F.; Diniz, G.; Siche, R.; Ortega, E. The use of emergy assessment and the geographical information system in the diagnosis of small family farms in Brazil. Ecol. Model. 2008, 210, 37–57. [Google Scholar] [CrossRef]
- Cavalett, O.; Ortega, E. Emergy, nutrients balance, and economic assessment of soybean production and industrialization in Brazil. J. Clean. Prod. 2009, 17, 762–771. [Google Scholar] [CrossRef]
- Singh, R.J.; Ghosh, B.N.; Sharma, N.K.; Patra, S.; Dadhwal, K.S.; Mishra, P.K. Energy budgeting and emergy synthesis of rainfed maize–wheat rotation system with different soil amendment applications. Ecol. Indic. 2016, 61, 753–765. [Google Scholar] [CrossRef]
- Vigne, M.; Peyraud, J.; Lecomte, P.; Corson, M.S.; Wilfart, A. Emergy evaluation of contrasting dairy systems at multiple levels. J. Environ. Manag. 2013, 129, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Bedoussac, L.; Journet, E.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef] [Green Version]
- Lan, S.F.; Qin, P.; Lu, H.F. Emergy Analysis on Ecological-Economic Systems, 1st ed.; Chemical Industry Press: Beijing, China, 2002; pp. 63–70. (In Chinese) [Google Scholar]
- Zhang, L.X.; Hu, Q.H.; Wang, C.B. Emergy evaluation of environmental sustainability of poultry farming that produces products with organic claims on the outskirts of mega-cities in China. Ecol. Eng. 2013, 54, 128–135. [Google Scholar] [CrossRef]
- Certification of Food Products Using Emergy Analysis. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.9536&rep=rep1&type=pdf (accessed on 15 November 2018).
- Cavalett, O.; Queiroz, J.F.D.; Ortega, E. Emergy assessment of integrated production systems of grains, pig and fish in small farms in the South Brazil. Ecol. Model. 2006, 193, 205–224. [Google Scholar] [CrossRef]
- Chen, F. Agricultural Ecology, 2nd ed.; China Meteorological Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Odum, H.T.; Brown, M.T.; Brandt-Williams, S.L. Introduction and Global Budget. Folio #1. Handbook of Emergy Evaluation. Center for Environmental Policy Environmental Engineering Sciences; University of Florida: Gainesville, FL, USA, 2000; Available online: http://cep.ees.ufl.edu/emergy/publications/folios.shtml (accessed on 15 May 2016).
- Buenfil, A.A. Emergy Evaluation of Water. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2001. [Google Scholar]
- Sun, H.; Liu, C.; Zhang, X.; Shen, Y.; Zhang, Y. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric. Water Manag. 2006, 85, 211–218. [Google Scholar] [CrossRef]
- Brandt-Williams, S.L. Emergy of Florida Agriculture. Folio #4. Handbook of Emergy Evaluation. Center for Environmental Policy Environmental Engineering Sciences; University of Florida: Gainesville, FL, USA, 2002; Available online: http://cep.ees.ufl.edu/emergy/publications/folios.shtml (accessed on 3 March 2016).
- βZhang, L.X.; Ulgiati, S.; Yang, Z.F.; Chen, B. Emergy evaluation and economic analysis of three wetland fish farming systems in Nansi Lake area, China. J. Environ. Manag. 2011, 92, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.T.; Ulgiati, S. Emergy evaluations and environmental loading of electricity production systems. J. Clean. Prod. 2002, 10, 321–334. [Google Scholar] [CrossRef]
- Wang, X.L. An Integrated Framework Based on Life Cycle Assessment and Emergy Evaluation for Circular Agriculture: Theories, Methods and Cases. Ph.D. Thesis, China Agricultural University, Beijing, China, May 2016. (In Chinese). [Google Scholar]
- Hu, S.; Mo, X.G.; Lin, Z.H.; Qiu, J.X. Emergy assessment of a wheat-maize rotation system with different water assignments in the North China Plain. Environ. Manag. 2010, 46, 643–657. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.T.; Ulgiati, S. Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecol. Eng. 1997, 9, 51–69. [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Emergy analysis and environmental accounting. Encycl. Energy 2004, 2, 329–354. [Google Scholar] [CrossRef]
- Malézieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidel, B.; Tourdonnet, S.D.; Valantin-Morison, M. Mixing plant species in cropping systems: Concepts, tools and models. A review. Agron. Sustain. Dev. 2009, 29, 43–46. [Google Scholar] [CrossRef]
- Loïc, V.; Laurent, B.; Etienne-Pascal, J.; Eric, J. Yield gap analysis extended to marketable grain reveals the profitability of organic lentil-spring wheat intercrops. Agron. Sustain. Dev. 2018, 38, 39. [Google Scholar] [CrossRef]
- Daneshnia, F.; Amini, A.; Chaichi, M.R. Surfactant effect on forage yield and water use efficiency for berseem clover and basil in intercropping and limited irrigation treatments. Agric. Water Manag. 2015, 160, 57–63. [Google Scholar] [CrossRef]
- Hamzei, J.; Seyyedi, M. Energy use and input–output costs for sunflower production in sole and intercropping with soybean under different tillage systems. Soil Tillage Res. 2016, 157, 73–82. [Google Scholar] [CrossRef]
Item | Sowing | Growth | Harvesting |
---|---|---|---|
Groundwater (m3) for irrigation | / | 750.38 | / |
Fuel (kg) | 12.75 | / | 34.50 |
Machine (g) | 20,625.00 | / | 37,500.00 |
Labor (M) (Work day) | 0.47 | 10.94 | 0.47 |
Labor (MS) (Work day) | 0.47 | 64.26 | 12.97 |
Herbicide (M) (g) | / | 60.00 | / |
Pesticide (M) (g) | / | 15.00 | / |
Herbicide (MS) (g) | / | / | / |
Pesticide (MS) (g) | / | 39.33 | / |
Electricity (kwh) | / | 750.00 | / |
Seeds (M) (kg) | 27.27 | / | / |
Seeds (MS) (kg) | 44.19 | / | / |
N (kg) | / | 240.00 | / |
P2O5 (kg) | 75.00 | / | / |
K2O (kg) | 90.00 | / | / |
Maize yield (M) (kg) | / | / | 9103.00 |
Maize yield (MS) (kg) | / | / | 6822.00 |
Soybean yield (MS) (kg) | 527.00 |
Item | UEV | Reference | RNF | Reference |
---|---|---|---|---|
Sun | 1.00E+00 | Odum (1996) [35] | 1.00 | Odum (1996) [35] |
Wind | 2.45E+03 | Odum et al. (2000) [49] | 1.00 | Odum (1996) [35] |
Rain | 3.10E+04 | Odum et al. (2000) [49] | 1.00 | Odum (1996) [35] |
Underground water | 2.45E+05 | Buenfil (2001) [50] | 0.10 | Sun et al. (2006) [51] |
Soil | 1.24E+05 | Brandt-Williams (2002) [52] | 1.00 | Odum (1996) [35] |
Fuel | 1.11E+05 | Odum et al. (2000) [49] | 0.00 | Zhang et al. (2011) [53] |
Machine | 1.13E+10 | Brown and Ulgiati (2002) [54] | 0.00 | Zhang et al. (2011) [53] |
Labor | 7.56E+06 | Brandt-Williams (2002) [51] | 0.12 | Wang (2016) [55] |
N | 6.38E+09 | Odum (1996) [35] | 0.00 | Odum (1996) [35] |
P2O5 | 6.55E+09 | Odum (1996) [35] | 0.00 | Odum (1996) [35] |
K2O | 1.85E+09 | Odum (1996) [35] | 0.00 | Odum (1996) [35] |
Herbicide and pesticide | 2.49E+10 | Odum (1996) [35] | 0.00 | Odum (1996) [35] |
Seeds | 1.11E+05 | Odum (1996) [35] | 1.00 | Castellini et al. (2006) [38] |
Electricity | 2.87E+05 | Brown and Ulgiati (2002) [54] | 0.09 | Brown and Ulgiati (2002) [54] |
Emergy Indices | Units | Expression | Description |
---|---|---|---|
Unit Emergy Value (UEV) | sej/j | Y/EY | It represents how much emergy input is required to produce a unit of output and measures the resources utilization rate of production system |
Unit Nonrenewable Value (UNV) | sej/j | N/EY | It measures the nonrenewable resources utilization rate for a unit output |
Emergy Yield Ratio (EYR) | NA | Y/FO | It means the ability of the process to exploit local resources. |
Environmental Loading Ratio (ELR) | NA | N/R | It measures the influence on the environment from crop production |
Emergy Sustainability Index (ESI) | NA | EYR/ELR | This index is to evaluate the sustainability of crop system |
Items | Unit | Class | RNF | UEV | M | MS | ||||
---|---|---|---|---|---|---|---|---|---|---|
Raw Data | Emergy | Renewable Emergy | Raw Data | Emergy | Renewable Emergy | |||||
Natural environment resources (E) | ||||||||||
Sun | J | L | 1.00 | 1.00E+00 | 1.18E+13 | 1.18E+13 | 1.18E+13 | 1.18E+13 | 1.18E+13 | 1.18E+13 |
Wind | J | L | 1.00 | 2.45E+03 | 5.63E+08 | 1.38E+12 | 1.38E+12 | 5.63E+08 | 1.38E+12 | 1.38E+12 |
Rain chemical energy | J | L | 1.00 | 3.10E+04 | 2.78E+10 | 8.61E+14 | 8.61E+14 | 2.78E+10 | 8.61E+14 | 8.61E+14 |
Groundwater | J | L | 0.10 | 2.45E+05 | 3.71E+09 | 9.08E+14 | 9.08E+13 | 3.71E+09 | 9.08E+14 | 9.08E+13 |
Soil net loss | J | L | 0.00 | 1.24E+05 | 4.23E+09 | 5.24E+14 | 0.00E+00 | 4.19E+09 | 5.19E+14 | 0.00E+00 |
Feedback from the economy or purchased resources (F) | ||||||||||
Fuel | J | FO | 0.00 | 1.11E+05 | 2.08E+09 | 2.31E+14 | 0.00E+00 | 2.08E+09 | 2.31E+14 | 0.00E+00 |
Machine | g | FO | 0.00 | 1.13E+10 | 5.81E+04 | 6.57E+14 | 0.00E+00 | 5.81E+04 | 6.57E+14 | 0.00E+00 |
Labor | J | FO | 0.12 | 7.56E+06 | 1.50E+08 | 1.13E+15 | 1.36E+14 | 9.79E+08 | 7.40E+15 | 8.88E+14 |
Herbicide Pesticide | g | FO | 0.00 | 2.49E+10 | 7.50E+01 | 1.87E+12 | 0.00E+00 | 3.93E+01 | 9.79E+11 | 0.00E+00 |
Electricity | J | FO | 0.09 | 2.87E+05 | 9.38E+09 | 2.69E+15 | 2.42E+14 | 9.38E+09 | 2.69E+15 | 2.42E+14 |
N | g | FO | 0.00 | 6.38E+09 | 2.40E+05 | 1.53E+15 | 0.00E+00 | 2.40E+05 | 1.53E+15 | 0.00E+00 |
P2O5 | g | FO | 0.00 | 6.55E+09 | 7.50E+04 | 4.91E+14 | 0.00E+00 | 7.50E+04 | 4.91E+14 | 0.00E+00 |
K2O | g | FO | 0.00 | 1.85E+09 | 9.00E+04 | 1.67E+14 | 0.00E+00 | 9.00E+04 | 1.67E+14 | 0.00E+00 |
Seed | g | FO | 1.00 | 1.11E+05 | 4.45E+08 | 4.93E+13 | 4.93E+13 | 8.40E+08 | 9.32E+13 | 9.32E+13 |
Total emergy Input | 9.24E+15 | 1.38E+15 | 1.56E+16 | 2.17E+15 | ||||||
Total energy Output | J | 1.48E+11 | 1.22E+11 |
Emergy Indices | M | MS |
---|---|---|
Unit Emergy Value (sej/j) | 6.23E+04 | 1.27E+05 |
Unit Nonrenewable Emergy Value (sej/j) | 5.30E+04 | 1.09E+05 |
Emergy Yield Ratio (EYR) | 1.33 | 1.17 |
Environmental Loading Ratio (ELR) | 5.70 | 6.15 |
Emergy Sustainability Index (ESI) | 0.23 | 0.19 |
Emergy Indices | MS120 | MS180 | MS |
---|---|---|---|
Unit Emergy Value (sej/j) | 1.25E+05 | 1.27E+05 | 1.27E+06 |
Unit nonrenewable Emergy value (sej/j) | 1.06E+05 | 1.08E+05 | 1.09E+05 |
Emergy yield ratio (EYR) | 1.18 | 1.18 | 1.17 |
Environmental loading ratio (ELR) | 5.79 | 5.97 | 6.15 |
Emergy sustainability index (ESI) | 0.20 | 0.20 | 0.19 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Sui, P.; Shen, Y.; Gerber, J.S.; Wang, D.; Wang, X.; Dai, H.; Chen, Y. Sustainability Evaluation of the Maize–Soybean Intercropping System and Maize Monocropping System in the North China Plain Based on Field Experiments. Agronomy 2018, 8, 268. https://doi.org/10.3390/agronomy8110268
Yang X, Sui P, Shen Y, Gerber JS, Wang D, Wang X, Dai H, Chen Y. Sustainability Evaluation of the Maize–Soybean Intercropping System and Maize Monocropping System in the North China Plain Based on Field Experiments. Agronomy. 2018; 8(11):268. https://doi.org/10.3390/agronomy8110268
Chicago/Turabian StyleYang, Xiaolei, Peng Sui, Yawen Shen, James S. Gerber, Dong Wang, Xiaolong Wang, Hongcui Dai, and Yuanquan Chen. 2018. "Sustainability Evaluation of the Maize–Soybean Intercropping System and Maize Monocropping System in the North China Plain Based on Field Experiments" Agronomy 8, no. 11: 268. https://doi.org/10.3390/agronomy8110268
APA StyleYang, X., Sui, P., Shen, Y., Gerber, J. S., Wang, D., Wang, X., Dai, H., & Chen, Y. (2018). Sustainability Evaluation of the Maize–Soybean Intercropping System and Maize Monocropping System in the North China Plain Based on Field Experiments. Agronomy, 8(11), 268. https://doi.org/10.3390/agronomy8110268