Challenges and Responses to Ongoing and Projected Climate Change for Dryland Cereal Production Systems throughout the World
Abstract
:1. Introduction
2. Historical Changes in Climate and Productivity of Cereal Systems
2.1. Climate
2.2. Productivity
3. Projected Changes in Climate and Cereal Productivity
3.1. Climate
3.2. Cereal Productivity
4. Addressing the Challenges
5. The Global Perspective
- Continued adaptation of crop cultivars
- Continued application of new technology
- More focus on nutrient sources, economy, efficiency, and sustainability
- Management for weather extremes
- Focus on grain quality while maintaining high productivity
- Management of disease, pests, and weeds
- Greater recycling and waste reduction
- Building enduring partnerships, including with non-traditional collaborators
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AgMIP | Agricultural Inter-Model comparison and Improvement Project |
CCAFS | Climate Change, Agriculture and Food Security |
CERES | Crop Environment Resource Synthesis |
CGIAR | Consultative Group on International Agricultural Research |
CICS–NC | Cooperative Institute for Climate and Satellites, North Carolina |
CSV | Climate-Smart Village |
FACE | Free Air CO2 Enrichment |
ICT | Information and communications technology |
IPCC | Intergovernmental Panel on Climate Change |
NASA | National Aero-Space Administration |
NCDC | National Climate Data Center |
NOAA | National Oceanic and Atmospheric Administration |
PRECIS | Providing Regional Climates for Impacts Studies |
RCP | Representative Concentration Pathway |
SRES | Special Report on Emissions Scenarios |
USDA | United States Department of Agriculture |
References
- Fischer, R.A.; Byerlee, D.; Edmeades, G.O. Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World? ACIAR Monograph No. 158; Australian Centre for International Agricultural Research: Canberra, Australia, 2014; 634p. [Google Scholar]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 2015, 5, 143. [Google Scholar] [CrossRef]
- Eastrerling, W.E. Chapter 14. Guidelines for Adapting Agriculture to Climate Change. In ICP Series on Climate Change Impacts, Adaption and Mitigation: Volume 1 Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation; Hillel, D., Rozenzweig, C., Eds.; Imperial College Press: London, UK, 2011; pp. 269–286. [Google Scholar]
- Cassman, K.G.; Grassini, P.; van Wart, J. Crop yield potential, yield trends, and global food security in a changing climate. In Handbook of Climate Change and Agroecosystems; Rosenzweig, C., Hillel, D., Eds.; Imperial College Press: London, UK, 2011; pp. 37–51. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Rickards, L.; Howden, S.M. Transformational adaptation: Agriculture and climate change. Crop Pasture Sci. 2012, 63, 240–250. [Google Scholar] [CrossRef]
- Richards, R.A.; Hunt, J.R.; Kirkegaard, J.A.; Passioura, J.B. Yield improvement and adaptation of wheat to water-limited environments in Australia—A case study. Crop Pasture Sci. 2014, 65, 676–689. [Google Scholar]
- Connor, D.J.; Mínguez, I.M. Evolution not revolution of farming systems will best feed and green the world. Glob. Food Sec. 2012, 1, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.J.; Richards, R.A. Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Res. 2013, 143, 18–33. [Google Scholar] [CrossRef]
- Liu, B.; Asseng, S.; Müller, C.; Ewert, F.; Elliott, J.; Lobell, D.; Martre, P.; Ruane, A.; Wallach, D.; Jones, J.W.; et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 2016, 6, 1130–1138. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [PubMed]
- Osborne, T.M.; Wheeler, T.R. Evidence for a climate signal in trends of global crop yield variability over the past 50 years. Environ. Res. Lett. 2013, 8, 024001. [Google Scholar] [CrossRef]
- Toreti, A.; Naveau, P.; Zampieri, M.; Schindler, A.; Scoccimarro, E.; Xoplaki, E.; Dijkstra, H.A.; Gualdi, S.; Luterbacher, J. Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models. Geophys. Res. Lett. 2013. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.M.; Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 2015, 5, 560–564. [Google Scholar] [CrossRef]
- Kitoha, A.; Endob, H. Changes in precipitation extremes projected by a 20-km mesh global atmospheric model. Weather Clim. Extremes 2016, 11, 41–52. [Google Scholar] [CrossRef]
- Connor, D.J.; Loomis, R.S.; Cassman, K.G. Crop Ecology. Production and Management in Agricultural Systems; CUP: Cambridge, UK, 2011. [Google Scholar]
- Sinclair, T.R. Chapter 9. Precipitation: The Thousand-Pound Gorilla in Crop Response to Climate Change. In ICP Series on Climate Change Impacts, Adaption and Mitigation: Volume 1 Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation; Hillel, D., Rozenzweig, C., Eds.; Imperial College Press: London, UK, 2011; pp. 179–190. [Google Scholar]
- Fischer, R.A. Growth and water limitation to dryland wheat yield: A physiological framework. J. Aust. Inst. Agric. Sci. 1979, 45, 83–94. [Google Scholar]
- O’Leary, G.J.; Connor, D.J.; White, D.H. A simulation model of the development, growth and yield of the wheat crop. Agric. Syst. 1985, 17, 1–26. [Google Scholar] [CrossRef]
- van Herwaarden, A.F.; Farquhar, G.D.; Angus, J.F.; Richards, R.A.; Howe, G.N. ‘Haying-off’, the negative grain yield response of dryland wheat to nitrogen fertiliser I. Biomass, grain yield, and water use. Aust. J. Agric. Res. 1998, 49, 1067–1081. [Google Scholar] [CrossRef]
- Nuttall, J.G.; O’Leary, G.J.; Khimashia, N.; Asseng, S.; Fitzgerald, G.; Norton, R. ‘Haying-off’ in wheat is predicted to increase under a future climate in south-eastern Australia. Crop Pasture Sci. 2012, 63, 593–605. [Google Scholar] [CrossRef]
- Rebbeck, M.A.; Knell, G.R. Managing Frost Risk. A Guide for Southern Australian Grains. 2007. Available online: https://grdc.com.au/resources-and-publications/all-publications/bookshop/2007/06/managing-frost-risk-a-guide-for-southern-australian-grains (accessed on 1 March 2018).
- Cairns, J.E.; Sonder, K.; Zaidi, P.H.; Verhulst, N.; Mahuku, G.; Babu, R.; Nair, S.K.; Das, B.; Govaerts, B.; Vinayan, M.T.; et al. Maize Production in a Changing Climate: Impacts, Adaptation and Mitigation Strategies. Adv. Agron. 2012, 114, 1–58. [Google Scholar]
- Porter, J.R.; Gawith, M. Temperatures and the growth and development of wheat: A review. Eur. J. Agron. 1999, 10, 23–36. [Google Scholar] [CrossRef]
- Nicholls, N. The changing nature of Australian droughts. Clim. Change 2004, 63, 323–336. [Google Scholar] [CrossRef]
- Bureau of Meteorology, Melbourne Australia. Available online: http://www.bom.gov.au (accessed on 1 March 2018).
- Power, S.; Tseitkin, F.; Torok, S.; Lavery, B.; Dahni, R.; McAvaney, B. Australian temperature, Australian rainfall and the Southern Oscillation, 1910–1992: Coherent variability and recent changes. Aust. Meteorol. Mag. 1998, 47, 85–101. [Google Scholar]
- Power, S.; Casey, C.; Folland, C.; Mehta, V. Inter-decadel modulation of the impact of ENSO on Australia. Clim. Dyn. 1999, 15, 319–324. [Google Scholar] [CrossRef]
- Potgieter, A.B.; Hammer, G.L.; Butler, D. Spatial and temporal patterns in Australian wheat yield and their relationship with ENSO. Aust. J. Agric. Res. 2002, 53, 77–89. [Google Scholar] [CrossRef]
- Rimmington, G.M.; Nicholls, N. Forecasting wheat yields in Australia with the Southern Oscillation Index. Aust. J. Agric. Res. 1993, 44, 625–632. [Google Scholar] [CrossRef]
- Anwar, M.R.; Rodriguez, D.; Liu, D.L.; Power, S.; O’Leary, G.J. Quality and potential utility of ENSO-based forecasts of spring rainfall and wheat yield in south eastern Australia. Aust. J. Agric. Res. 2008, 59, 1–15. [Google Scholar] [CrossRef]
- Wang, S.W.; Ye, J.L.; Gong, D.Y.; Zhu, J.H. Construction of mean annual temperature series for the last one hundred years in China. Q. J. Appl. Meteorol. 1998, 9, 392–401. (In Chinese) [Google Scholar]
- Lin, X.C.; Yu, S.Q.; Tang, G.L. Series of average air temperature over China for the last 100-year period. Sci. Atoms. Sin. 1995, 19, 525–534. (In Chinese) [Google Scholar]
- Tang, G.L.; Ren, G.Y. Reanalysis of surface air temperature change of the last 100 years over China. Clim. Environ. Res. 2005, 10, 791–798. (In Chinese) [Google Scholar]
- Wen, X.Y.; Wang, S.W.; Zhu, J.H.; Viner, D. An overview of China climate change over the 20th century using UK UEA/CRU high resolution grid data. Chin. J. Atmos. Sci. 2006, 30, 894–904. (In Chinese) [Google Scholar]
- Cao, L.J.; Zhao, P.; Yan, Z.W.; Jones, P.; Zhu, Y.N.; Yu, Y.; Tang, G.L. Instrumental temperature series in eastern and central China back to the nineteenth century. Atmospheres 2013, 118, 8197–8207. [Google Scholar] [CrossRef]
- Committee of Assessment Report of National Climate Change. The 3rd Assessment Report of National Climate Change; Science Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Rathore, L.S.; Attri, S.D.; Jaswal, A.K. State Level Climate Change Trends in India; India Meteorological Department, Ministry of Earth Sciences, Government of India: New Delhi, India, 2013; p. 147.
- Jain, S.K.; Kumar, V. Trend analysis of rainfall and temperature data for India—A Review. Curr. Sci. 2012, 102, 37–49. [Google Scholar]
- Singh, D.; Tsiang, M.; Rajaratnam, B.; Diffenbaugh, N. Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat. Clim. Change 2014, 4, 456–461. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Technical summary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Dixon, J.; Gibbon, D. Farming Systems and Poverty—Improving Famers’ Livelihoods in a Changing World; FAO and World Bank: Rome, Italy; Washington, DC, USA, 2001. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Part A: Global and Sectoral Aspects. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Chapter 22; p. 115. [Google Scholar]
- Osbahr, H.; Dorward, P.; Stern, R.; Cooper, S. Supporting agricultural innovation in Uganda to respond to climate risk: Linking climate change and variability with farmer perceptions. Expl. Agric. 2011, 47, 293–316. [Google Scholar] [CrossRef]
- Walsh, J.; Wuebbles, D.; Hayhoe, K.; Kossin, J.; Kunkel, K.; Stephens, G.; Thorne, P.; Vose, R.; Wehner, M.; Willis, J.; et al. Chapter 2: Our Changing Climate. In Climate Change Impacts in the United States: The Third National Climate Assessment 2014; Melillo, J.M., Richmond, T.T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 19–67. [Google Scholar]
- Magrin, G.O.; Marengo, J.A.; Boulanger, J.P.; Buckeridge, M.S.; Castellanos, E.; Poveda, G.; Scarano, F.R.; Vicuña, S.; Central and South America. Part B: Regional Aspects. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1499–1566. [Google Scholar]
- Rusticucci, M. Observed and simulated variability of extreme temperature events over South America. Atmos. Res. 2012, 106, 1–17. [Google Scholar] [CrossRef]
- Lavado, C.W.S.; Ronchail, J.; Labat, D.; Espinoza, J.C.; Guyot, J.L. Basin-scale analysis of rainfall and runoff in Peru (1969–2004): Pacific, Titicaca and Amazonas drainages. Hydrol. Sci. J. 2012, 57, 625–642. [Google Scholar] [CrossRef]
- Hannah, M.C.; O’Leary, G.J. Wheat yield response to rainfall in a long-term multi-rotation experiment in the Victorian Wimmera. Aust. J. Exp. Agric. 1995, 35, 951–960. [Google Scholar] [CrossRef]
- Connor, D.J. Designing cropping systems for efficient use of limited water in southern Australia. Eur. J. Agron. 2004, 21, 419–431. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Duan, Z.Y.; Chen, Z.B.; Xu, P.; Li, G.Q. Food security of China: The past, present and future. Plant Omics 2010, 3, 183–189. [Google Scholar]
- Rozelle, S.; Huang, J. Transition, development and the supply of wheat in China. Aust. J. Agric. Res. Econ. 2000, 44, 543–571. [Google Scholar] [CrossRef]
- Tao, F.L.; Zhang, Z.; Zhang, S.; Zhu, Z.; Shi, W.J. Response of crop yields to climate trends since 1980 in China. Clim. Res. 2012, 54, 233–247. [Google Scholar] [CrossRef]
- Food and Agriculture Office Statistics (FAOSTAT). Available online: http://faostat3.fao.org (accessed on 1 March 2018).
- United States Department of Agricultural National Agricultural Statistics Service (NASS). Available online: http://www.nass.usda.gov (accessed on 1 March 2018).
- Ekboir, J.; Parellada, G. Public–private interactions and technology policy in innovation processes for zero tillage in Argentina. In Agricultural Research Policy in an Era of Privatization; Byerlee, D., Echeverría, R., Eds.; CABI Publishing: Wallingford, CT, USA, 2002; pp. 137–154. [Google Scholar]
- Sultan, B.; Roudier, P.; Quirion, P.; Alhassane, A.; Muller, B.; Dingkuhn, M.; Ciais, P.; Guimberteau, M.; Traore, S.; Baron, C. Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environ. Res. Lett. 2013, 8, 014040. [Google Scholar] [CrossRef]
- Tesfaye, K.; Gbegbelegbe, S.; Cairns, J.E.; Shiferaw, B.; Prasanna, B.M.; Sonder, K.; Boote, K.; Makumbi, D.; Robertson, R. Maize systems under climate change in sub-Saharan Africa: Potential impacts on production and food security. Int. J. Clim. Change Strat. Manag. 2015, 7, 247–271. [Google Scholar] [CrossRef]
- Giorgi, F.; Diffenbaugh, N. Developing regional climate change scenarios for use in assessment of effects on human health and disease. Clim. Res. 2008, 36, 141–151. [Google Scholar] [CrossRef]
- Marengo, J.A.; Ambrizzi, T.; da Rocha, R.; Alves, L.; Cuadra, S.; Valverde, M.; Torres, R.; Santos, D.; Ferraz, S. Future change of climate in South America in the late twenty-first century: Intercomparison of scenarios from three regional climate models. Clim. Dyn. 2010, 35, 1073–1097. [Google Scholar] [CrossRef]
- Lin, E.; Xiong, W.; Ju, H.; Xu, Y.L.; Li, Y.; Bai, L.P.; Xie, L.Y. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philos. Trans. R. Soc. Lond. 2005, 360, 2149–2155. [Google Scholar]
- Xiong, W.; Conway, D.; Lin, E.; Xu, Y.L.; Ju, H.; Jiang, J.H.; Holman, I.; Li, F. Future cereal production in China: The interaction of climate change, water availability and socio-economic scenarios. Glob. Environ. Change 2009, 19, 34–44. [Google Scholar] [CrossRef]
- Innes, P.J.; Tan, D.K.Y.; van Ogtrop, F.; Amthor, J.S. Effects of high temperature episodes on wheat yields in New South Wales, Australia. Agric. For. Meteorol. 2015, 208, 95–107. [Google Scholar] [CrossRef]
- Tack, J.; Barkley, A.; Nalley, L.L. Effect of warming temperatures on US wheat yields. Proc. Natl. Acad. Sci. USA. 2015, 112, 6931–6936. [Google Scholar] [CrossRef] [PubMed]
- Stöckle, C.; Higgins, S.; Nelson, R.; Abatzoglou, J.; Huggins, D.; Pan, W.; Karimi, T.; Antle, J.; Eigenbrode, S.D.; Brooks, E. Evaluating opportunities for an increased role of winter crops as adaptation to climate change in dryland cropping systems of the U.S. Inland Pacific Northwest. Clim. Change 2017. [Google Scholar] [CrossRef]
- Wang, B.; Liu, D.L.; O’Leary, G.J.; Asseng, S.; Macadam, I.; Lines-Kelly, R.; Yang, X.; Clark, A.; Crean, J.; Sides, T.; et al. Australian wheat production expected to decrease by the late 21st century. Glob. Change Biol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Rippke, U.; Ramirez-Villegas, J.; Jarvis, J.; Vermeulen, S.J.; Parker, L.; Mer, F.; Diekkrüger, B.; Challinor, A.J.; Howden, M. Timescales of transformational climate change adaptation in sub-Saharan African agriculture. Nat. Clim. Change 2016, 6, 605–610. [Google Scholar] [CrossRef]
- Barlow, K.M.; Christy, B.P.; O’Leary, G.J.; Riffkin, P.A.; Nuttall, J.G. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Res. 2015, 171, 109–119. [Google Scholar] [CrossRef]
- Lobell, D.B.; Hammer, G.L.; Chenu, K.; Zheng, B.; McLean, G.; Chapman, S.C. The shifting influence of drought and heat stress for crops in Northeast Australia. Glob. Change Biol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.K.; Ramankutty, N.; Muller, N.D.; West, P.C.; Foley, J.A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 2012, 3, 1293. [Google Scholar] [CrossRef] [PubMed]
- Walter, L.C.; Rosa, H.T.; Streck, N.A. Simulação do rendimento de grãos de arroz irrigado em cenários de mudanças climáticas [Simulating grain yield of irrigated rice in climate change scenarios]. Pesqui. Agropecu. Brasil. 2010, 45, 1237–1245. [Google Scholar] [CrossRef]
- Crimp, S.; Howden, M.; Power, B.; Wang, E.; De Voil, P. Global Climate Change Impacts on Australia’s Wheat Crops, Report Prepared for the Garnaut Climate Change Review; CSIRO: Canberra, Australia, 2008. [Google Scholar]
- O’Leary, G.; Christy, B.; Weeks, A.; Nuttall, J.; Riffkin, P.; Beverly, C.; Fitzgerald, G. Chapter 1.2. Downscaling Global Climatic Predictions to the Regional Level: A Case Study of Regional Effects of Climate Change on Wheat Crop Production in Victoria, Australia. In Crop Adaptation to Climate Change, 1st ed.; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; John Wiley & Sons, Ltd.: Chichester, West Sussex, UK, 2011; pp. 12–26. ISBN 978-0-8138-2016-3. [Google Scholar]
- Anwar, M.; O’Leary, G.; McNeil, D.; Hossain, H.; Nelson, R. Climate change impact on wheat crop yield and adaptation options in Southeastern Australia. Field Crops Res. 2007, 104, 139–147. [Google Scholar] [CrossRef]
- Claessens, L.; Antle, J.M.; Stoorvogel, J.J.; Valdivia, R.O.; Thornton, P.K.; Herrero, M. A method for evaluating climate change adaptation strategies for small-scale farmers using survey, experimental and modeled data. Agric. Syst. 2012, 111, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Grains Research and Development Corporation (GRDC). RD&E Strategy for the Grains Industry; Version 1.2 15 April 2015; Grains Research and Development Corporation: Canberra, Australia, 2014; p. 84. ISBN 978-1-921779-66-4. [Google Scholar]
- Gauchat, G. Politicization of Science in the Public Sphere—A Study of Public Trust in the United States, 1974 to 2010. Am. Sociol. Rev. 2012, 77, 2167–2187. [Google Scholar] [CrossRef]
- Hopkins, R. Unbelievable: Why Americans Mistrust Science. SciBytes. May 2014. Available online: http://www.nature.com/scitable/blog/scibytes/unbelievable (accessed on 19 March 2018).
- Cribb, J. The Coming Famine. The Global Food Crisis and What We Can Do to Avoid It; CSIRO Publishing: Melbourne, Australia, 2010; 264p, ISBN 9780643100404. [Google Scholar]
- Redden, R.J.; Hatfield, J.L.; Vara Prasad, P.V.; Ebert, A.W.; Yadav, S.S.; O’Leary, G.J. Chapter 8. Temperature, climate change, and global food security. In Temperature and Plant Development; Franklin, K., Wigge, P., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2014. [Google Scholar]
- Reynolds, M.P.; Quilligan, E.; Aggarwal, P.K.; Bansal, K.C.; Cavalieri, A.J.; Chapman, S.C.; Chapotin, S.M.; Datta, S.K.; Duveiller, E.; Gill, K.S.; et al. An integrated approach to maintaining cereal productivity under Climate change. Glob. Food Sec. 2016, 8, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Eigenbrode, S.D.; Binns, W.P.; Huggins, D.R. Confronting climate change challenges to dryland cereal production: A call for collaborative, transdisciplinary research, and producer engagement. Front. Ecol. Evol. 2018, 5, 164. [Google Scholar] [CrossRef]
- Aggarwal, P.K. (Ed.) Global Climate Change and Indian Agriculture. Case Studies from the ICAR Network Project; Indian Council of Agricultural Research: New Delhi, India, 2009; 148p. [Google Scholar]
- Knox, J.W.; Hess, T.M.; Daccache, A.; Perez Ortola, M. What are the Projected Impacts of Climate Change on Food Crop Productivity in Africa and South Asia? DFID Systematic Review, Final Report; Cranfield University: Bedford, UK, 2011; p. 77. [Google Scholar]
- Kattarkandi, B.; Naresh Kumar, S.; Aggarwal, P.K. Simulating impacts, potential adaptation and vulnerability of maize to climate change in India. Mitig. Adapt. Strateg. Glob. Change 2010, 15, 413–431. [Google Scholar]
- Srivastava, A.; Kumar, S.N.; Aggarwal, P.K. Assessment on vulnerability of sorghum to climate change in India. Agric. Ecosys. Environ. 2010, 38, 160–169. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Sivakumar, M.V.K. Global Climate Change and Food Security in South Asia: An Adaptation and Mitigation Framework. In Climate Change and Food Security in South Asia; Lal, R., Sivakumar, M.V.K., Faiz, S.M.A., Mustafizur Rahman, A.H.M., Islam, K.R., Eds.; Springer: Berlin, Germany, 2010; pp. 253–275. [Google Scholar]
- Climate Change, Agriculture and Food Security (CCAFS). Available online: https://ccafs.cgiar.org (accessed on 1 March 2018).
- Wood, S.; Jina, A.S.; Jain, M.; Kristjanson, P.; DeFries, R.S. Smallholder cropping decisions related to climate variability across multiple regions. Glob. Environ. Change 2014, 25, 163–172. [Google Scholar] [CrossRef]
- Shiferaw, B.; Tesfaye, K.; Kassie, M.; Abate, T.; Prasanna, B.M.; Menkir, A. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather Clim. Extremes 2014, 3, 67–79. [Google Scholar] [CrossRef]
- Challinor, A.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Pisipati, S.R.; Ristic, Z.; Bukovnik, U.; Fritz, A.K. Impact of nighttime temperature on physiology and growth of spring wheat. Crop Sci. 2008, 48, 2372–2380. [Google Scholar] [CrossRef]
- Lizana, X.C.; Calderini, D.F. Yield and grain quality of wheat in response to increased temperatures at key periods for grain number and grain weight determination: Considerations for the climatic change scenarios of Chile. J. Agric. Sci. 2013, 151, 209–221. [Google Scholar] [CrossRef]
- Garcia, G.A.; Dreccer, M.F.; Miralles, D.J.; Serrago, R.A. High night temperatures during grain number determination reduce wheat and barley grain yield: A field study. Glob. Change Biol. 2015, 2, 4153–4164. [Google Scholar] [CrossRef] [PubMed]
- Stöckle, C.O.; Nelson, R.L.; Higgins, S.; Brunner, J.; Grove, G.; Boydston, R.; Whiting, M.; Kruger, C. Assessment of climate change impact on Eastern Washington agriculture. Clim. Change 2010, 102, 77–102. [Google Scholar] [CrossRef]
- O’Leary, G.J.; Christy, B.; Nuttall, J.; Huth, N.; Cammarano, D.; Stöckle, C.; Basso, B.; Shcherbak, I.; Fitzgerald, G.; Luo, Q.; et al. Response of wheat growth, grain yield and water use to elevated CO2 under a Free Air CO2 Enrichment (FACE) experiment and modelling in a semi-arid environment. Glob. Change Biol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Sadras, V.; Dreccer, F. Adaptation of wheat, barley, canola, pea and chickpea to the thermal environments of Australia. Crop Pasture Sci. 2015, 66, 1137–1150. [Google Scholar] [CrossRef]
- Trebicki, P.; Nancarrow, N.; Cole, E.; Bosque-Perez, N.A.; Constable, F.E.; Freeman, A.J.; Rodoni, B.; Yen, A.L.; Luck, J.E.; Fitzgerald, G.J. Virus disease in wheat predicted to increase with a changing climate. Glob. Change Biol. 2015, 21, 3511–3519. [Google Scholar] [CrossRef] [PubMed]
- Eigenbrode, S.D.; Macfadyen, S. The impact of climate change on wheat insect pests: current knowledge and future trends. In Achieving Sustainable Cultivation of Wheat, Volume 1: Breeding, Quality traits, Pests and Diseases; Langridge, P., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2017; pp. 545–567. [Google Scholar]
- Fernando, N.; Panozzo, J.; Tausz, M.; Norton, R.M.; Nuemann, N.; Fitzgerald, G.J.; Seneweera, S. Elevated CO2 alters grain quality of two bread wheat cultivars grown under different environmental conditions. Agric. Ecosyst. Environ. 2014, 185, 24–33. [Google Scholar] [CrossRef]
- Panozzo, J.F.; Walker, C.K.; Partington, D.L.; Neumann, N.C.; Tausz, M.; Seneweera, S.; Fitzgerald, G.J. Elevated carbon dioxide changes grain protein concentration and composition and compromises baking quality. A FACE study. J. Cereal Sci. 2014, 60, 461–470. [Google Scholar] [CrossRef]
- Expert Working Group on the Wheat Initiative. Available online: http://www.wheatinitiative.org/ (accessed on 1 March 2018).
- Llewellyn, R.S.; Ronning, D.; Ouzman, J.; Walker, S.; Mayfield, A.; Clarke, M. Impact of Weeds on Australian Grain Production: The Cost of Weeds to Australian Grain Growers and the Adoption of Weed Management and Tillage Practices; Report for GRDC; CSIRO: Canberra, Australia, 2016; Available online: https://grdc.com.au/resources-and-publications/all-publications/bookshop (accessed on 1 March 2018).
- Sprigg, H.; Belford, R.; Milroy, S.; Bennett, S.J.; Bowran, D. Adaptations for growing wheat in the drying climate of Western Australia. Crop and Past. Sci. 2014, 65, 627–644. [Google Scholar] [CrossRef]
- Antle, J.M.; Mu, J.E.; Zhang, H.; Capalbo, S.M.; Diebel, P.L.; Eigenbrode, S.D.; Kruger, C.E.; Stockle, C.O.; Wulfhorst, J.; Abatzoglou, J.T. Design and use of representative agricultural pathways for integrated assessment of climate change in U.S. Pacific Northwest cereal-based systems. Front. Ecol. Evol. 2017, 5, 99. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Leary, G.J.; Aggarwal, P.K.; Calderini, D.F.; Connor, D.J.; Craufurd, P.; Eigenbrode, S.D.; Han, X.; Hatfield, J.L. Challenges and Responses to Ongoing and Projected Climate Change for Dryland Cereal Production Systems throughout the World. Agronomy 2018, 8, 34. https://doi.org/10.3390/agronomy8040034
O’Leary GJ, Aggarwal PK, Calderini DF, Connor DJ, Craufurd P, Eigenbrode SD, Han X, Hatfield JL. Challenges and Responses to Ongoing and Projected Climate Change for Dryland Cereal Production Systems throughout the World. Agronomy. 2018; 8(4):34. https://doi.org/10.3390/agronomy8040034
Chicago/Turabian StyleO’Leary, Garry J., Pramod K. Aggarwal, Daniel F. Calderini, David J. Connor, Peter Craufurd, Sanford D. Eigenbrode, Xue Han, and Jerry L. Hatfield. 2018. "Challenges and Responses to Ongoing and Projected Climate Change for Dryland Cereal Production Systems throughout the World" Agronomy 8, no. 4: 34. https://doi.org/10.3390/agronomy8040034
APA StyleO’Leary, G. J., Aggarwal, P. K., Calderini, D. F., Connor, D. J., Craufurd, P., Eigenbrode, S. D., Han, X., & Hatfield, J. L. (2018). Challenges and Responses to Ongoing and Projected Climate Change for Dryland Cereal Production Systems throughout the World. Agronomy, 8(4), 34. https://doi.org/10.3390/agronomy8040034