Effect of Olive-Mill Wastewater Application, Organo-Mineral Fertilization, and Transplanting Date on the Control of Phelipanche ramosa in Open-Field Processing Tomato Crops
Abstract
:1. Introduction
2. Results and Discussion
2.1. Climate of the Experimental Site
2.2. First Trial Results: Effects of Tomato Transplanting
2.3. Second Trial Results: Effect of Organic Compounds
3. Materials and Methods
3.1. Site Description and Experimental Setup
3.1.1. First Trial Setup—Effects of the Tomato Transplanting Date
3.1.2. Second Trial Setup—Effects of the Organic Compounds
3.2. Statistical Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- ISTAT. Electronic Information System on Agriculture and Livestock; Italian National Statistical Institute (ISTAT): Rome, Italy, 2017. Available online: http://agri.istat.it/ (accessed on 20 November 2017).
- Parker, C.; Riches, C. Parasitic Weeds of the World. Biology and Control; CAB International: Wallingford, UK, 1993; pp. 111–164. [Google Scholar]
- Eizenberg, H.; Lande, T.; Achdari, G.; Roichman, A.; Hershenhorn, J. Effect of Egyptian Broomrape (Orobanche aegyptiaca) Seed-Burial Depth on Parasitism Dynamics and Chemical Control in Tomato. Weed Sci. 2007, 55, 152–156. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Reboud, X.; Gibot-Leclerc, S. Broomrape Weeds. Underground Mechanisms of Parasitism and Associated Strategies for their Control: A Review. Front. Plant Sci. 2016, 7, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, A.C.; Mead, A.; Burston, S. Modelling the emergence response of weed seeds to burial depth: Interactions with seed density, weight and shape. J. Appl. Ecol. 2003, 40, 757–770. [Google Scholar] [CrossRef]
- Westerman, P.R.; Wes, J.S.; Van der Kropff, M.J.; Werf, W. Annual losses of weed seeds due to predation in organic cereal fields. J. Appl. Ecol. 2003, 40, 824–836. [Google Scholar] [CrossRef] [Green Version]
- Van Mourik, T.A.; Stomph, T.J.; Westerman, P.R. Estimating Striga hermonthica seed mortality under field conditions. Asp. Appl. Biol. 2003, 69, 187–194. [Google Scholar]
- Van Mourik, T.A.; Stomph, T.J.; Murfoch, A.J. Purple witchweed (Striga hermonthica) germination and seed bank depletion under different crops, fallow, and bare soil. Weed Biol. Manag. 2011, 11, 100–110. [Google Scholar] [CrossRef]
- Van Delft, G.J.; Graves, J.D.; Fitter, A.D.; Pruiksma, M.A. Spatial distribution and population dynamics of Striga hermonthica seeds in maturally infested farm soils. Plant Soil 1997, 195, 1–15. [Google Scholar] [CrossRef]
- Eizenberg, H.; Colquhoun, J.B.; Mallory-Smith, C.A. The relationship between temperature and small broomrape (Orobanche minor) parasitism in red clover. Weed Sci. 2004, 52, 735–741. [Google Scholar] [CrossRef]
- Eizenberg, H.; Colquhoun, J.B.; Mallory-Smith, C.A. A predictive degree-days model for small broomrape (Orobanche minor) parasitism in red clover in Oregon. Weed Sci. 2005, 53, 37–40. [Google Scholar] [CrossRef]
- Ephrath, J.E.; Eizenberg, H. Quantification of the dynamics of Orobanche cumana and Phelipanche aegyptiaca parasitism in confectionery sunflower. Weed Res. 2010, 50, 140–152. [Google Scholar] [CrossRef]
- Eizenberg, H.; Hershenhourn, J.; Achdari, G.; Ephrath, J.E. A thermal time model for predicting parasitism of Orobanche cumana in irrigated sunflower—Field validation. Field Crop Res. 2012, 137, 49–55. [Google Scholar] [CrossRef]
- Kebreab, E.; Murdoch, A.J. A quantitative model for loss of primary dormancy and induction of secondary dormancy in imbibed seeds of Orobanche spp. J. Exp. Bot. 1999, 50, 211–219. [Google Scholar] [CrossRef]
- Kebreab, E.; Murdoch, A.J. The effect of water stress on the temperature range for germination of Orobanche aegyptiaca seeds. Seed Sci. Res. 2000, 10, 127–133. [Google Scholar] [CrossRef]
- Grenz, J.H.; Manschadi, A.M.; Uygur, F.N.; Sauerborn, J. Effects of environment and sowing date on the competition between faba bean (Vicia faba) and the parasitic weed Orobanche crenata. Field Crops Res. 2005, 93, 300–313. [Google Scholar] [CrossRef]
- Haidar, M.A.; Sidahmad, M.M. Soil solarization and chicken manure for the control of Orobanche crenata and other weeds in Lebanon. Crop Prot. 2000, 19, 169–173. [Google Scholar] [CrossRef]
- Habimana, S.; Murthy, K.N.K.; Hatti, V.; Nduwumuremyi, A. Management of Orobanche in field crops. A review. J. Soil Sci. Plant Nutr. 2014, 14, 43–62. [Google Scholar] [CrossRef]
- Disciglio, G.; Lops, F.; Carlucci, A.; Gatta, G.; Tarantino, A.; Frabboni, L.; Carriero, F.; Tarantino, E. Effects of different methods to control the parasitic weed Phelipanche ramosa (L.) Pomel in processing tomato crops. Ital. J. Agron. 2016, 11, 39–46. [Google Scholar] [CrossRef]
- Lops, F.; Disciglio, G.; Carlucci, A.; Gatta, G.; Frabboni, L.; Tarantino, A.; Tarantino, E. Biological methods to control parasitic weed Phelipanche ramosa L. Pomel in the field tomato Crop. World Acad. Sci. Eng. Technol. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2017, 11, 264–267. [Google Scholar]
- Liebman, M.; Davis, A.S. Integration of soil, crop and weed management in low-external-input farming systems. Weed Res. 2000, 40, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Vurro, M.; Boari, B.; Evidente, A.; Andolfi, A.; Zermane, N. Natural metabolites for parasitic weed management. Pest Manag. Sci. 2009, 65, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Haidar, M.A.; Sidahmad, M.M. Elemental sulphur and chicken manure for the control of branched broomrape (Orobanche ramosa). Crop Prot. 2006, 25, 47–51. [Google Scholar] [CrossRef]
- Litterick, A.M.; Harrier, L.A.; Wallace, P.; Watson, C.A.; Wood, M. The role of uncomposted materials, composts, manures and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production. A review. Crit. Rev. Plant Sci. 2004, 23, 453–479. [Google Scholar] [CrossRef]
- Disciglio, G.; Gatta, G.; Lops, F.; Libutti, A.; Tarantino, A.; Tarantino, E. Effect of biostimulants to control the Phelipanche ramosa L. Pomel in processing tomato crop. World Acad. Sci. Eng. Technol. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2016, 10, 212–215. [Google Scholar]
- Saad, H.; Laor, Y.; Raviv, M.; Medina, S. Land spreading of olive-mill wastewater. Effects on soil microbial activity and potential phytotoxicity. Chemosphere 2007, 66, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Alfano, G.; Lustrato, G.; Lima, G.; Vuitullo, D.; Ranalli, G. Characterization of composted olive-mill wastes to predict potential plant disease suppressiveness. Biol. Control. 2011, 58, 199–207. [Google Scholar] [CrossRef]
- Disciglio, G.; Gatta, G.; Libutti, A.; Gagliardi, A.; Carlucci, A.; Lops, F.; Cibelli, F.; Tarantino, A. Effects of irrigation with treated agro-industrial wastewater on soil chemical characteristics and fungal populations during processing tomato crop cycle. J. Soil Sci. Plant Nutr. 2015, 15, 765–780. [Google Scholar] [CrossRef]
- Zenjari, B.; Nejmeddine, A. Impact of spreading olive mill wastewater on soil characteristics: Laboratory experiments. Agron. EDP Sci. 2001, 21, 749–755. [Google Scholar] [CrossRef]
- Martirani, L.; Giardina, P.; Marzullo, L.; Sannia, G. Reduction of phenol content and toxicity in olive oil mill waste waters with the ligninolytic fungus Pleurotus ostreatus. Water Res. 1996, 130, 1914–1918. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Vurro, M.; Boari, B.; Pilgeram, A.L.; Sands, D.C. Exogenous aminoacids inhibit seed germination and tubercle formation by Orobanche ramosa (Brooomrape): Potential application for management of parasitic weed. Biol. Control 2005, 36, 258–265. [Google Scholar] [CrossRef]
- Petersen, J.; Belz, R.; Walker, F.; Hurle, K. Weed suppression by release of isothiocyanates from turniprape mulch. Agron. J. 2001, 93, 37–43. [Google Scholar] [CrossRef]
- Eberlein, C.V.; Morra, M.J.; Guttieri, M.J.; Brown, P.D.; Brown, J. Glucosinolate production by five field-grown Brassica napus cultivars used as green manures. Weed Technol. 1998, 12, 712–718. [Google Scholar] [CrossRef]
- Dale, J.E. Decline in phytotoxicity of benzyl isothiocyanates formulated as granules. Weed Sci. 1986, 34, 325–327. [Google Scholar]
- Brown, P.D.; Morra, M.J. Hydrolysis products of glucosinolates in Brassica napus tissue as inhibitors of seed germination. Plant Soil 1996, 181, 307–316. [Google Scholar] [CrossRef]
- Vaughan, S.F.; Boydston, R.A. Volatile allelochemicals released by crucifer green manures. J. Chem. Ecol. 1997, 23, 2107–2116. [Google Scholar] [CrossRef]
- Consorzio per la Bonifica della Capitanata. Available online: www.consorzio.fg.it (accessed on 22 September 2017).
- Kebreab, E.; Murdoch, A.J. A model of the effects of a wide range of constant and alternating temperatures on seed germination of four Orobanche species. Ann. Bot. 1999, 84, 549–557. [Google Scholar] [CrossRef]
- Murdoch, A.J.; Kebreab, E. Temperature dependence of Orobanche germination and implication for the northward spread of Orobanche within Europe. In COST Action 849, Parasitic Plant Management in Sustainable Agriculture, WG1+4 Workshop on Means for Limiting Orobanche Propagation and Dispersal in Agricultural Fields; Newe–Ya’ar Research Center: Rishon LeZion, Israel, 2005; pp. 15–16. [Google Scholar]
- Parker, C. Protection of crops against parasitic weeds. Crop. Prot. 1991, 10, 6–22. [Google Scholar] [CrossRef]
- Ramaiah, K.V. Control of Striga and Orobanche species—A review. In Proceedings of the 4th ISPFP, Marburg, Germany, August 1987; Weber, H.C., Forstreuter, W., Eds.; Philipps-Universität: Marburg, Germany, 1987; pp. 637–664. [Google Scholar]
- Rubiales, D.; Ferandez-Aparicio, M.; Wegmann, K.; Joel, D.M. Revisiting strategies for reducing the seed bank of Orobanche and Phelipanche spp. Weed Res. 2009, 49, 23–33. [Google Scholar] [CrossRef]
- Yoneyana, K.; Xie, X.; Kusumoto, D.; Sekimoto, H.; Sugimoto, Y.; Takeuchi, Y.; Yoneyama, K. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 2007, 227, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Jamil, M.; Kanampiu, F.K.; Karaya, H.; Charnikhova, T.; Bouwmeester, H.J. Striga hermonthica parasitum in maize in response to N and P fertilizers. Field Crop Res. 2012, 143, 1–10. [Google Scholar] [CrossRef]
- Westwood, J.H.; Foy, C.L. Influence of nitrogen on germination and early development of broom rare (Orobanche spp.). Weed Sci. 1999, 47, 2–7. [Google Scholar]
- Goldwasser, Y.; Rodenburg, J. Integrated agronomic management of parasitic weed seed banks. In Parasitic Orobanchaceae; Joel, D.M., Gressel, J., Musselman, J.L., Eds.; Springer: Berlin, Germany, 2013; pp. 393–414. [Google Scholar]
- Longo, A.M.C.; Lomonaco, A.; Mauromincale, G. The effect of Phelipanche ramosa infection on the quality of tomato fruit. Weed Res. 2010, 50, 58–66. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis (No. 934,06); Association of Official Analytical Chemists (AOAC): Washington, DC, USA, 1990. [Google Scholar]
- Francis, F.J.; Clydesdale, F.M. Food Colorimetry: Theory and Applications; AVI Publ. Co.: Westport, CT, USA, 1975; 477p. [Google Scholar]
- Gatta, G.; Libutti, A.; Gagliardi, A.; Disciglio, G.; Beneduce, L.; d’Antuono, M.; Rendina, M.; Tarantino, E. Effects of treated agro-industrial wastewater irrigation on tomato processing quality. Ital. J. Agron. 2015, 10, 97–100. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B Methodol. 1964, 26, 211–252. [Google Scholar]
- Italian law (Legge 11 novembre 1996 n.574). Nuove norme in materia di utilizzazione agronomica delle acque di vegetazione e di scarichi dei frantoi oleari. Gazzetta Ufficiale n. 265 del 12 Novembre, 1996. Available online: http://www.camera.it/parlam/leggi/96574.l.htm (accessed on 24 November 2017).
Parameters Evaluated | Transplanting Dates | |
---|---|---|
Early crop | Later crop | |
P. ramosa emerged shoots (n. m−2) | 51.4 ± 3.3 a | 11.7 ± 0.9 b |
Marketable yield (t ha−1) | 64.3 ± 3.4 b | 70.0 ± 0.9 a |
Total biomass (t ha−1) | 10.4 ± 0.7 b | 13.1 ± 2.1 a |
Mean fruit weight (g) | 75.1 ± 6.1 a | 76.2 ± 5.2 a |
Dry matter (%) | 6.4 ± 1.0 a | 5.0 ± 0.7 a |
Color index (-) | 1.12 ± 0.1 a | 1.15 ± 0.2 a |
Soluble solids content (°Brix) | 4.1 ± 0.1 a | 4.4 ± 0.2 a |
pH | 4.3 ± 0.1 a | 4.2 ± 0.1 a |
Titratable acidity (g citric acid 100 mL−1 juice) | 0.37 ± 0.1 a | 0.21 ± 0.1 a |
Parameter | Marketable Yield | Plant Biomass | Fruit Weight | Dry Matter | Color Index | Solid Soluble | pH | Titratable Acidity |
---|---|---|---|---|---|---|---|---|
(t ha−1) | (t ha−1) | (g) | (% fw) | (a/b ratio) | (°Brix) | (g Citric Acid Per 100 mL Juice) | ||
Olive-mill wastewater | 96.8 ± 12.0 ab | 13.5 ± 1.8 b | 80.10 ± 7.20 a | 6.60 ± 0.40 a | 1.10 ± 0.10 a | 5.20 ± 0.10 a | 4.8 ± 0.2 a | 0.45 ± 0.1 a |
Allyl Isothiocyanate® | 94.3 ± 8.7 ab | 14.0 ± 0.5 b | 74.00 ± 6.07 a | 5.71 ± 0.71 a | 1.28 ± 0.21 a | 4.13 ± 0.09 a | 4.5 ± 0.1 a | 0.41 ± 0.1 a |
Alfaplus® | 114.2 ± 14.9 a | 20.8 ± 3.5 a | 75.54 ± 3.93 a | 6.78 ± 0.91 a | 1.17 ± 0.11 a | 4.30 ± 0.06 a | 4.8 ± 0.1 a | 0.42 ± 0.2 a |
Radicon® | 79.7 ± 7.2 bc | 9.8 ± 1.3 c | 81.13 ± 5.04 a | 6.81 ± 0.80 a | 1.22 ± 0.11 a | 3.97 ± 0.15 a | 4.7 ± 0.2 a | 0.35 ± 0.1 a |
Rhizosum Max® | 106.0 ± 14.8 a | 15.3 ± 2.9 b | 71.03 ± 4.45 a | 5.75 ± 0.70 a | 1.15 ± 0.23 a | 4,20 ± 0.17 a | 4.7 ± 0.2 a | 0.47 ± 0.2 a |
Kendal Nem® | 88.2 ± 6.8 ab | 18.2 ± 4.1 a | 89.81 ± 2.96 a | 7.55 ± 0.81 a | 1.16 ± 0.18 a | 4.50 ± 0.10 a | 4.5 ± 0.1 a | 0.38 ± 0.1 a |
Control | 69.4 ± 3.7 c | 11.4 ± 2.3 c | 75.32 ± 6.22 a | 6.53 ± 0.82 a | 1.13 ± 0.22 a | 4.25 ± 0.10 a | 4.4 ± 0.1 a | 0.38 ± 0.2 a |
Treatment | Main Characteristics | Application Mode |
---|---|---|
Olive-mill wastewater | pH, 5.23; dry matter, 62.0 (g L−1); total nitrogen, 1.6 (Kjeldhal, g L−1); phosphorus, 185 (P2O5, mg L−1); potassium, 1044 (K2O; g L−1); total organic carbon, 43.3 (g L−1); sodium, 36 (mg L−1); calcium, 69 (mg L−1); magnesium, 90 (mg L−1) iron, 14 (mg L−1). | Applied in the field at 80 m3 ha−1, the maximum amount permitted to be used in the fields on capable soil (in agreement with Italian Law No 574, 1996) [53] 40 days before tomato seedling transplantation. |
Allyl Isothiocyanate® (ATC) (Isagro S.p.A.) | Volatile organo-sulfur compound extracted from Brassica nigra, Brassica Juncea, and Brassica iric. Groundbreaking soil biofumigant, the active ingredient of which is Allyl Isothiocyanate® (96% w/w). | Applied mechanically into the soil 4 days before tomato seedling transplantation on 15 May 2016, at a dose of 320 L ha−1. |
Alfaplus® (Spagro S.r.l.) | Organic mineral fertilizer containing organic nitrogen (3%), ammoniacal nitrogen (13%), organic carbon (16%), and water-soluble iron (0.5). Organic components: dried borland and panels. | Applied into the soil 2 days before the tomato seedling transplantation, at a dose of 70 kg ha−1. |
Radicon®(Fertek) | Suspension-solution of humic and fulvic acids, obtained from worm compost (night crawled), containing organic matter (60% of d.m.); humified organic matter (90% of total organic matter); nitrogen (1%); rate C/N = 4. | Applied into the soil at transplantation, by soaking the tomato seedling roots in 1.5% concentrated solution and as fertigation by drip irrigation on 28 June and 20 July at a dose of 5 kg ha−1. |
Rhizosum Max® + Prosum + Push up + (Biosum) | Rhizosum Max® is a powder product containing mycorrhize (2%) and rhizosphere bacteria (Azotobacter vinelandii, Bacillus megaterium, Pseudomonas putido) (1 × 1010 CFU g−1). Prosum is a solution of total nitrogen (8%), ureic nitrogen (8%), phosphorus anhydride (4%), potassium oxide (3%), iron (0.08%), and zinc (0.6%). Push up is a solution of N (15%), K (5.5%), Mg (13.5%), Mn (7.2%), Fe (30%), S (40%), amino acids (60%), vitamin (30%), alga kelp (24%), triacontanol (0.2%), and Mo (5%). | Applied into the soil 2 days before the seedling transplantation, with tomato roots soaked in concentrated solution (0.84 g L−1). Applied by drip irrigation on 28 June and 20 July 2016 at a dose of 75 kg ha−1. |
Kendal Nem® (Valagro) | Liquid fertilizer, containing total nitrogen (9%), urea nitrogen (9%), potassium oxide (9%), and GEA 099 (matrix of vegetal origin). | Applied at transplantation, by soaking the tomato seedling roots in 2.2% concentrated solution. Applied by drip irrigation on 28 June and 20 July 2016 at a dose of 5 L ha−1. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Disciglio, G.; Carlucci, A.; Tarantino, A.; Giuliani, M.M.; Gagliardi, A.; Frabboni, L.; Libutti, A.; Raimondo, M.L.; Lops, F.; Gatta, G. Effect of Olive-Mill Wastewater Application, Organo-Mineral Fertilization, and Transplanting Date on the Control of Phelipanche ramosa in Open-Field Processing Tomato Crops. Agronomy 2018, 8, 92. https://doi.org/10.3390/agronomy8060092
Disciglio G, Carlucci A, Tarantino A, Giuliani MM, Gagliardi A, Frabboni L, Libutti A, Raimondo ML, Lops F, Gatta G. Effect of Olive-Mill Wastewater Application, Organo-Mineral Fertilization, and Transplanting Date on the Control of Phelipanche ramosa in Open-Field Processing Tomato Crops. Agronomy. 2018; 8(6):92. https://doi.org/10.3390/agronomy8060092
Chicago/Turabian StyleDisciglio, Grazia, Antonia Carlucci, Annalisa Tarantino, Marcella Michela Giuliani, Anna Gagliardi, Laura Frabboni, Angela Libutti, Maria Luisa Raimondo, Francesco Lops, and Giuseppe Gatta. 2018. "Effect of Olive-Mill Wastewater Application, Organo-Mineral Fertilization, and Transplanting Date on the Control of Phelipanche ramosa in Open-Field Processing Tomato Crops" Agronomy 8, no. 6: 92. https://doi.org/10.3390/agronomy8060092
APA StyleDisciglio, G., Carlucci, A., Tarantino, A., Giuliani, M. M., Gagliardi, A., Frabboni, L., Libutti, A., Raimondo, M. L., Lops, F., & Gatta, G. (2018). Effect of Olive-Mill Wastewater Application, Organo-Mineral Fertilization, and Transplanting Date on the Control of Phelipanche ramosa in Open-Field Processing Tomato Crops. Agronomy, 8(6), 92. https://doi.org/10.3390/agronomy8060092