Ability of Modified Spectral Reflectance Indices for Estimating Growth and Photosynthetic Efficiency of Wheat under Saline Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Experimental Site, and Growth Conditions
2.2. Setup of Subsurface Water Retention Technique (SWRT), Salinity Treatments, Experimental Design, and Agronomic Practices
2.3. Growth and Pphotosynthetic Parameter Measurements
2.4. Canopy Hyperspectral Reflectance Measurements
2.5. Selection of Published and Modified Spectral Reflectance Indices (SRIs)
2.6. Data Analysis
3. Results
3.1. Growth and Photosynthetic Parameters
3.2. Contour Map Analysis of Spectral Reflectance Data
3.3. Relationships between Measured Parameters and Different Modified and Published SRIs
3.4. Relationships between Measured Parameters and SRIs under Each Salinity Level
3.5. Validation of Predictive Models for Measured Parameters Based on Different SRIs
4. Discussion
Comparison between Published and Modified Spectral Reflectance Indices (SRIs) for Estimating the Measured Parameters under Salinity Conditions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oyiga, B.C.; Sharma, R.C.; Shen, J.; Baum, M.; Ogbonnaya, F.C.; Léonl, J. Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J. Agron. Crop Sci. 2016, 202, 472–485. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Hassan, W.M.; Al-Suhaibani, N.A.; Refay, Y.; Abdella, K.A. Comparative performance of multivariable agro-physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front. Plant. Sci. 2017, 8, 435. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Hackl, H.; Schmidhalter, U. Comparative performance of spectral and thermographic properties of plants and physiological traits for phenotyping salinity tolerance of wheat cultivars under simulated field conditions. Funct. Plant. Biol. 2016, 44, 134. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Al-Suhaibani, N.; Hassan, W.; Tahir, M.; Schmidhalter, U. Hyperspectral reflectance sensing to assess the growth and photosynthetic properties of wheat cultivars exposed to different irrigation rates in an irrigated arid region. PLoS ONE 2017, 12, e0183262. [Google Scholar] [CrossRef] [PubMed]
- Sytar, O.; Brestic, M.; Zivcak, M.; Olsovska, K.; Kovar, M.; Shao, H.; He, X. Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. Sci. Total Environ. 2017, 578, 90–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, M.; Guo, X.; Wang, C.; Yang, W.; Shi, C.; Ding, G.; Zhang, X.; Xiao, L.; Zhang, M.; Song, X. Monitoring and evaluation in freeze stress of winter wheat (Triticum aestivum L.) through canopy hyperspectrum reflectance and multiple statistical analysis. Ecol. Indic. 2018, 84, 290–297. [Google Scholar] [CrossRef]
- Suárez, L.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; Pérez-Priego, O.; Miller, J.R.; Jiménez-Muñoz, J.C.; Sobrino, J. Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sens. Environ. 2008, 112, 560–575. [Google Scholar] [CrossRef]
- Sun, P.; Grignetti, A.; Liu, S.; Casacchia, R.; Salvatori, R.; Pietrini, F.; Loreto, F.; Centritto, M. Associated changes in physiological parameters and spectral reflectance indices in olive (Olea europaea L.) leaves in response to different levels of water stress. Int. J. Remote Sens. 2008, 29, 1725–1743. [Google Scholar] [CrossRef]
- Sarlikioti, V.; Driever, S.M.; Marcelis, L.F.M. Photochemical reflectance index as a mean of monitoring early water stress. Ann. Appl. Biol. 2010, 157, 81–89. [Google Scholar] [CrossRef]
- Ripullone, F.; Rivelli, A.R.; Baraldi, R.; Guarini, R.; Guerrieri, R.; Magnani, F.; Peñuelas, J.; Raddi, S.; Borghetti, M. Effectiveness of the photochemical reflectance index to track photosynthetic activity over a range of forest tree species and plant water statuses. Funct. Plant Biol. 2011, 38, 177–186. [Google Scholar] [CrossRef]
- Sun, P.; Wahbi, S.; Tsonev, T.; Haworth, M.; Liu, S.; Centritto, M. On the use of leaf spectral indices to assess water status and photosynthetic limitations in Olea europaea L. during water-stress and recovery. PLoS ONE 2014, 9, e0118420. [Google Scholar] [CrossRef] [PubMed]
- Tsonev, T.; Wahbi, S.; Sun, P.; Sorrentino, G.; Centritto, M. Gas exchange, water relations and their relationships with photochemical reflectance index in Quercus ilex plants during water stress and recovery. Inter. J. Agric. Biol. 2014, 16, 335–341. [Google Scholar]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Turhan, H.; Genc, L.; Smith, S.E.; Bostanci, Y.B.; Turkmen, O.S. Assessment of the effect of salinity on the early growth stage of the common sunflower (Sanay cultivar) using spectral discrimination techniques. Afr. J. Biotecnol. 2008, 7, 750–756. [Google Scholar]
- Tattaris, M.; Reynolds, M.P.; Chapman, S.C. A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Front. Plant Sci. 2016, 7, 1131. [Google Scholar] [CrossRef] [PubMed]
- Rud, R.; Shoshany, M.; Alchanatis, V. Spectral indicators for salinity effects in crops: A comparison of a new green indigo ratio with existing indices. Remote Sens. Lett. 2011, 2, 289–298. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Wang, F.M.; Huang, J.F.; Wang, X.Z. Identification of optimal hyperspectral bands for estimation of rice biophysical parameters. J. Integer. Plant. Biol. 2008, 50, 291–299. [Google Scholar] [CrossRef]
- Krezhova, D.; Kirova, E.; Yane, T.; Iliev, I. Effects of salinity on leaf spectral reflectance and biochemical parameters of nitrogen fixing soybean plants (Glycine max L.). In Proceedings of the AIP Proceedings of 7th General Conference of the Balkan Physical Union, Alexandroupolis, Greece, 9–13 September 2009; pp. 694–699. [Google Scholar]
- Hamzeh, S.; Naseri, A.A.; AlaviPanah, S.K.; Mojaradi, B.; Bartholomeus, H.M.; Clevers, J.G.P.W.; Behzad, M. Estimating salinity stress in sugarcane fields with space borne hyperspectral vegetation indices. Int. J. Appl. Earth. Obs. Geoinf. 2013, 21, 282–290. [Google Scholar] [CrossRef]
- Lara, M.A.; Diezma, B.; Lleo, L.; Roger, J.M.; Garrido, Y.; Gil, M.I.; Ruiz-Altisent, M. Hyperspectral imaging to evaluate the effect of irrigation water salinity in lettuce. Appl. Sci. 2016, 6, 412. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Bozzolo, A.; Wilkins, J.L.; Kwasniewski, M.T. Early detection of plant physiological responses to different levels of water stress using reflectance spectroscopy. Remote Sens. 2017, 9, 745. [Google Scholar] [CrossRef]
- Poss, J.A.; Russell, W.B.; Grieve, C.M. Estimating yields of salt- and water stressed forages with remote sensing in the visible and near infrared. J. Environ. Quality. 2006, 35, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.P.; Menenti, M.; Buondonno, A.; Letizia, A.; Maffe, I.C.; Sorrentino, G. A field experiment on spectrometry of crop response to soil salinity. Agric. Water. Manag. 2007, 9, 39–48. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Hassan, W.M.; Refay, Y.; Schmidhalter, U. On the use of spectral reflectance indices to assess agro-morphological traits of wheat plants grown under simulated saline field conditions. J. Agron. Crop. Sci. 2017, 203, 406–428. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Z.; Zhang, G.; Meng, Y.; Chen, B.; Wang, Y. Monitoring cotton (Gossypium hirsutum L.) leaf ion content and leaf water content in saline soil with hyperspectral reflectance. Eur. J. Remote Sens. 2014, 47, 593–610. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Hu, Y.C.; Yakout, G.M.; Awad, A.M.; Hafiz, S.E.; Schmidhalter, U. Evaluating salt tolerance of wheat genotypes using multiple parameters. Euro. J. Agron. 2005, 22, 243–253. [Google Scholar] [CrossRef]
- Fageria, N.K.; Moreira, A. The role of mineral nutrition on root growth of crop plants. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Burlington, NJ, USA, 2011; Volume 110, pp. 251–331. [Google Scholar]
- Inoue, Y.; Peñuelas, J.; Miyata, A.; Mano, M. Normalized difference spectral indices for estimating photosynthetic efficiency and capacity at a canopy scale derived from hyperspectral and CO2 flux measurements in rice. Remote Sens. Environ. 2008, 112, 156–172. [Google Scholar] [CrossRef]
- Elsayed, S.; Rischbeck, P.; Schmidhalter, U. Comparing the performance of active and passive reflectance sensors to assess the normalized relative canopy temperature and grain yield of drought-stressed barley cultivars. Field Crops Res. 2015, 177, 148–160. [Google Scholar] [CrossRef]
- Stratoulias, D.; Balzter, H.; Zlinszky, A.; Tóth, V.R. Assessment of ecophysiology of lake shore reed vegetation based on chlorophyll fluorescence, field spectroscopy and hyperspectral airborne imagery. Remote Sens. Environ. 2015, 157, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Chappelle, E.W.; Kim, M.S.; McMurtrey, J.E. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sens. Environ. 1992, 39, 239–247. [Google Scholar] [CrossRef]
- Blackburn, G.A. Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sens. Environ. 1998, 66, 273–285. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Noland, T.L.; Mohammed, G.H.; Sampson, P.H. Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1491–1507. [Google Scholar] [CrossRef]
- Romero, A.; Aguado, I.; Yebra, M. Estimation of dry matter content in leaves using normalized indexes and PROSPECT model inversion. Inter. J. Remote Sens. 2012, 33, 396–414. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Li, Y.; Zhang, S. Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. Crop J. 2017, 5, 231–239. [Google Scholar] [CrossRef]
- Hackl, H.; Mistele, B.; Hu, Y.; Schmidhalter, U. Spectral assessments of wheat plants grown in pots and containers under saline conditions. Funct. Plant Biol. 2013, 40, 409–424. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Al-Suhaibani, N.; Hassan, W.; Dewir, Y.H.; Elsayes, S.; Al-Ashkar, I.; Abdella, K.A.; Schmidhalter, U. Evaluation of wavelengths and spectral reflectance indices for highthroughput assessment of growth, water relations and ion contents of wheat irrigated with saline water. Agric. Water. Manag. 2019, 212, 358–377. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, W.; Kong, W.; Ye, H.; Dong, Y.; Dong, R. Assessment of leaf carotenoids content with a new carotenoid index: Development and validation on experimental and model data. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 24–35. [Google Scholar] [CrossRef]
- Weng, J.H.; Jhaung, L.H.; Lin, R.J.; Chen, H.Y. Relationship between photochemical efficiency of photosystem II and the photochemical reflectance index of mango tree: Merging data from different illuminations, seasons and leaf colors. Tree Physiother. 2010, 30, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Garbulsky, M.F.; Peñuelas, J.; Gamon, J.A.; Inoue, Y.; Filella, I. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis. Remote Sens. Environ. 2011, 115, 281–297. [Google Scholar] [CrossRef]
- Stagakis, S.; Markos, N.; Sykioti, O.; Kyparissis, A. Tracking seasonal changes of leaf and canopy light use efficiency in a Phlomis fruticosa mediterranean ecosystem using field measurements and multi-angular satellite hyperspectral imagery. ISPRS J. Photogr. Remote Sens. 2014, 97, 138–151. [Google Scholar] [CrossRef]
- Gamon, J.A.; Penuelas, J.; Field, C.B. A narrow-waveband spectral index that tracts diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Jaleel, C.A.; Lakshmanan, G.M.A.; Gomathinayagam, M.; Panneerselvam, R. Triadimefon induced salt stress tolerance in Withania somnifera and its relationship to antioxidant defense system. S. Afr. J. Bot. 2007, 74, 126–132. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, S.; Gao, Y.; Ouyang, Z.; Li, B.; Fang, C.; Zhao, B. Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecol. Indic. 2011, 11, 1552–1562. [Google Scholar] [CrossRef]
- Verma, S.; Sellers, P.; Walthall, C.; Hall, F.; Kim, J.; Goetz, S. Photosynthesis and stomatal conductance related to reflectance on the canopy scale. Remote Sens. Environ. 1993, 44, 103–116. [Google Scholar] [CrossRef]
- Carter, G.A. Reflectance wavebands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies. Remote Sens. Environ. 1998, 63, 61–72. [Google Scholar] [CrossRef]
- Gitelson, A.; Gritz, Y.; Merzlyak, M. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant. Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
P or D | Full Indices Name and Abbreviation | Formulation |
---|---|---|
P | Normalized phaeophytinization index (NPQ) | (R415 − R435)/(R415 + R435) |
D | Normalized phaeophytinization index (NPQ) | (R482 − R350)/(R482 + R350) |
P | Photochemical reflectance index (PRI) | (R570 − R539)/(R570 + R539) |
D | Photochemical reflectance index (PRI) | (R580 − R531)/(R580 + R531) |
P | Normalized different vegetation index (NDVI) | (R750 − R705)/(R750 + R705) |
D | Normalized different vegetation index (NDVI) | (R780 − R715)/(R780 + R715) |
D | Blue normalized difference vegetation index (BNDVI) | (R970 − R420)/(R970 + R420) |
D | Green normalized difference vegetation index (GNDVI) | (R970 − R482)/(R970 + R482) |
D | Red normalized difference vegetation index (RNDVI-1) | (R970 − R710)/(R970 + R710) |
D | Red normalized difference vegetation index (RNDVI-2) | (R1100 − R710)/(R1100 + R710) |
P | Ratio analysis of reflectance spectra-a (PARS-a) | (R750/R720) |
D | Ratio analysis of reflectance spectra-a (PARS-a) | (R780/R720) |
P | Ratio analysis of reflectance spectra-b (PARS-b) | R675/(R650 × R700) |
D | Ratio analysis of reflectance spectra-b (PARS-b) | R675/(R640 × R705) |
P | Ratio analysis of reflectance spectra-c (PARS-c) | (R760/R500) |
D | Ratio analysis of reflectance spectra-c (PARS-c) | (R760/R515) |
P | Pigment specific simple ratio-a (PSSR-a) | (R800/R680) |
D | Pigment specific simple ratio-c (PSSR-a) | (R800/R690) |
P | Pigment specific normalized difference-c (PSND-c) | (R800 − R460)/(R800 + R460) |
D | Pigment specific normalized difference-c (PSND-c) | (R800 − R482)/(R800 + R482) |
P | Red edge chlorophyll index | R750/R710) − 1 |
D | Red edge chlorophyll index | R760/R710) − 1 |
P | Water balance index (WBI) | (R1500 − R538)/(R1500 + R538) |
D | Water balance index (WBI) | (R1550 − R482)/(R1550 + R482) |
D | Water balance index (WBI) | (R1640 − R482)/(R1640 + R482) |
D | Water balance index (WBI) | (R1650 − R531)/(R1650 + R531) |
P | Normalized difference water index-2130 (NDWI) | (R858 − R2130)/(R858 + R2130) |
D | Normalized difference water index-2130 (NDWI) | (R860 − R2270)/(R860 + R2270) |
P | Normalized difference moisture index (NDMI) | (R1649 − R1722)/(R1649 + R1722) |
D | Normalized difference moisture index (NDMI) | (R1660 − R1742)/(R1660 + R1742) |
P | Dry matter content index (DMCI) | (R2305 − R1495)/(R2305 + R1495) |
D | Dry matter content index (DMCI) | (R2305 − R1550)/(R2305 + R1550) |
Season 2016–2017 | Season 2017–2018 | |||||
Cultivars | ||||||
Sakha 93 | Sakha 61 | Mean | Sakha 93 | Sakah 61 | Mean | |
Shoot dry weight (g m−2) | ||||||
Control | 2142.93 a | 1926.23 a | 2034.58 A | 1903.50 a | 1683.40 b | 1793.45 A |
6 dS m−1 | 1533.27 b | 1178.43 c | 1355.85 B | 1310.43 c | 1050.77 d | 1180.60 B |
12 dS m−1 | 1171.47 c | 919.47 d | 1045.47 C | 1048.13 d | 812.37 e | 930.25 C |
Mean | 1615.89 A | 1341.38 B | 1420.69 A | 1182.18 B | ||
Photosynthetic rate (µmol CO2 m−2 s−1) | ||||||
Control | 21.93 a | 15.33 b | 18.63 A | 18.67 a | 14.67 b | 16.67 A |
6 dS m−1 | 15.23 b | 10.37 c | 12.80 B | 13.07 b c | 9.87 d | 11.47 B |
12 dS m−1 | 11.36 c | 8.50 c | 9.93 C | 10.67 c d | 7.33 e | 9.00 C |
Mean | 16.18 A | 11.40 B | 14.13 A | 10.62 B | ||
Stomatal conductance (mmol m−2 s−1) | ||||||
Control | 284.13 a | 240.80 b | 262.47 A | 270.87 a | 251.53 a | 261.20 A |
6 dS m−1 | 179.70 c | 126.37 d | 153.03 B | 155.93 b | 110.93 c | 133.43 B |
12 dS m−1 | 131.47 d | 103.13 e | 117.30 C | 123.13 c | 101.47 c | 112.30 B |
Mean | 198.43 A | 156.77 B | 183.31 A | 154.64 B | ||
Transpiration rate (mmol m−2 s−1) | ||||||
Control | 4.05 a | 4.22 a | 4.14 A | 3.38 a b | 3.79 a | 3.59 A |
6 dS m−1 | 3.16 b c | 3.43 b | 3.30 B | 2.70 c | 3.05 b c | 2.88 B |
12 dS m−1 | 2.66 d | 2.80 c d | 2.73 C | 2.07 d | 2.31 d | 2.19 C |
Mean | 3.29 A | 3.49 A | 2.72 B | 3.05 A |
Parameters | SDW | Pn | Gs | E |
---|---|---|---|---|
Pooled Data | ||||
Shoot dry weight (SDW) | 1.00 | 0.94 *** | 0.95 *** | 0.71 *** |
Photosynthetic rate (Pn) | 1.00 | 0.91 *** | 0.57 ** | |
Stomatal conductance (Gs) | 1.00 | 0.67 *** | ||
Transpiration rate (E) | 1.00 | |||
Control | ||||
Shoot dry weight (SDW) | 1.00 | 0.77 *** | 0.23 ns | 0.55 ns |
Photosynthetic rate (Pn) | 1.00 | 0.71 *** | 0.21 ns | |
Stomatal conductance (Gs) | 1.00 | −0.42 ns | ||
Transpiration rate (E) | 1.00 | |||
6 dS m−1 | ||||
Shoot dry weight (SDW) | 1.00 | 0.92 *** | 0.93 *** | −0.53 ns |
Photosynthetic rate (Pn) | 1.00 | 0.90 *** | -0.52 ns | |
Stomatal conductance (Gs) | 1.00 | −0.47 ns | ||
Transpiration rate (E) | 1.00 | |||
12 dS m−1 | ||||
Shoot dry weight (SDW) | 1.00 | 0.81 *** | 0.95 *** | −0.74 *** |
Photosynthetic rate (Pn) | 1.00 | 0.89 *** | −0.55 * | |
Stomatal conductance (Gs) | 1.00 | −0.56 * | ||
Transpiration rate (E) | 1.00 |
SRIs | Par. | Equations | R2 | SRIs | Par. | Equations | R2 |
---|---|---|---|---|---|---|---|
NPQ_P (415, 435) | SDW | y = 1024x2 + 25472x + 2582.4 | 0.55 ** | RNDVI-1_D (970, 710) | SDW | y = 8993.1x2 − 4456.7x + 1509.2 | 0.85 *** |
Pn | y = 862.8x2 + 227.54x + 24.07 | 0.53 ** | Pn | y = 65.277x2 − 25.52x + 11.04 | 0.78 *** | ||
Gs | y = 13834x2 + 3587.2x + 344.96 | 0.48 * | Gs | y = 1601.6x2 − 851.6x + 219.15 | 0.85 *** | ||
E | y = 226.3x2 + 44.612x + 4.93 | 0.31 * | E | y = 20.343x2 − 13.70x + 4.95 | 0.47 * | ||
NPQ_D (482, 350) | SDW | y = 2445.5x2 − 2470.5x + 15 | 0.73 *** | RNDVI-2_D (1100, 710) | SDW | y = 9994.7x2 − 5374.3x + 1684.2 | 0.86 *** |
Pn | y = 22.63x2 − 23.69x + 13.80 | 0.69 *** | Pn | y = 81.569x2 − 39.31x + 13.51 | 0.80 *** | ||
Gs | y = 357.6x2 − 371x + 184.39 | 0.64 ** | Gs | y = 1840.4x2 − 1066x + 260.68 | 0.87 *** | ||
E | y = 7.099x2 − 3.082x + 3.10 | 0.38 * | E | y = 22.529x2 − 15.92x + 5.46 | 0.46 * | ||
PR-I_P (570, 539) | SDW | y = 82929x2 + 4069.1x + 984.78 | 0.79 *** | PARS-a_P (750, 720) | SDW | y = 823.9x2 − 1824.1x + 1931.7 | 0.85 *** |
Pn | y = 595.16x2 + 45.39x + 9.73 | 0.70 *** | Pn | y = 5.06x2 − 7.59x + 9.99 | 0.77 *** | ||
Gs | y = 12868x2 + 644.91x + 110.03 | 0.76 *** | Gs | y = 154.21x2 − 372.2x + 329.19 | 0.84 *** | ||
E | y = 180.84x2 + 0.621x + 2.48 | 0.49 * | E | y = 2.365x2 − 7.192x + 8.15 | 0.47* | ||
PRI-2_D (580, 531) | SDW | y = 35703x2 − 2709.4x + 986.47 | 0.78 *** | PARS-a_D (780, 720) | SDW | y = 460.9x2 − 841.58x + 1231.6 | 0.84 *** |
Pn | y = 241.45x2 − 30.44x + 9.85 | 0.67 *** | Pn | y = 2.86x2 − 2.118x + 6.15 | 0.77 *** | ||
Gs | y = 5476.4x2 − 430.27x + 110.78 | 0.75 *** | Gs | y = 93.29x2 − 210.47x + 218.04 | 0.84 *** | ||
E | y = 79.57x2 − 0.467x + 2.47 | 0.49 * | E | y = 1.481x2 − 4.699x + 6.45 | 0.45 * | ||
NDVI_P (750, 705) | SDW | y = 6982.3x2 − 3722.9x + 1430.2 | 0.84 *** | PARS-b_P (675, 650, 700) | SDW | y = 134.35x + 590.98 | 0.86 *** |
Pn | y = 50.43x2 − 21.58x + 10.91 | 0.75 *** | Pn | y = −0.07x2 + 2.114x + 3.59 | 0.73 *** | ||
Gs | y = 1207.5x2 − 679.08x + 196.57 | 0.83 *** | Gs | y = 21.196x + 47.22 | 0.84 *** | ||
E | y = 13.35x2 − 9.23x + 4.19 | 0.44 * | E | y = 0.033x2 − 0.265x + 3.25 | 0.61 ** | ||
NDVI_D (780, 715) | SDW | y = 9955.6x2 − 3817.1x + 1312.3 | 0.84 *** | PARS-b_D (675, 640, 705) | SDW | y = 223.72x + 435.01 | 0.85 *** |
Pn | y = 71.46x2 − 20.014x + 9.84 | 0.77 *** | Pn | y = −0.261x2 + 4.413x − 0.22 | 0.73 *** | ||
Gs | y = 1791.4x2 − 753.37x + 183.45 | 0.84 *** | Gs | y = 35.57x + 21.46 | 0.84 *** | ||
E | y = 20.92x2 − 11.34x + 4.18 | 0.44 * | E | y = 0.066x2 − 0.334x + 3.15 | 0.58 ** | ||
BNDVI_D (970, 420) | SDW | y = 47108x2 − 69666x + 26630 | 0.75 *** | PARS-c_P (760, 500) | SDW | y = 88.863x + 564.44 | 0.82 *** |
Pn | y = 416.65x2 − 615.02x + 235.37 | 0.62 ** | Pn | y = 0.8233x + 5.434 | 0.72 *** | ||
Gs | y = 6587.3x2 − 9690.1x + 3659.9 | 0.63 ** | Gs | y = 13.497x + 47.894 | 0.74 *** | ||
E | y = 75.72x2 − 114.2x + 45.55 | 0.53 ** | E | y = 0.0076x2 − 0.053x + 2.82 | 0.49 * | ||
GNDVI-1_D (970, 482) | SDW | y = 20269x2 − 26671x + 9661.7 | 0.83 *** | PARS-c_D (760, 515) | SDW | y = 120.9x + 500.38 | 0.85 *** |
Pn | y = 174.11x2 − 226.02x + 81.709 | 0.72 *** | Pn | y = 1.1223x + 4.8244 | 0.75 *** | ||
Gs | y = 3040.9x2 − 3998x + 1411.7 | 0.73 *** | Gs | y = 18.58x + 36.569 | 0.78 *** | ||
E | y = 31.669x2 − 43.664x + 17.63 | 0.45 * | E | y = 0.0163x2 − 0.119x + 2.96 | 0.51 ** | ||
PSSR-a_P (800/680) | SDW | y = 6.296x2 − 24.704x + 1010.8 | 0.86 *** | WABI-2_D (1640, 482) | SDW | y = 14054x2 − 14360x + 4587.2 | 0.86 *** |
Pn | y = 0.043x2 + 0.040x + 8.72 | 0.75 *** | Pn | y = 127.42x2 − 129.75x + 41.77 | 0.74 *** | ||
Gs | y = 0.924x2 − 2.975x + 112.08 | 0.80 *** | Gs | y = 1934.8x2 − 1922.2x + 576.8 | 0.76 *** | ||
E | y = 0.0196x2 − 0.246x + 3.39 | 0.57 ** | E | y = 26.95x2 − 30.56x + 11.29 | 0.57 ** | ||
PSSR-a_D (800/690) | SDW | y = 8.43x2 − 22.399x + 993.98 | 0.88 *** | WABI-3_D (1650, 531) | SDW | y = 12840x2 − 8345.3x + 2334.2 | 0.85 *** |
Pn | y = 0.056x2 + 0.123x + 8.52 | 0.77 *** | Pn | y = 135.23x2 − 93.52x + 25.72 | 0.74 *** | ||
Gs | y = 1.318x2 − 3.503x + 111.35 | 0.84 *** | Gs | y = 1748.3x2 − 1045.6x + 258.4 | 0.82 *** | ||
E | y = 0.028x2 − 0.294x + 3.41 | 0.58 ** | E | y = 26.71x2 − 20.87x + 6.78 | 0.57 ** | ||
PSNDc_P (800, 460) | SDW | y = 23347x2 − 31442x + 11458 | 0.80 *** | NDWI_P (2130, 858) | SDW | y = 5155.2x2 − 2697.3x + 1214.3 | 0.55 ** |
Pn | y = 194.83x2 − 258.43x + 93.95 | 0.68 *** | Pn | y = 45.93x2 − 21.81x + 10.28 | 0.54 ** | ||
Gs | y = 3529.4x2 − 4757x + 1698.5 | 0.71 *** | Gs | y = 993.66x2 − 620.97x + 195.62 | 0.51 ** | ||
E | y = 35.358x2 − 49.46x + 19.85 | 0.44 * | E | y = 2.32x2 − 0.275x + 2.53 | 0.15ns | ||
PSNDc_D (800, 482) | SDW | y = 18274x2 − 23774x + 8605.3 | 0.81 *** | NDWI_D (2270, 860) | SDW | y = 6214.8x2 − 3729.7x + 1415 | 0.56 ** |
Pn | y = 155.16x2 − 198.53x + 71.72 | 0.71 *** | Pn | y = 55.64x2 − 31.028x + 11.96 | 0.55 ** | ||
Gs | y = 2790.9x2 − 3638x + 1280.8 | 0.73 *** | Gs | y = 1201.7x2 − 834.2x + 242.56 | 0.52 ** | ||
E | y = 26.94x2 − 36.663x + 15.05 | 0.42 * | E | y = 3.016x2 − 0.825x + 2.59 | 0.16 ns | ||
Cl red edge_P (750/710) | SDW | y = 168.2x2 − 8.77x + 923.89 | 0.86 *** | NDMI_P (1649, 1722) | SDW | y = −0.0004x2 + 26304x − 2984 | 0.36 * |
Pn | y = 0.953x2 + 1.82x + 7.65 | 0.76 *** | Pn | y = −27656x2 + 1988.3x − 19.13 | 0.35 * | ||
Gs | y = 30.92x2 − 14.15x + 106.36 | 0.85 *** | Gs | y = −280929x2 + 24315x − 258.8 | 0.39 * | ||
E | y = 0.537x2 − 1.082x + 3.22 | 0.50 ** | E | y = −4245.9x2 + 284.52x − 1.28 | 0.20 ns | ||
Cl red edge_D (760/710) | SDW | y = 125.38x2 + 39.65x + 900.33 | 0.85 *** | NDMI_D (1660, 1742) | SDW | y = 920979x2 − 42541x + 1380 | 0.61 ** |
Pn | y = 0.706x2 + 1.947x + 7.52 | 0.77 *** | Pn | y = 9010.4x2 − 419.68x + 13.14 | 0.58 ** | ||
Gs | y = 23.625x2 − 5.966x + 102.91 | 0.85 *** | Gs | y = 247530x2 − 15224x + 338.9 | 0.64 ** | ||
E | y = 0.420x2 − 0.899x + 3.17 | 0.50 ** | E | y = 1072.6x2 − 57.53x + 3.48 | 0.22 ns | ||
WABI _P (1500, 538) | SDW | y = 7556.3x2 − 1071.9x + 1141.1 | 0.24 ns | DMCI_P (1495, 2305) | SDW | y = −42042x2 − 18582x − 458.41 | 0.13ns |
Pn | y = 136.13x2 − 41.74x + 14.12 | 0.22 ns | Pn | y = −71.945x + 1.923 | 0.16 ns | ||
Gs | y = 1273.4x2 − 186.43x + 132.76 | 0.26 ns | Gs | y = −5273.3x2 − 2541.8x − 91.30 | 0.13 ns | ||
E | y = −0.414x2 + 4.55x + 2.044 | 0.21 ns | E | y = −44.66x2 − 21.053x + 0.968 | 0.08 ns | ||
WABI -1_D (1550, 482) | SDW | y = 12469x2 − 10741x + 32 | 0.84 *** | DMCI_D (1550, 2305) | SDW | y = 34163x2 + 13302x + 2241 | 0.64 ** |
Pn | y = 117.83x2 − 103.06x + 31.32 | 0.71 *** | Pn | y = 390.82x2 + 161.36x + 25.51 | 0.65 ** | ||
Gs | y = 1630.6x2 − 1318.7x + 360.49 | 0.74 *** | Gs | y = 7391.7x2 + 3233x + 461.37 | 0.63 ** | ||
E | y = 24.696x2 − 24.396x + 8.65 | 0.60 ** | E | y = 36.89x2 + 15.26x + 4.32 | 0.23 ns |
Spectral Indices | SDW | Pn | Gs | E | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | S1 | S2 | C | S1 | S2 | C | S1 | S2 | C | S1 | S2 | |
NPQ_P (415, 435) | 0.48 Q | 0.62 Q | 0.38 Q | 0.40 Q | 0.58 Q | 0.38 Q | 0.37 Q | 0.35 Q | 0.40 L | 0.37 Q | 0.47 L | 0.17 Q |
NPQ_D (482, 350) | 0.50 Q | 0.63 Q | 0.56 L | 0.52 Q | 0.57 L | 0.50 L | 0.54 Q | 0.47 L | 0.43 L | 0.50 Q | 0.47 Q | 0.10 Q |
PRI_P (570, 539) | 0.47 Q | 0.56 L | 0.56 L | 0.36 Q | 0.73 Q | 0.66 Q | 0.33 Q | 0.68 Q | 0.59 Q | 0.45 Q | 0.29 L | 0.10 Q |
PRI_D (580, 531) | 0.43 Q | 0.56 L | 0.55 L | 0.22 Q | 0.72 Q | 0.66 Q | 0.16 Q | 0.66 Q | 0.57 Q | 0.49 Q | 0.28 L | 0.14 Q |
NDVI_P (750, 705) | 0.42 Q | 0.67 L | 0.63 L | 0.18 L | 0.71 Q | 0.68 L | 0.20 Q | 0.81 Q | 0.57 L | 0.11 Q | 0.30 Q | 0.16 Q |
NDVI_D (780, 715) | 0.39 Q | 0.66 L | 0.65 L | 0.28 Q | 0.69 L | 0.72 L | 0.38 Q | 0.79 Q | 0.57 L | 0.05 Q | 0.29 Q | 0.18 Q |
BNDVI_D (970, 420) | 0.41 L | 0.33 L | 0.52 L | 0.27 Q | 0.19 Q | 0.52 Q | 0.43 Q | 0.32 L | 0.36 Q | 0.46 Q | 0.12 Q | 0.11 Q |
GNDVI_D (970, 482) | 0.55 Q | 0.60 Q | 0.69 Q | 0.46 Q | 0.58 Q | 0.64 Q | 0.57 Q | 0.55 L | 0.49 L | 0.57 Q | 0.36 Q | 0.06 Q |
RNDVI-1_D (970, 710) | 0.36 Q | 0.69 L | 0.63 L | 0.25 Q | 0.71 L | 0.70 L | 0.28 L | 0.79 Q | 0.56 Q | 0.03 Q | 0.21 Q | 0.16 Q |
RNDVI-2_D (1100, 710) | 0.41 Q | 0.66 Q | 0.71 Q | 0.40 Q | 0.71 Q | 0.72 Q | 0.50 Q | 0.78 Q | 0.61 Q | 0.23 Q | 0.38 Q | 0.17 Q |
PARSa_P (750, 720) | 0.44 Q | 0.65 L | 0.65 L | 0.26 Q | 0.72 Q | 0.73 L | 0.29 Q | 0.81 Q | 0.57 Q | 0.04 Q | 0.28 Q | 0.20 Q |
PARSa_D (780, 720) | 0.31 Q | 0.65 Q | 0.65 Q | 0.29 Q | 0.72 Q | 0.74 Q | 0.46 Q | 0.81 Q | 0.57 Q | 0.09 Q | 0.27 Q | 0.19 Q |
PARSb_P (675, 650, 700) | 0.45 Q | 0.69 L | 0.67 Q | 0.02 Q | 0.75 Q | 0.66 L | 0.08 Q | 0.84 Q | 0.52 Q | 0.71 Q | 0.20 Q | 0.19 Q |
PARSb_D (675, 640, 705) | 0.51 Q | 0.64 L | 0.65 Q | 0.08 Q | 0.69 Q | 0.63 Q | 0.02 Q | 0.74 Q | 0.46 Q | 0.64 Q | 0.16 Q | 0.18 Q |
PARSc_P (760, 500) | 0.42 Q | 0.60 Q | 0.70 Q | 0.45 Q | 0.56 Q | 0.68 Q | 0.61 Q | 0.64 Q | 0.55 Q | 0.63 Q | 0.19 Q | 0.11 Q |
PARSc_D (760, 515) | 0.42 Q | 0.63 Q | 0.69 Q | 0.40 Q | 0.59 Q | 0.69 L | 0.58 Q | 0.70 Q | 0.56 Q | 0.55 Q | 0.18 L | 0.14 Q |
PSSRa_P (800/680) | 0.63 L | 0.61 Q | 0.67 Q | 0.40 Q | 0.66 Q | 0.70 L | 0.37 Q | 0.77 Q | 0.60 Q | 0.41 Q | 0.26 Q | 0.17 Q |
PSSRa_D (800/690) | 0.61 L | 0.63 Q | 0.65 Q | 0.44 Q | 0.70 Q | 0.68 Q | 0.38 Q | 0.81 Q | 0.59 Q | 0.30 Q | 0.25 Q | 0.17 Q |
PSNDc_P (800, 460) | 0.37 Q | 0.55 Q | 0.71 Q | 0.29 Q | 0.50 Q | 0.65 Q | 0.51 Q | 0.51 Q | 0.51 Q | 0.55 Q | 0.40 Q | 0.06 Q |
PSNDc_D (800, 482) | 0.55 Q | 0.58 Q | 0.72 Q | 0.49 Q | 0.56 Q | 0.67 Q | 0.61 Q | 0.55 L | 0.53 Q | 0.61 Q | 0.41 Q | 0.07 Q |
Cl red edge_P (750/710) | 0.43 Q | 0.66 Q | 0.65 Q | 0.20 Q | 0.74 Q | 0.70 L | 0.21 Q | 0.84 Q | 0.58 Q | 0.07 Q | 0.27 Q | 0.19 Q |
Cl red edge_D (760/710) | 0.42 Q | 0.66 Q | 0.65 Q | 0.22 Q | 0.74 Q | 0.71 Q | 0.25 Q | 0.84 Q | 0.58 Q | 0.06 Q | 0.27 Q | 0.19 Q |
WABI _P (1500, 538) | 0.45 Q | 0.25 Q | 0.46 Q | 0.43 Q | 0.50 Q | 0.41 Q | 0.48 Q | 0.47 Q | 0.46 Q | 0.10 Q | 0.23 Q | 0.09 Q |
WABI -1_D (1550, 482) | 0.66 Q | 0.55 Q | 0.51 Q | 0.38 Q | 0.51 Q | 0.43 Q | 0.39 Q | 0.47 Q | 0.46 Q | 0.51 Q | 0.08 Q | 0.01 Q |
WABI -2_D (1640, 482) | 0.65 Q | 0.58 Q | 0.66 L | 0.40 Q | 0.56 Q | 0.58 Q | 0.43 Q | 0.51 Q | 0.51 Q | 0.53 L | 0.19 Q | 0.04 Q |
WABI -3_D (1650, 531) | 0.56 Q | 0.53 Q | 0.11 Q | 0.48 Q | 0.47 Q | 0.13 Q | 0.51 Q | 0.48 Q | 0.14 Q | 0.20 L | 0.03 Q | 0.01 Q |
NDWI_P (2130, 858) | 0.27 Q | 0.51 Q | 0.59 Q | 0.34 Q | 0.50 Q | 0.59 L | 0.37 Q | 0.52 Q | 0.42 L | 0.14 Q | 0.44 Q | 0.11 Q |
NDWI_D (2270, 860) | 0.25 Q | 0.52 Q | 0.58 Q | 0.26 Q | 0.51 Q | 0.59 Q | 0.33 Q | 0.54 Q | 0.42 L | 0.08 Q | 0.44 Q | 0.10 Q |
NDMI_P (1649, 1722) | 0.02 Q | 0.23 Q | 0.03 Q | 0.19 Q | 0.28 Q | 0.02 Q | 0.68 Q | 0.23 Q | 0.08 Q | 0.13 Q | 0.11 Q | 0.15 Q |
NDMI_D (1660, 1742) | 0.14 Q | 0.55 Q | 0.47 Q | 0.26 Q | 0.48 Q | 0.46 Q | 0.51 Q | 0.57 Q | 0.37 Q | 0.05 Q | 0.57 Q | 0.06 Q |
DMCI_P (1495, 2305) | 0.50 Q | 0.21 Q | 0.01 Q | 0.62 Q | 0.28 Q | 0.01 Q | 0.61 Q | 0.15 Q | 0.01 Q | 0.42 Q | 0.01 Q | 0.07 Q |
DMCI_D (1550, 2305) | 0.44 Q | 0.43 Q | 0.54 Q | 0.58 Q | 0.45 Q | 0.51 Q | 0.50 Q | 0.40 Q | 0.42 Q | 0.06 Q | 0.39 Q | 0.08 Q |
Spectral Indices | R2 | RMSE | RE | AIC | SBC | Slope | R2 | RMSE | RE | AIC | SBC | Slope |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shoot Dry Weight (SDW) | Net Photosynthesis Rate (Pn) | |||||||||||
NPQ_P (415, 435) | 0.69 | 261.2 | 16.2 | 202.2 | 204.0 | 0.76 | 0.66 | 2.75 | 16.7 | 38.3 | 40.0 | 0.79 |
NPQ_D (482, 350) | 0.83 | 190.8 | 11.6 | 190.9 | 192.7 | 0.94 | 0.80 | 2.14 | 13.4 | 29.2 | 31.0 | 0.96 |
PRI_P (570, 539) | 0.69 | 259.6 | 16.1 | 202.0 | 203.8 | 0.77 | 0.61 | 2.94 | 18.9 | 40.7 | 42.5 | 0.72 |
PRI_D (580, 531) | 0.68 | 262.4 | 16.1 | 202.4 | 204.2 | 0.76 | 0.60 | 3.00 | 18.9 | 41.5 | 43.3 | 0.71 |
NDVI_P (750, 705) | 0.81 | 202.6 | 12.4 | 193.1 | 194.9 | 0.91 | 0.74 | 2.40 | 15.0 | 33.5 | 35.3 | 0.90 |
NDVI_D (780, 715) | 0.85 | 180.2 | 10.6 | 188.9 | 190.6 | 0.96 | 0.81 | 2.08 | 13.0 | 28.3 | 30.1 | 0.97 |
BNDVI_D (970, 420) | 0.71 | 253.1 | 15.8 | 201.1 | 202.9 | 0.81 | 0.57 | 3.11 | 20.9 | 42.7 | 44.5 | 0.74 |
GNDVI_D (970, 482) | 0.78 | 218.1 | 12.3 | 195.7 | 197.5 | 0.89 | 0.67 | 2.70 | 17.3 | 37.7 | 39.5 | 0.84 |
RNDVI-1_D (970, 710) | 0.86 | 175.7 | 10.0 | 188.0 | 189.7 | 0.97 | 0.81 | 2.05 | 13.2 | 27.7 | 29.5 | 0.98 |
RNDVI-2_D (1100, 710) | 0.87 | 166.2 | 9.7 | 186.0 | 187.7 | 0.99 | 0.84 | 1.90 | 12.0 | 24.9 | 26.7 | 1.01 |
PARSa_P (750, 720) | 0.89 | 154.0 | 8.7 | 183.2 | 185.0 | 1.01 | 0.84 | 1.87 | 11.9 | 24.4 | 26.1 | 1.01 |
PARSa_D (780, 720) | 0.90 | 149.1 | 8.3 | 182.0 | 183.8 | 1.02 | 0.87 | 1.70 | 11.1 | 21.0 | 22.8 | 1.04 |
PARSb_P (675, 650, 700) | 0.93 | 123.3 | 7.6 | 175.2 | 177.0 | 1.04 | 0.80 | 2.18 | 12.8 | 29.9 | 31.7 | 0.95 |
PARSb_D (675, 640, 705) | 0.92 | 130.1 | 8.1 | 177.1 | 178.9 | 1.04 | 0.81 | 2.08 | 12.2 | 28.3 | 30.1 | 0.97 |
PARSc_P (760, 500) | 0.87 | 167.8 | 9.6 | 186.3 | 188.1 | 0.98 | 0.80 | 2.31 | 14.2 | 32.0 | 33.7 | 0.93 |
PARSc_D (760, 515) | 0.91 | 141.0 | 8.0 | 180.0 | 181.8 | 1.02 | 0.82 | 2.03 | 12.7 | 27.3 | 29.1 | 0.99 |
PSSRa_P (800/680) | 0.86 | 175.8 | 10.7 | 188.0 | 189.8 | 0.96 | 0.74 | 2.41 | 14.6 | 33.6 | 35.4 | 0.89 |
PSSRa_D (800/690) | 0.89 | 155.7 | 9.5 | 183.6 | 185.4 | 0.99 | 0.77 | 2.25 | 13.8 | 31.1 | 32.8 | 0.93 |
PSNDc_P (800, 460) | 0.77 | 226.3 | 12.9 | 197.1 | 198.9 | 0.87 | 0.64 | 2.84 | 18.3 | 39.5 | 41.3 | 0.81 |
PSNDc_D (800, 482) | 0.77 | 226.0 | 13.0 | 197.0 | 198.8 | 0.87 | 0.66 | 2.77 | 17.8 | 38.5 | 40.3 | 0.82 |
Cl red edge_P (750/710) | 0.91 | 143.1 | 8.2 | 180.6 | 182.3 | 1.02 | 0.83 | 1.94 | 12.2 | 25.7 | 27.4 | 1.00 |
Cl red edge_D (760/710) | 0.91 | 139.5 | 8.1 | 179.6 | 181.4 | 1.03 | 0.85 | 1.86 | 11.9 | 24.3 | 26.1 | 1.01 |
WABI _P (1500, 538) | 0.35 | 376.1 | 23.0 | 215.4 | 217.1 | 0.39 | 0.34 | 3.86 | 23.5 | 50.5 | 52.2 | 0.42 |
WABI -1_D (1550, 482) | 0.85 | 183.7 | 10.5 | 189.6 | 191.3 | 0.96 | 0.71 | 2.57 | 16.3 | 35.8 | 37.6 | 0.89 |
WABI -2_D (1640, 482) | 0.83 | 190.8 | 10.3 | 190.9 | 192.7 | 0.95 | 0.70 | 2.60 | 16.3 | 36.3 | 38.1 | 0.87 |
WABI -3_D (1650, 531) | 0.85 | 182.7 | 10.5 | 189.4 | 191.2 | 0.95 | 0.76 | 2.34 | 13.8 | 32.5 | 34.3 | 0.94 |
NDWI_P (2130, 858) | 0.59 | 298.6 | 16.9 | 207.0 | 208.8 | 0.67 | 0.54 | 3.20 | 18.8 | 43.8 | 45.5 | 0.66 |
NDWI_D (2270, 860) | 0.61 | 291.7 | 16.4 | 206.2 | 208.0 | 0.70 | 0.57 | 3.13 | 18.6 | 42.9 | 44.7 | 0.69 |
NDMI_P (1649, 1722) | 0.39 | 363.5 | 20.9 | 214.1 | 215.9 | 0.48 | 0.42 | 3.62 | 20.3 | 48.2 | 50.0 | 0.52 |
NDMI_D (1660, 1742) | 0.69 | 261.0 | 16.0 | 202.2 | 204.0 | 0.80 | 0.62 | 2.94 | 19.0 | 40.7 | 42.5 | 0.76 |
DMCI_P (1495, 2305) | 0.19 | 421.1 | 25.0 | 219.4 | 221.2 | 0.23 | 0.23 | 4.15 | 25.9 | 53.1 | 54.9 | 0.30 |
DMCI_D (1550, 2305) | 0.70 | 254.2 | 15.7 | 201.3 | 203.0 | 0.81 | 0.64 | 2.86 | 18.6 | 39.7 | 41.5 | 0.79 |
Spectral Indices | R2 | RMSE | RE | AIC | SBC | Slope | R2 | RMSE | RE | AIC | SBC | Slope |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stomatal Conductance (Gs) | Transpiration Rate (E) | |||||||||||
NPQ_P (415, 435) | 0.68 | 39.78 | 20.16 | 134.5 | 136.3 | 0.65 | 0.28 | 0.54 | 14.40 | −20.3 | −18.5 | 0.19 |
NPQ_D (482, 350) | 0.80 | 31.33 | 15.01 | 125.9 | 127.7 | 0.77 | 0.39 | 0.50 | 12.88 | −23.4 | −21.6 | 0.30 |
PRI_P (570, 539) | 0.67 | 40.21 | 21.46 | 134.9 | 136.6 | 0.66 | 0.32 | 0.53 | 13.64 | −21.2 | −19.4 | 0.21 |
PRI_D (580, 531) | 0.66 | 40.95 | 21.40 | 135.5 | 137.3 | 0.65 | 0.32 | 0.53 | 13.54 | −21.2 | −19.5 | 0.21 |
NDVI_P (750, 705) | 0.77 | 33.65 | 15.69 | 128.5 | 130.2 | 0.74 | 0.40 | 0.49 | 12.80 | −23.7 | −21.9 | 0.30 |
NDVI_D (780, 715) | 0.81 | 30.26 | 14.00 | 124.6 | 126.4 | 0.78 | 0.45 | 0.47 | 12.08 | −25.1 | −23.3 | 0.34 |
BNDVI_D (970, 420) | 0.63 | 42.57 | 24.35 | 136.9 | 138.7 | 0.62 | 0.49 | 0.46 | 11.20 | −26.3 | −24.5 | 0.45 |
GNDVI_D (970, 482) | 0.72 | 37.14 | 18.61 | 132.0 | 133.8 | 0.71 | 0.40 | 0.50 | 12.70 | −23.4 | −21.7 | 0.32 |
RNDVI-1_D (970, 710) | 0.82 | 29.81 | 13.82 | 124.1 | 125.9 | 0.78 | 0.46 | 0.47 | 11.89 | −25.5 | −23.7 | 0.36 |
RNDVI-2_D (1100, 710) | 0.84 | 27.95 | 12.59 | 121.8 | 123.6 | 0.80 | 0.46 | 0.47 | 11.87 | −25.3 | −23.6 | 0.36 |
PARSa_P (750, 720) | 0.85 | 26.77 | 12.12 | 120.2 | 122.0 | 0.82 | 0.50 | 0.45 | 11.46 | −26.9 | −25.1 | 0.39 |
PARSa_D (780, 720) | 0.87 | 25.77 | 11.80 | 118.9 | 120.6 | 0.82 | 0.51 | 0.45 | 11.18 | −27.2 | −25.4 | 0.40 |
PARSb_P (675, 650, 700) | 0.88 | 23.89 | 11.56 | 116.1 | 117.9 | 0.87 | 0.64 | 0.38 | 9.48 | −32.9 | −31.2 | 0.53 |
PARSb_D (675, 640, 705) | 0.89 | 23.50 | 10.81 | 115.5 | 117.3 | 0.87 | 0.66 | 0.37 | 9.20 | −33.5 | −31.7 | 0.55 |
PARSc_P (760, 500) | 0.84 | 28.31 | 14.11 | 122.2 | 124.0 | 0.83 | 0.54 | 0.43 | 10.86 | −28.1 | −26.4 | 0.43 |
PARSc_D (760, 515) | 0.87 | 25.48 | 12.73 | 118.4 | 120.2 | 0.85 | 0.57 | 0.42 | 10.51 | −29.5 | −27.7 | 0.46 |
PSSRa_P (800/680) | 0.80 | 31.39 | 14.87 | 126.0 | 127.7 | 0.80 | 0.49 | 0.45 | 11.51 | −26.6 | −24.8 | 0.38 |
PSSRa_D (800/690) | 0.83 | 28.73 | 13.66 | 122.8 | 124.6 | 0.83 | 0.53 | 0.44 | 11.01 | −27.9 | −26.1 | 0.41 |
PSNDc_P (800, 460) | 0.70 | 38.36 | 19.61 | 133.2 | 135.0 | 0.69 | 0.40 | 0.49 | 12.52 | −23.6 | −21.9 | 0.34 |
PSNDc_D (800, 482) | 0.71 | 38.10 | 19.29 | 132.9 | 134.7 | 0.69 | 0.37 | 0.50 | 12.98 | −22.8 | −21.0 | 0.30 |
Cl red edge_P (750/710) | 0.86 | 26.22 | 11.98 | 119.5 | 121.3 | 0.83 | 0.53 | 0.44 | 11.22 | −27.8 | −26.0 | 0.41 |
Cl red edge_D (760/710) | 0.87 | 25.61 | 11.69 | 118.6 | 120.4 | 0.84 | 0.53 | 0.44 | 11.11 | −28.0 | −26.2 | 0.42 |
WABI _P (1500, 538) | 0.35 | 56.46 | 28.58 | 147.1 | 148.9 | 0.32 | 0.41 | 0.49 | 11.39 | −23.8 | −22.0 | 0.40 |
WABI -1_D (1550, 482) | 0.80 | 31.18 | 16.66 | 125.7 | 127.5 | 0.79 | 0.55 | 0.43 | 10.92 | −28.6 | −26.8 | 0.48 |
WABI -2_D (1640, 482) | 0.78 | 32.71 | 17.05 | 127.4 | 129.2 | 0.77 | 0.49 | 0.45 | 11.46 | −26.5 | −24.7 | 0.42 |
WABI -3_D (1650, 531) | 0.81 | 30.97 | 15.21 | 125.5 | 127.3 | 0.78 | 0.61 | 0.40 | 10.10 | −31.3 | −29.6 | 0.54 |
NDWI_P (2130, 858) | 0.53 | 48.31 | 23.86 | 141.5 | 143.3 | 0.52 | 0.23 | 0.56 | 13.84 | −19.0 | −17.2 | 0.16 |
NDWI_D (2270, 860) | 0.54 | 47.45 | 23.93 | 140.8 | 142.6 | 0.53 | 0.24 | 0.55 | 13.62 | −19.3 | −17.6 | 0.17 |
NDMI_P (1649, 1722) | 0.36 | 56.13 | 26.60 | 146.9 | 148.7 | 0.31 | 0.33 | 0.52 | 11.16 | −21.5 | −19.7 | 0.30 |
NDMI_D (1660, 1742) | 0.63 | 42.62 | 23.26 | 137.0 | 138.7 | 0.61 | 0.36 | 0.51 | 12.06 | −22.5 | −20.7 | 0.28 |
DMCI_P (1495, 2305) | 0.16 | 64.26 | 32.32 | 151.7 | 153.5 | 0.12 | 0.15 | 0.59 | 13.49 | −17.3 | −15.5 | 0.16 |
DMCI_D (1550, 2305) | 0.63 | 42.57 | 22.50 | 136.9 | 138.7 | 0.61 | 0.35 | 0.52 | 12.06 | −22.0 | −20.2 | 0.28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Hendawy, S.; Al-Suhaibani, N.; Dewir, Y.H.; Elsayed, S.; Alotaibi, M.; Hassan, W.; Refay, Y.; Tahir, M.U. Ability of Modified Spectral Reflectance Indices for Estimating Growth and Photosynthetic Efficiency of Wheat under Saline Field Conditions. Agronomy 2019, 9, 35. https://doi.org/10.3390/agronomy9010035
El-Hendawy S, Al-Suhaibani N, Dewir YH, Elsayed S, Alotaibi M, Hassan W, Refay Y, Tahir MU. Ability of Modified Spectral Reflectance Indices for Estimating Growth and Photosynthetic Efficiency of Wheat under Saline Field Conditions. Agronomy. 2019; 9(1):35. https://doi.org/10.3390/agronomy9010035
Chicago/Turabian StyleEl-Hendawy, Salah, Nasser Al-Suhaibani, Yaser Hassan Dewir, Salah Elsayed, Majed Alotaibi, Wael Hassan, Yahya Refay, and Muhammad Usman Tahir. 2019. "Ability of Modified Spectral Reflectance Indices for Estimating Growth and Photosynthetic Efficiency of Wheat under Saline Field Conditions" Agronomy 9, no. 1: 35. https://doi.org/10.3390/agronomy9010035
APA StyleEl-Hendawy, S., Al-Suhaibani, N., Dewir, Y. H., Elsayed, S., Alotaibi, M., Hassan, W., Refay, Y., & Tahir, M. U. (2019). Ability of Modified Spectral Reflectance Indices for Estimating Growth and Photosynthetic Efficiency of Wheat under Saline Field Conditions. Agronomy, 9(1), 35. https://doi.org/10.3390/agronomy9010035