Sustainable and Profitable Nitrogen Fertilization Management of Potato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site, Climate and Soil
2.2. Experimental Design, Plant Material and Management Practices
2.3. Data Collection and Calculations
2.3.1. SPAD Measurements
2.3.2. Plant Weight and Tuber Yield
2.3.3. Economically Optimum N Fertilizer Rate
2.3.4. Determination of Crop Nitrogen Content and Nitrogen Uptake
2.3.5. Nitrogen Efficiency Indices
2.4. Meteorological Data
2.5. Statistical Analysis
2.6. Weather Conditions
3. Results
3.1. Crop Nitrogen Uptake, SPAD Readings, ANRE
3.2. Tuber Yield and Economically Optimum N Fertilizer Rate
3.3. Nitrogen Efficiency Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Faostat. Food and Agriculture Data; Food and Agricultural Organization: Rome, Italy, 2017; Available online: http:www//fao.org/faostat/en/#data/QC (accessed on 21 June 2018).
- Ierna, A.; Mauromicale, G. Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime. Agric. Water Manag. 2012, 115, 276–284. [Google Scholar] [CrossRef]
- Ierna, A. Tuber yield and quality characteristics of potatoes for off-season crops in a Mediterranean environment. J. Sci. Food Agric. 2010, 90, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Ierna, A.; Parisi, B. Crop growth and tuber yield of “early” potato crop under organic and conventional farming. Sci. Hortic. 2014, 165, 260–265. [Google Scholar] [CrossRef]
- Vos, J.; Van der Putten, P.E.L. Effect of nitrogen supply on leaf growth, leaf nitrogen economy and photosynthetic capacity in potato. Field Crop Res. 1998, 59, 63–72. [Google Scholar] [CrossRef]
- Vos, J. Nitrogen responses and nitrogen management in potato. Potato Res. 2009, 52, 305–317. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Potato growth, yield and water productivity response to different irrigation and fertilization regimes. Agric. Water Manag. 2018, 201, 21–26. [Google Scholar] [CrossRef]
- Van Bueren, E.T.L.; Struik, P.C. Diverse concepts of breeding for nitrogen use efficiency. A review. Agron. Sustain. Dev. 2017, 37, 50. [Google Scholar] [CrossRef] [Green Version]
- Foti, S.; Mauromicale, G.; Ierna, A. Influence of irrigation regimes on growth and yield of potato cv. Spunta. Potato Res. 1995, 38, 307–317. [Google Scholar] [CrossRef]
- Halitligil, M.B.; Akin, A.; Ylbeyi, A. Nitrogen balance of nitrogen-15 applied as ammonium sulphate to irrigated potatoes in sandy textured soils. Biol. Fertil. Soils 2002, 35, 369–378. [Google Scholar]
- Spiertz, J.H.J. Nitrogen, sustainable agriculture and food security: A review. Agron. Sustain. Dev. 2010, 30, 43–55. [Google Scholar] [CrossRef]
- European Economic Community. Council Directive 91/676/EEC. 1991. Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources. Available online: https://www.eea.europa.eu/policy-documents/council-directive-91-676-eec/ (accessed on 21 December 2018).
- European Commission. Directive 2000/60/EC. 2000. Framework for Community Action in the Field of Water Policy. Available online: http://www.ec.europa.eu/environment/water/water-framework/ (accessed on 13 December 2018).
- Swain, E.Y.; Rempelos, L.; Orr, C.H.; Hall, G.; Chapman, R.; Almadni, M.; Stockdale, E.A.; Kidd, J.; Leifert, C.; Cooper, J.M. Optimizing nitrogen use efficiency in wheat and potatoes: Interactions between genotypes and agronomic practices. Euphytica 2014, 199, 119–136. [Google Scholar] [CrossRef]
- Wishart, J.; George, T.S.; Brown, L.K.; Ramsay, G.; Bradshaw, J.E.; White, P.J.; Gregory, P.J. Measuring variation in potato roots in both field and glasshouse: The search for useful yield predictors and a simple screen for root traits. Plant Soil 2013, 368, 231–249. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Tai, G.; Tarn, R.; De Jong, H.; Milburn, P.H. Nitrogen use efficiency characteristics of commercial potato cultivars. Can. J. Plant Sci. 2004, 84, 589–598. [Google Scholar] [CrossRef]
- Mohammad, M.J.; Zuraiqi, S.; Quasmeh, W.; Papadopoulos, I. Yield response and nitrogen utilization efficiency by drip-irrigated potato. Nutr. Cycl. Agroecosyst. 1999, 54, 243–249. [Google Scholar] [CrossRef]
- Darwish, T.M.; Atallah, T.W.; Hajhasan, S.; Haidar, A. Nitrogen and water use efficiency of fertigated processing potato. Agric. Water Manag. 2006, 85, 95–104. [Google Scholar] [CrossRef]
- Badr, M.A.; El-Tohamy, W.A.; Zaghloul, A.M. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2012, 110, 9–15. [Google Scholar] [CrossRef]
- USDA (U.S. Department of Agriculture). Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys. In Soil Conservation Service, Agricultural Handbook; Government Printing Office: Washington, DC, USA, 1975; p. 754. [Google Scholar]
- Mauromicale, G.; Signorelli, P.; Ierna, A.; Foti, S. Effects of intraspecific competition on yield of early potato grown in Mediterranean environment. Am. Potato J. 2003, 80, 281–288. [Google Scholar] [CrossRef]
- Habyarimana, E.; Parisi, B.; Mandolino, G. Genomic prediction for yields, processing and nutritional quality traits in cultivated potato (Solanum tuberosum L.). Plant Breed. 2017, 136, 245–252. [Google Scholar] [CrossRef]
- Vos, J.; Bom, M. Hand-held chlorophyll meter: A promising tool to assess the nitrogen status of potato foliage. Potato Res. 1993, 36, 301–308. [Google Scholar] [CrossRef]
- Fontes, P.C.R.; Braun, H.; Busato, C.; Cecon, P.R. Economic optimum nitrogen fertilization rates and nitrogen fertilization rate effects on tuber characteristics of potato cultivars. Potato Res. 2010, 53, 167–179. [Google Scholar] [CrossRef]
- Belanger, G.; Walsh, J.R.; Richards, J.E.; Milburn, P.H.; Ziadi, N. Comparison of three statistical models describing potato yield response to nitrogen fertilizer. Agron. J. 2000, 92, 902–908. [Google Scholar] [CrossRef]
- CCIAA (Camera di Commercio Industria Artigianato e Agricoltura) di Bologna [Chamber of Commerce, Industry, Crafts and Agriculture of Bologna] 2017. Available online: http://www.bo.camcom.gov.it (accessed on 29 December 2018).
- Neeteson, J.J. Evaluation of the performance of three advisory methods for nitrogen fertilization of sugar beet and potatoes. Neth. J. Agric. Sci. 1989, 37, 143–155. [Google Scholar]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Gariglio, N.F.; Pilatti, R.A.; Baldi, B.L. Using nitrogen balance to calculate fertilization in strawberries. HortTechnology 2000, 10, 147–150. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 16th ed.; sec. 33.2.11, Method 991.20; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1995; Available online: http://www.aoac.org/ (accessed on 15 July 2018).
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; The Iowa State University Press Publishing: New York, NY, USA, 1989. [Google Scholar]
- Gianquinto, G.; Goffart, J.E.; Olivier, M.; Guarda, G.; Colauzzi, M.; Dalla Costa, L.; Delle Vedove, G.; Vos, J.; Mackerron, D.K.L. The use of hand-held chlorophyll meters as a tool to assess the nitrogen status and to guide nitrogen fertilization of potato crop. Potato Res. 2004, 47, 35–80. [Google Scholar] [CrossRef]
- Saoud, A.A.; Van Cleemput, O.; Hofman, G. Uptake and balance of labelled fertilizer nitrogen by potatoes. Fert. Res. 1992, 31, 351–353. [Google Scholar] [CrossRef]
- Greenwood, D.J.; Draycott, A. Recovery of fertilizer-N by diverse vegetable crops: Processes and models. In Nitrogen Efficiency in Agricultural Soils; Jenkinson, D.S., Smith, K.A., Eds.; Elsevier Applied Science: London, UK, 1988; pp. 46–61. [Google Scholar]
- Cerrato, M.E.; Blackmer, A.M. Comparison of models for describing corn yield response to nitrogen fertilizer. Agron. J. 1990, 82, 138–143. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Coutinho, J.; Martins, F.; Arrobas, M. Quantitative sidedress nitrogen recommendations for potatoes based upon crop nutritional indices. Eur. J. Agron. 2005, 23, 79–88. [Google Scholar] [CrossRef]
- Iwama, K. Physiology of the potato: New insights into root system and repercussions. Potato Res. 2008, 51, 333–353. [Google Scholar] [CrossRef]
- Ospina, C.A.; van Bueren, E.T.; Allefs, J.J.H.M.; Engel, B.; van der Putten, P.E.L.; van der Linden, C.G.; Struik, P.C. Diversity of crop development traits and nitrogen use efficiency among potato cultivars grown under contrasting nitrogen regimes. Euphytica 2014, 199, 13–29. [Google Scholar] [CrossRef]
Variable | Source of Variation | df | Season I | Season II | df | Season III |
---|---|---|---|---|---|---|
CNU | Nitrogen rate (N) | 4 | *** | *** | 4 | *** |
cultivar (C) | 3 | *** | *** | 1 | ** | |
(N) × (C) | 18 | *** | *** | 8 | *** | |
SPAD readings | Nitrogen rate (N) | 4 | *** | *** | 4 | *** |
cultivar (C) | 3 | *** | *** | 1 | *** | |
(N) × (C) | 18 | *** | *** | 8 | ** | |
ANRE | Nitrogen rate (N) | 3 | *** | *** | 3 | *** |
cultivar (C) | 3 | *** | *** | 1 | *** | |
(N) × (C) | 14 | ** | *** | 6 | ** | |
Tuber yield | Nitrogen rate (N) | 4 | *** | *** | 4 | *** |
cultivar (C) | 3 | *** | *** | 1 | ** | |
(N) × (C) | 18 | *** | ** | 8 | *** | |
NUE | Nitrogen rate (N) | 4 | *** | *** | 4 | *** |
cultivar (C) | 3 | *** | *** | 1 | ** | |
(N) × (C) | 18 | *** | ** | 8 | *** | |
NUpE | Nitrogen rate (N) | 4 | *** | *** | 4 | *** |
cultivar (C) | 3 | *** | *** | 1 | NS | |
(N) × (C) | 18 | *** | ** | 8 | NS | |
NUtE | Nitrogen rate (N) | 4 | *** | *** | 4 | ** |
cultivar (C) | 3 | ** | *** | 1 | *** | |
(N) × (C) | 18 | NS | NS | 8 | *** | |
AgNUE | Nitrogen rate (N) | 3 | *** | *** | 3 | *** |
cultivar (C) | 3 | *** | *** | 1 | *** | |
(N) × (C) | 14 | ** | ** | 6 | *** |
Crop Nitrogen Uptake (kg ha−1) | SPAD Readings (units) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Season | N Rate | Spunta | Sieglinde | Daytona | Ninfa | Spunta | Sieglinde | Daytona | Ninfa |
I | N0 | 43.3 | 47.4 | 52.2 | 48.9 | 36.0 | 32.9 | 33.1 | 34.0 |
N100 | 113.2 | 111.4 | 115.8 | 114.3 | 40.0 | 35.1 | 36.9 | 36.1 | |
N200 | 158.4 | 137.4 | 160.4 | 163.7 | 41.1 | 37.1 | 39.0 | 38.0 | |
N300 | 185.9 | 156.4 | 175.1 | 171.1 | 44.0 | 37.0 | 39.8 | 38.9 | |
N400 | 209.0 | 154.5 | 190.0 | 217.9 | 45.1 | 39.1 | 39.9 | 39.9 | |
L | *** | *** | *** | *** | *** | *** | *** | ||
Q | *** | *** | *** | *** | *** | ** | |||
LSD inter. (P ≤ 0.05) 15.9 | 1.3 | ||||||||
II | N0 | 74.9 | 83.5 | 90.9 | 88.1 | 38.6 | 35.7 | 36.0 | 33.3 |
N100 | 116.0 | 131.3 | 156.1 | 133.0 | 39.3 | 38.6 | 40.0 | 36.7 | |
N200 | 107.7 | 115.3 | 162.8 | 145.1 | 41.2 | 39.3 | 40.6 | 38.9 | |
N300 | 166.2 | 126.8 | 177.0 | 159.0 | 43.0 | 40.0 | 41.3 | 40.0 | |
N400 | 168.0 | 154.9 | 201.3 | 198.8 | 44.6 | 39.0 | 40.7 | 40.7 | |
L | *** | *** | *** | *** | *** | * | *** | *** | |
Q | * | ** | * | ||||||
LSD inter. (P ≤ 0.05) 27.7 | 1.2 | ||||||||
III | Rubino | Ninfa | Rubino | Ninfa | |||||
N0 | 67.1 | 60.5 | 32.4 | 34.8 | |||||
N100 | 106.4 | 115.2 | 37.9 | 39.3 | |||||
N200 | 105.9 | 128.3 | 38.4 | 40.9 | |||||
N300 | 106.6 | 123.6 | 40.7 | 41.8 | |||||
N400 | 113.7 | 151.0 | 38.1 | 41.9 | |||||
L | *** | *** | * | ||||||
Q | ** | *** | |||||||
LSD inter. (P ≤ 0.05) 9.7 | 1.2 |
ANRE (%) | Tuber Yield (t ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Season | N Rate | Spunta | Sieglinde | Daytona | Ninfa | Spunta | Sieglinde | Daytona | Ninfa |
I | N0 | - | - | - | - | 14.3 | 14.5 | 19.4 | 20.5 |
N100 | 80 | 64 | 64 | 65 | 35.9 | 31.1 | 35.9 | 37.0 | |
N200 | 62 | 45 | 54 | 57 | 46.7 | 35.3 | 43.5 | 47.4 | |
N300 | 51 | 36 | 41 | 41 | 48.7 | 38.1 | 41.1 | 46.7 | |
N400 | 44 | 27 | 34 | 42 | 48.5 | 35.1 | 39.0 | 46.2 | |
L | *** | *** | *** | *** | *** | *** | *** | *** | |
Q | *** | *** | *** | *** | |||||
LSD inter. (P ≤ 0.05) 6.0 5.0 | |||||||||
II | N0 | - | - | - | - | 35.7 | 25.3 | 43.8 | 40.6 |
N100 | 41 | 48 | 65 | 45 | 47.7 | 36.8 | 50.8 | 47.5 | |
N200 | 30 | 16 | 36 | 28 | 47.6 | 33.8 | 55.6 | 50.7 | |
N300 | 16 | 14 | 29 | 24 | 53.3 | 32.8 | 58.0 | 48.5 | |
N400 | 23 | 18 | 28 | 28 | 54.6 | 35.2 | 61.8 | 48.2 | |
L | * | ** | *** | ** | *** | ** | |||
Q | * | ** | * | * | * | ||||
LSD inter. (P ≤ 0.05) 11.2 5.4 | |||||||||
III | Rubino | Ninfa | Rubino | Ninfa | |||||
N0 | - | - | 19.7 | 16.3 | |||||
N100 | 39 | 55 | 28.7 | 32.9 | |||||
N200 | 19 | 34 | 30.9 | 43.0 | |||||
N300 | 13 | 21 | 25.0 | 40.1 | |||||
N400 | 12 | 23 | 28.3 | 33.6 | |||||
L | *** | *** | * | *** | |||||
Q | *** | *** | ** | *** | |||||
LSD inter. (P ≤ 0.05) 3.0 3.7 |
Cultivar | Season | Quadratic Equation | R | EONFR (kg N ha−1) | Tuber Yield (t ha−1) |
---|---|---|---|---|---|
Spunta | I | Y = 15094 + 230.9 x − 0.374 x2 | 0.995 | 268 | 50.1 |
Sieglinde | I | Y = 15380 + 164.2 x − 0.290 x2 | 0.989 | 241 | 38.1 |
Daytona | I | Y = 20157 + 179.2 x − 0.337 x2 | 0.986 | 227 | 43.5 |
Ninfa | I | Y = 20897 + 189.9 x − 0.322 x2 | 0.993 | 254 | 48.3 |
Ninfa | II | Y = 41031 + 72.8 x − 0.141 x2 | 0.963 | 176 | 49.4 |
Ninfa | III | Y = 16363 + 210.9 x − 0.423 x2 | 0.995 | 197 | 41.5 |
Rubino | III | Y = 21034 + 69.2 x − 0.139 x2 | 0.773 | 181 | 29.0 |
NUE (kg Tuber DW kg N−1) | NUpE (kg N kg N−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Season | N Rate | Spunta | Sieglinde | Daytona | Ninfa | Spunta | Sieglinde | Daytona | Ninfa |
I | N0 | 68.2 | 83.0 | 112.3 | 101.8 | 0.64 | 0.91 | 1.00 | 0.94 |
N100 | 52.5 | 45.2 | 57.4 | 50.3 | 0.74 | 0.73 | 0.76 | 0.75 | |
N200 | 36.4 | 30.4 | 41.1 | 37.0 | 0.63 | 0.55 | 0.64 | 0.65 | |
N300 | 25.3 | 22.8 | 25.8 | 23.4 | 0.53 | 0.44 | 0.50 | 0.49 | |
N400 | 20.9 | 16.5 | 20.7 | 18.6 | 0.46 | 0.34 | 0.42 | 0.48 | |
L | *** | *** | *** | *** | *** | *** | *** | *** | |
Q | ** | *** | *** | *** | ** | * | |||
LSD inter. (P ≤ 0.05) 14.4 | 0.09 | ||||||||
II | N0 | 78.0 | 63.2 | 111.5 | 102.6 | 0.81 | 0.90 | 0.98 | 0.95 |
N100 | 49.6 | 44.8 | 62.4 | 55.9 | 0.60 | 0.68 | 0.81 | 0.56 | |
N200 | 32.2 | 25.7 | 42.6 | 39.6 | 0.37 | 0.39 | 0.56 | 0.50 | |
N300 | 26.8 | 18.7 | 30.6 | 28.0 | 0.42 | 0.32 | 0.45 | 0.40 | |
N400 | 22.4 | 15.1 | 24.3 | 25.1 | 0.34 | 0.31 | 0.41 | 0.40 | |
L | *** | *** | *** | *** | *** | *** | *** | *** | |
Q | *** | ** | *** | ** | ** | ** | * | *** | |
LSD inter. (P ≤ 0.05) 12.7 | 0.1 | ||||||||
III | Rubino | Ninfa | Rubino | Ninfa | |||||
N0 | 51.5 | 49.8 | 1.00 | 0.93 | |||||
N100 | 28.7 | 36.9 | 0.63 | 0.67 | |||||
N200 | 17.8 | 25.7 | 0.39 | 0.47 | |||||
N300 | 11.3 | 16.3 | 0.29 | 0.34 | |||||
N400 | 10.1 | 12.3 | 0.24 | 0.32 | |||||
L | *** | *** | *** | *** | |||||
Q | *** | *** | *** | ||||||
LSD inter. (P ≤ 0.05) 3.1 |
NUtE (kg Tuber DW kg N−1) | AgNUE (kg Tuber DW kg N−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Season | N Rate | Spunta | Sieglinde | Daytona | Ninfa | Spunta | Sieglinde | Daytona | Ninfa |
I | N0 | 81.5 | 70.4 | 87.3 | 82.1 | - | - | - | - |
N100 | 64.7 | 56.6 | 69.2 | 62.0 | 73.3 | 63.1 | 80.1 | 70.2 | |
N200 | 55.1 | 53.6 | 61.5 | 54.1 | 43.7 | 36.3 | 49.2 | 44.2 | |
N300 | 46.4 | 49.7 | 50.4 | 47.1 | 28.7 | 25.8 | 29.1 | 26.4 | |
N400 | 44.2 | 47.0 | 47.9 | 37.5 | 23.0 | 18.1 | 22.8 | 20.3 | |
L | *** | *** | *** | *** | *** | *** | *** | *** | |
Q | *** | * | *** | *** | *** | *** | |||
LSD inter. (P ≤ 0.05) 6.4 | |||||||||
II | N0 | 100.8 | 72.0 | 115.1 | 108.5 | - | - | - | - |
N100 | 82.4 | 65.5 | 77.3 | 100.9 | 95.8 | 86.5 | 120.4 | 107.9 | |
N200 | 87.1 | 65.9 | 77.1 | 80.3 | 47.1 | 37.7 | 62.3 | 58.0 | |
N300 | 63.5 | 57.7 | 67.6 | 69.1 | 35.1 | 24.5 | 40.1 | 36.7 | |
N400 | 65.6 | 48.2 | 59.8 | 62.2 | 27.6 | 18.6 | 30.0 | 31.0 | |
L | ** | * | *** | *** | *** | *** | *** | *** | |
Q | *** | ** | ** | *** | |||||
LSD inter. (P ≤ 0.05) 11.0 | |||||||||
III | Rubino | Ninfa | Rubino | Ninfa | |||||
N0 | 48.6 | 54.3 | - | - | |||||
N100 | 48.1 | 60.8 | 47.9 | 58.9 | |||||
N200 | 45.9 | 70.1 | 23.8 | 33.3 | |||||
N300 | 38.3 | 67.0 | 13.8 | 19.6 | |||||
N400 | 41.2 | 46.4 | 11.9 | 14.1 | |||||
L | * | *** | *** | ||||||
Q | *** | *** | *** | ||||||
LSD inter. (P ≤ 0.05) 8.2 3.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ierna, A.; Mauromicale, G. Sustainable and Profitable Nitrogen Fertilization Management of Potato. Agronomy 2019, 9, 582. https://doi.org/10.3390/agronomy9100582
Ierna A, Mauromicale G. Sustainable and Profitable Nitrogen Fertilization Management of Potato. Agronomy. 2019; 9(10):582. https://doi.org/10.3390/agronomy9100582
Chicago/Turabian StyleIerna, Anita, and Giovanni Mauromicale. 2019. "Sustainable and Profitable Nitrogen Fertilization Management of Potato" Agronomy 9, no. 10: 582. https://doi.org/10.3390/agronomy9100582
APA StyleIerna, A., & Mauromicale, G. (2019). Sustainable and Profitable Nitrogen Fertilization Management of Potato. Agronomy, 9(10), 582. https://doi.org/10.3390/agronomy9100582