Soil Biological Quality Assessment to Improve Decision Support in the Wine Sector
Abstract
:1. Introduction
2. Materials and Methods
2.1. The DSS
- Module 1 addresses the evaluation of structural biodiversity of the farm considered, using indices proposed by ISPRA, an Italian public research institute for environmental studies and protection [3];
- Module 2 assesses the sustainability of the company. It evaluates how the production processes fulfil the requirements of good practice for wine company sustainability. The evaluation system is based on application of Section 8 of the GEAvite® protocol, as defined in Valenti et al. [51].
- Module 3 evaluates structural and chemical soil quality. Visual soil assessment is based on the protocol proposed by FAO [52], and chemical soil analysis considers the most commonly measured chemical components (e.g., organic matter content, available phosphorous, potassium and magnesium, for further details see the Materials and Methods section).
- Module 4 considers soil penetration capacity, which is assessed with static penetrometric measurements [53].
- Module 5 addresses soil biodiversity, evaluating three major components of soil biota: earthworm presence and demographic structure, mycorrhizae presence, and soil arthropod biodiversity, through application of the QBS-ar index [36]. This paper focus on the latter component of module 5 with the aim of better understanding the environmental and agronomic influences on the QBS-ar index and then obtaining indication for improving the use of the DSS.
2.2. Study Sites
2.3. Meteorological Data
- Tmax_l: number of days in which the daily maximum temperature was below 20 °C;
- Tmax_m: number of days in which the daily maximum temperature was between 20 °C and 30 °C;
- Tmax_h: number of days in which the daily maximum temperature was above 30 °C;
- Prec_t: total cumulative precipitation (mm);
- Prec_l: low precipitation period, if cumulative rainfall was 13.50 mm or below;
- Prec_m: medium precipitation period, if cumulative rainfall was between 13.50 mm and 186.51 mm;
- Prec_h: high precipitation period, if cumulative rainfall was 186.51 mm or above.
2.4. Chemical Characterisation of Soils
2.5. Soil biological Quality Evaluation (QBS-ar)
2.6. Statistical Analysis
3. Results
3.1. Statistical Model
3.2. Relationship with Farming Systems
3.3. Relationship with Meteorological Variables
- High daily maximum temperatures (Temp_h) were negatively related to the QBS-ar value, i.e., the number of days when the maximum daily temperature exceeded 30 °C in the 30 days before sample collection increased the QBS-ar value;
- Total cumulative precipitation (Prec_t) was positive related to QBS-ar, i.e., an increase in total precipitation increased the estimated QBS-ar value.
3.4. Relationship with Pedological Variables
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- MEA (Millennium Ecosystem Assessment). Ecosystems and Human Well-being: Biodiversity Synthesis; World Resosurce Institute: Washington, DC, USA, 2005. [Google Scholar]
- Büchs, W. Biotic Indicators for Biodiversity and Sustainable Agriculture—Introduction and background. Agric. Ecosyst. Environ. 2003, 98, 1–16. [Google Scholar] [CrossRef]
- ISPRA. Indicatori di Biodiversità per la Sostenibilità in Agricoltura. Linee guida, Strumenti e Metodi per la Valutazione della Qualità degli Agroecosistemi; Istituto Superiore per la Protezione e la Ricerca Ambientale: Roma, Italy, 2008.
- Gomiero, T.; Giampietro, M.; Mayumi, K. Facing complexity on agro-ecosystems: A new approach to farming system analysis. Int. J. Agric. Res. Gov. Ecol. 2006, 5, 116–144. [Google Scholar] [CrossRef]
- Van der Merwe, A.; Van Dyk, F.E.; Van Vuuren, J.H. Decision support for grape harvesting at a South African winery. ORiON 2011, 27, 83–100. [Google Scholar] [CrossRef]
- Wine Institute. Comprehensive Guide to Sustainable Management of Winery Water and Associated Energy Kennedy/Jenk Consultants—Engineers and Scientists. 2008. Available online: http://www.wineinstitute.org/files/AVF-Guide.pdf (accessed on 27 September 2019).
- Cancela, H.; Higgins, A.; Pagès-Bernaus, A.; Plà-Aragonès, L.M. Prologue—BigData and DSS in agriculture. Comput. Electron. Agric. 2019, 161, 1–3. [Google Scholar] [CrossRef]
- Matthews, K.B.; Schwarz, G.; Buchan, K.; Rivington, M.; Miller, D. Wither agricultural DSS? Comput. Electron. Agric. 2008, 61, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Expósito, J.P.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. VineSens: An Eco-Smart Decision-Support Viticulture System. Sensors 2017, 17, 465. [Google Scholar] [CrossRef]
- Caffarra, A.; Rinaldi, M.; Eccel, E.; Rossi, V.; Pertot, I. Modelling the impact of climate change on the interaction between a grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric. Ecosyst. Environ. 2012, 148, 89–101. [Google Scholar] [CrossRef]
- Kuflik, T.; Prodorutti, D.; Frizzi, A.; Gafni, Y.; Simon, S.; Pertot, I. Optimisation of copper treatment in organic viticulture by using a web-based decision support system. Comput. Electron. Agric. 2009, 68, 36–43. [Google Scholar] [CrossRef]
- Calonnec, A.; Cartolaro, P.; Naulin, J.M.; Bailey, D.; Langlais, M. A host-pathogen simulation model: Powdery mildew of grapevine. Plant Pathol. 2008, 57, 493–508. [Google Scholar] [CrossRef]
- Rinaldi, S.; Tiano, A.; Serban, S.; Pittson, R.; Lajic, Z.; Politi, H.; El Murr, N.; Armani, A.; Cavazza, A. Monitoring wine quality and fermentation kinetics with innovative technologies. In XXIX Congreso mundial de la Viña y el Vino: 4a Asamblea General de la O.I.V.; Ministerio de Agricultura, Pesca y Alimentaciòn: Madrid, Spain, 2006; p. 10. [Google Scholar]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Powlson, D.S.; Gregory, P.J.; Whalley, W.R.; Quinton, J.N.; Hopkins, D.W.; Whitmore, A.P.; Hirsch, P.R.; Goulding, K.W.T. Soil management in relation to sustainable agriculture and ecosystem services. Food Policy 2011, 36, 72–87. [Google Scholar] [CrossRef]
- Schoenholtz, S.H.; Van Miegroet, H.; Burger, J.A. A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities. For. Ecol. Manag. 2000, 138, 335–356. [Google Scholar] [CrossRef]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil quality: A concept, definition, and framework for evaluation. Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- Zarraonaindia, I.; Owens, S.M.; Weisenhorn, P.; West, K.; Marcell, J.H.; Lax, S.; Bokulich, N.A.; Mills, D.A.; Martin, G.; Taghavi, S.; et al. The soil microbiome influences grapevine-associated microbiota. MBio 2015, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Costantini, E.A.C.; Agnelli, A.E.; Fabiani, A.; Gagnarli, E.; Mocali, S.; Priori, S.; Simoni, S.; Valboa, G. Short-term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming. Soil 2015, 1, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Fusaro, S.; Gavinelli, F.; Lazzarini, F.; Paoletti, M.G. Soil biological quality Soil Biological Quality Index based on earthworms (QBS-e). A new way to use earthworms as bioindicators in agroecosystems. Ecol. Indic. 2018, 93, 1276–1292. [Google Scholar] [CrossRef]
- Priori, S.; Lagomarsino, A.; Agnelli, A.E.; Valboa, G.; Castaldini, M.; Pellegrini, S.; Simoni, S.; D’Avino, L.; Gagnarli, E.; Guidi, S.; et al. CostantiniSoil functionality assessment in degraded plots of vineyards. Suoli di Qualità per una Vita di Qualità 2017, 1, 190–199. [Google Scholar]
- Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M.R.; Corino, L.; Simon, S. Case study of microarthropod communities to assess soil quality in different managed vineyards. Soil 2015, 1, 527–536. [Google Scholar] [CrossRef] [Green Version]
- Galli, L.; Capurro, M.; Menta, C.; Rellini, I. Is the QBS-ar index a good tool to detect the soil quality in Mediterranean areas? A cork tree Quercus suber, L. (Fagaceae) wood as a case of study. Ital. J. Zool. 2014, 81, 126–135. [Google Scholar] [CrossRef]
- Menta, C.; Leoni, A.; Gardi, C.; Conti, F.D. Are grasslands important habitats for soil microarthropod conservation? Biodivers. Conserv. 2011, 20, 1073–1087. [Google Scholar] [CrossRef]
- Tabaglio, V.; Gavazzi, C.; Menta, C. Physico-chemical indicators and microarthropod communities as influenced by no-till, conventional tillage and nitrogen fertilisation after four years of continuous maize. Soil Till. Res. 2009, 105, 135–142. [Google Scholar] [CrossRef]
- Neave, P.; Fox, C.A. Response of soil invertebrates to reduced tillage systems established on a clay loam soil. Appl. Soil Ecol. 1998, 9, 423–428. [Google Scholar] [CrossRef]
- Chikoski, J.M.; Ferguson, S.H.; Meyer, L. Effects of water addition on soil arthropods and soil characteristics in a precipitation-limited environment. Acta Oecol. 2006, 30, 203–211. [Google Scholar] [CrossRef]
- Parisi, V.; Menta, C.; Gardi, C.; Jacomini, C.; Mozzanica, E. Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agric. Ecosyst. Environ. 2005, 105, 323–333. [Google Scholar] [CrossRef]
- Hassall, M.; Visser, S.; Parkinson, D. Vertical migration of Onychiurus subtensis (Collembola) in relation to rainfall and microbial activity. Pedobiologia (Jena) 1986, 29, 175–182. [Google Scholar]
- Döring, J.; Collins, C.; Frisch, M.; Kauer, R. Organic and Biodynamic Viticulture 3 Affect Biodiversity and Vine and Wine Properties: 4 A Systematic Quantitative Review. Am. J. Enol. Vitic. 2019, 70, 221–242. [Google Scholar] [CrossRef]
- Simoni, S.; Nannelli, R.; Castagnoli, M.; Goggioli, D.; Moschini, V.; Vazzana, C.; Benedettelli, S.; Migliorini, P. Abundance and biodiversity of soil arthropods in one conventional and two organic fields of maize in stockless arable systems. Redia 2013, 96, 37–44. [Google Scholar]
- Mazzoncini, M.; Canali, S.; Giovannetti, M.; Castagnoli, M.; Tittarelli, F.; Antichi, D.; Nannelli, R.; Cristani, C.; Bàrberi, P. Comparison of organic and conventionals tockless arable systems: A multidisciplinary approach to soilquality evaluation. Appl. Soil Ecol. 2010, 44, 124–132. [Google Scholar] [CrossRef]
- Hansen, B.; Alrøe, H.F.; Kristensen, E.S. Approaches to assess the environmental impact of organic farming with particular regard to Demmark. Agric. Ecosyst. Environ. 2001, 83, 11–26. [Google Scholar] [CrossRef]
- Hole, D.G.; Perkins, A.J.; Wilson, J.D.; Alexander, I.H.; Grice, P.V.; Evans, A.D. Does organic farming benefit biodiversity? Biol. Conserv. 2005, 122, 113–130. [Google Scholar] [CrossRef]
- Menta, C.; Conti, F.D.; Pinto, S.; Bodini, A. Soil Biological Quality index (QBS-ar): 15 years of application at global scale. Ecol. Indic. 2018, 85, 773–780. [Google Scholar] [CrossRef]
- Parisi, V. La qualità biologica del suolo. Un metodo basato sui microartropodi. Acta Naturalia de L’AteneoParmense 2001, 37, 105–114. [Google Scholar]
- Menta, C.; Conti, F.D.; Pinto, S.; Leoni, A.; Lozano-Fondón, C. Monitoring soil restoration in an open-pit mine in northern Italy. Appl. Soil Ecol. 2014, 83, 22–29. [Google Scholar] [CrossRef]
- Santorufo, L.; Van Gestel, C.A.M.; Rocco, A.; Maisto, G. Soil invertebrates as bioindicators of urban soil quality. Environ. Pollut. 2012, 161, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Madej, G.; Barkzyk, G.; Gdawiec, M. Evaluation of soil biological quality index (QBS-ar): Its sensitivity and usefulness in the post-mining chronosequence –preliminary research. Pol. J. Environ. Stud. 2011, 20, 1367–1372. [Google Scholar]
- Hartley, W.; Uffindell, L.; Plumb, A.; Rawlinson, H.A.; Putwain, P.; Dickinson, N.M. Assessing biological indicators for remediated anthropogenic urban soils. Sci. Total Environ. 2008, 405, 358–369. [Google Scholar] [CrossRef]
- Ballabio, L.; Fumagalli, P.; Comolli, R. Soil Quality Evaluation in Periurban Lowland Forests Using Biological Indicators, in the Walking Urban Forest. In Proceedings of the 16th European Forum on Urban Forestry, Milan, Italy, 7–11 May 2013; p. 100. [Google Scholar]
- Blasi, S.; Menta, C.; Balducci, L.; Conti, F.D.; Petrini, E.; Piovesan, G. Soil microarthropod communities from mediterranean forest ecosystems in Central Italy under different disturbances. Environ. Monit. Assess. 2013, 185, 1637–1655. [Google Scholar] [CrossRef]
- Menta, C.; García-Montero, L.G.; Pinto, S.; Conti, F.D.; Baroni, G.; Maresi, M. Does the natural microcosm created by Tuber aestivum affect soil microarthropods? A new hypothesis based on Collembola in truffle culture. Appl. Soil Ecol. 2014, 84, 31–37. [Google Scholar] [CrossRef]
- Sacchi, C.F.; Testard, P. Ecologie Animale: Organismes et Milieu; Doin: Paris, France, 1971. [Google Scholar]
- De Bello, F.; Lavorel, S.; Diaz, S. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 2010, 19, 2873–2893. [Google Scholar] [CrossRef]
- Vandewalle, M.; de Bello, F.; Berg, M.P.; Bolger, T.; Doledec, S.; Dubs, F.; Feld, C.K.; Harrington, R.; Harrison, P.A.; Lavorel, S.; et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 2010, 19, 2921–2947. [Google Scholar] [CrossRef] [Green Version]
- Rüdisser, J.; Tasser, E.; Peham, T.; Meyer, E.; Tappeiner, U. The dark side of biodiversity: Spatial application of the biological soil quality indicator (BSQ). Ecol. Indic. 2015, 53, 240–246. [Google Scholar] [CrossRef]
- Yan, S.; Singh, A.N.; Fu, S.; Liao, C.; Wang, S.; Li, Y.; Cui, Y.; Hu, L. A soil fauna index for assessing soil quality. Soil Biol. Biochem. 2012, 47, 158–165. [Google Scholar] [CrossRef]
- Agronomisata. Available online: https://www.agronomisata.it/progetto-biopass/ (accessed on 8 August 2019).
- Ghiglieno, I.; Donna, P.; Tonni, M.; Valenti, L. Valutare la biodiversità nell’azienda viticola. Millevigne 2019, 2, 18–20. [Google Scholar]
- Valenti, L.; Ghiglieno, I.; Tonni, M.; Donna, P.; Dell’Orto, M.; Carletti, F. GEA.vite, an Example of Assesment Protocol to Evaluate the Efficiency and Sustainability of Viticultural Italian Companies. AJIBM 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). Visual Soil Assessment, Field Guides; FAO: Rome, Italy, 2008. [Google Scholar]
- Lune, T.; Robertson, P.K.; Powell, J.J. General Description of CPT and CPTU. In Cone Penetration Testing in Geotechnical Practice; Spon Press: Oxford, UK, 1997; pp. 1–2. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Menta, C.; Conti, F.D.; Pinto, S. Microarthropodsbiodiversity in natural, seminatural and cultivated soils—QBS-ar approach. Appl. Soil Ecol. 2018, 123, 740–743. [Google Scholar] [CrossRef]
- Stillman, J.H. Acclimation capacity underlies susceptibility to climate change. Science 2003, 301, 65. [Google Scholar] [CrossRef]
- Clark, M.S.; Thorne, M.A.S.; Purac, J.; Grubor-Lajsic, G.; Kube, M.; Reinhardt, R.; Worland, M.R. Surviving extreme polar winters by desiccation: Clues from Arctic springtail (Onychiurusarcticus) EST libraries. BMC Genom. 2007, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Villani, M.G.; Allee, L.L.; D’ıaz, A.; Robbins, P.S. Adaptive strategies of edaphic arthropods. Annu. Rev. Entomol. 1999, 44, 233–256. [Google Scholar] [CrossRef] [PubMed]
Location | Region | Latitude (Geographical Coordinates) | Longitude (Geographical Coordinates) | Altitude-m a.s.l. |
---|---|---|---|---|
Ancona | Marche | 43.617 | 13.517 | 103 |
Udine/Campoformido | Friuli Venezia Giulia | 46.033 | 13.183 | 94 |
Cuneo Levaldigi | Piedmont | 44.533 | 7.617 | 386 |
Novi Ligure | 44.767 | 8.783 | 187 | |
Piacenza | Emilia Romagna | 44.913 | 9.723 | 139 |
Modena | 44.65 | 10.95 | 33 | |
Arezzo | Tuscany | 43.467 | 11.85 | 249 |
Sciacca | Sicily | 37.517 | 13.083 | 125 |
Gela | 37.083 | 14.217 | 33 | |
Monticelli | Lombardy | 45.622 | 10.091 | 230 |
Corte Franca | 45.633 | 10.021 | 220 | |
Erbusco | 45.592 | 9.972 | 215 | |
Rodengo Saiano | 45.596 | 10.124 | 160 |
Unit of Measure | Mean ± SD* | Median (Q25–Q75) | Min | Max | |
---|---|---|---|---|---|
QBS-ar | 92.29 ± 40.32 | 84.00 (59.25–127.75) | 28.00 | 193.00 | |
Years of organic farming | 4.11 ± 5.02 | 2 (1.00–7.00) | 0.00 | 20.00 | |
pH | 7.33 ± 0.89 | 7.75 (6.63–8.00) | 5.30 | 8.40 | |
Active limestone | (g CaCO3/kg) | 31.70 ± 41.96 | 12.50 (0.00–57.00) | 0.00 | 130.00 |
Soil organic matter | (g/kg) | 21.66 ± 9.31 | 21.00 (15.00–27.75) | 5.00 | 42.00 |
Assimilable phosphorus | (mg P2O5/kg) | 34.40 ± 23.99 | 27.00 (17.00–47.50) | 5.00 | 94.00 |
Exchangeable potassium | (mg K2O/kg) | 191.10 ± 118.11 | 156.00 (114.20–219.50) | 60 | 747.00 |
Exchangeable magnesium | (mg MgO/kg) | 362.50 ± 310.82 | 259.50 (159.00–433.50) | 72 | 1585.00 |
Tmax_l | 3.00 ± 2.63 | 2.00 (1.00–6.00) | 0.00 | 8.00 | |
Tmax_m | 24.51 ± 3.17 | 24.00 (22.25–27.00) | 16.00 | 30.00 | |
Tmax_h | 2.49 ± 3.46 | 1 (0–4) | 0.00 | 14.00 | |
Prec_t | 100.01 ± 57.67 | 79.50 (51.00–153.10) | 0.00 | 190.60 |
Group | EMI Value | EMI Attribution |
---|---|---|
Acari | 20 | Default value |
Araneae | 1 | Forms >5 mm EMI 1 |
5 | Small forms scarcely pigmented EMI 5 | |
Chilopoda | 10 | Forms >5 mm, well-developed legs EMI 10 |
20 | Other forms EMI 20 | |
Coleoptera | 1 | Clearly epigeous forms EMI 1 |
5 | Clearly epigeous forms (EMI1) and dimensions smaller than 2 mm (additional points 4) | |
10 | Clearly epigeous forms (EMI1), dimensions smaller than 2 mm (additional points 4) and the occurrence of two of the following conditions: • thin integument, often testaceous (tan-brown) colour (additional points 5) • hind wings highly reduced or absent (additional points 5) • microphtalmy or anophtalmy (additional points 5) | |
20 | Clearly epigeous forms (EMI1), dimensions smaller than 2 mm (additional points 4), thin integument, often testaceous (tan-brown) colour (additional points 5), hind wings highly reduced or absent (additional points 5), microphtalmy or anophtalmy (additional points 5). | |
Collembola | 1 | Clearly epigeous forms: middle to large size, complex pigmentation present, long, well-developed appendages, well developed visual apparatus (eye spot and eyes) |
4 | Small size—though not necessarily—forms, usually limited to litter, with modest pigmentation, average length of appendages, developed visual apparatus | |
8 | Hemi-edaphic forms with reduced number of ommatidia, scarcely developed appendages, often short or absent furca, pigmentation present | |
10 | Eu-edaphic forms with no pigmentation, reduction or absence of ommatidia, furca present—but reduced | |
20 | Clearly eu-edaphic forms: no pigmentation, absent furca, short appendages, presence of typical structures such as pseudo-oculi, developed postantennal organs (character not necessarily present), apomorphic sensorial structures | |
Diplopoda | 20 | Forms <5 mm EMI 20 |
Diplura | 20 | Default value |
Diptera (larvae) | 10 | Default value |
Hemiptera | 1 | Mostly epigeous (above-ground) or root feeding forms |
Hymenoptera | 1 | Default value without Formicidae |
5 | Formicidae | |
Isopoda | 10 | Default value |
Opiliones | 10 | Default value |
Palpigradi | 20 | Default value |
Pauropoda | 20 | Default value |
Protura | 20 | Default value |
Pseudoscorpiones | 20 | Default value |
Psocotteri | 1 | Default value |
Symphyla | 20 | Default value |
Thysanoptera | 1 | Default value |
Other holometaboulos insects (larvae) | 10 | Default value |
Other holometaboulos insects (adults) | 1 | Default value |
Coefficient. | Estimate | Standard Error | p-Value |
---|---|---|---|
Intercept | 64.82 | 20.36 | 0.0023 |
Organic farming | 40.21 | 13.08 | 0.0031 |
Tmax_l | -3.21 | 2.26 | 0.1614 |
Tmax_h | -4.89 | 1.57 | 0.0028 |
Prec-t | 0.23 | 0.13 | 0.0777 |
Prec-h | -40.78 | 21.87 | 0.0668 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghiglieno, I.; Simonetto, A.; Donna, P.; Tonni, M.; Valenti, L.; Bedussi, F.; Gilioli, G. Soil Biological Quality Assessment to Improve Decision Support in the Wine Sector. Agronomy 2019, 9, 593. https://doi.org/10.3390/agronomy9100593
Ghiglieno I, Simonetto A, Donna P, Tonni M, Valenti L, Bedussi F, Gilioli G. Soil Biological Quality Assessment to Improve Decision Support in the Wine Sector. Agronomy. 2019; 9(10):593. https://doi.org/10.3390/agronomy9100593
Chicago/Turabian StyleGhiglieno, Isabella, Anna Simonetto, Pierluigi Donna, Marco Tonni, Leonardo Valenti, Floriana Bedussi, and Gianni Gilioli. 2019. "Soil Biological Quality Assessment to Improve Decision Support in the Wine Sector" Agronomy 9, no. 10: 593. https://doi.org/10.3390/agronomy9100593
APA StyleGhiglieno, I., Simonetto, A., Donna, P., Tonni, M., Valenti, L., Bedussi, F., & Gilioli, G. (2019). Soil Biological Quality Assessment to Improve Decision Support in the Wine Sector. Agronomy, 9(10), 593. https://doi.org/10.3390/agronomy9100593