Stimulatory Effect of Silver Nanoparticles on the Growth and Flowering of Potted Oriental Lilies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Treatments
2.3. Growth and Flowering Characteristics
2.4. Chlorophylls and Carotenoids
2.5. Macronutrient Concentration
2.6. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis
2.7. Experimental Design and Statistical Analysis
3. Results
3.1. Impact of AgNPs on Plant Growth and Flowering
3.2. Effect of AgNPs on Photosynthetic Pigments and Macronutrient Concentration
3.3. FTIR Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rai, P.K.; Kumar, V.; Lee, S.; Raza, N.; Kim, K.H.; Ok, Y.S.; Tsang, D.C. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environ. Int. 2018, 119, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.N.; Mobin, M.; Abbas, Z.K.; AlMutairi, K.A.; Siddiqui, Z.H. Role of nanomaterials in plants under challenging environments. Plant Physiol. Biochem. 2017, 110, 194–209. [Google Scholar] [CrossRef] [PubMed]
- Elmer, W.H.; White, J.C. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ. Sci. Nano. 2016, 3, 1072–1079. [Google Scholar] [CrossRef]
- Worrall, E.; Hamid, A.; Mody, K.; Mitter, N.; Pappu, H. Nanotechnology for plant disease management. Agronomy 2018, 8, 285. [Google Scholar] [CrossRef]
- Maruyama, C.R.; Guilger, M.; Pascoli, M.; Bileshy-José, N.; Abhilash, P.C.; Fraceto, L.F.; De Lima, R. Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci. Rep. 2016, 6, 19768. [Google Scholar] [CrossRef]
- He, Y.; Qian, L.; Liu, X.; Hu, R.; Huang, M.; Liu, Y.; Chen, G.; Losic, D.; Zhu, H. Graphene oxide as an antimicrobial agent can extend the vase life of cut flowers. Nano Res. 2018, 11, 6010–6022. [Google Scholar] [CrossRef]
- Saha, N.; Gupta, S.D. Promotion of shoot regeneration of Swertia chirata by biosynthesized silver nanoparticles and their involvement in ethylene interceptions and activation of antioxidant activity. Plant Cell Tissue Organ Culture 2018, 134, 289–300. [Google Scholar] [CrossRef]
- Thangavelu, R.M.; Gunasekaran, D.; Jesse, M.I.; Su, M.R.; Sundarajan, D.; Krishnan, K. Nanobiotechnology approach using plant rooting hormone synthesized silver nanoparticle as “nanobullets” for the dynamic applications in horticulture–An in vitro and ex vitro study. Arab. J. Chem. 2016, 11, 48–61. [Google Scholar] [CrossRef]
- Hernández-Hernández, H.; González-Morales, S.; Benavides-Mendoza, A.; Ortega-Ortiz, H.; Cadenas-Pliego, G.; Juárez-Maldonado, A. Effects of chitosan–PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules 2018, 23, 178. [Google Scholar] [CrossRef]
- Avestan, S.; Ghasemnezhad, M.; Esfahani, M.; Byrt, C.S. Application of nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agronomy 2019, 9, 246. [Google Scholar] [CrossRef]
- Feregrino-Perez, A.A.; Magaña-López, E.; Guzmán, C.; Esquivel, K. A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Sci. Hortic. 2018, 238, 126–137. [Google Scholar] [CrossRef]
- Haider, A.; Kang, I.K. Preparation of silver nanoparticles and their industrial and biomedical applications: A comprehensive review. Adv. Mater. Sci. Eng. 2015. [Google Scholar] [CrossRef]
- Zuverza-Mena, N.; Martínez-Fernández, D.; Du, W.; Hernandez-Viezcas, J.A.; Bonilla-Bird, N.; López-Moreno, M.L.; Komarek, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review. Plant Physiol. Biochem. 2017, 110, 236–264. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, A. Brief overview of the application of silver nanoparticles to improve growth of crop plants. IET Nanobiotechnol. 2018, 12, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Parveen, A.; Rao, S. Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J. Clust. Sci. 2015, 26, 693–701. [Google Scholar] [CrossRef]
- Jasim, B.; Thomas, R.; Mathew, J.; Radhakrishnan, E.K. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm. J. 2017, 25, 443–447. [Google Scholar] [CrossRef]
- Gupta, S.D.; Agarwal, A.; Pradhan, S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol. Environ. Saf. 2018, 161, 624–633. [Google Scholar] [CrossRef]
- Latif, H.H.; Ghareib, M.; Tahon, M.A. Phytosynthesis of silver nanoparticles using leaf extracts from Ocimum basilicum and Mangifira indica and their effect on some biochemical attributes of Triticum aestivum. Gesunde Pflanz. 2017, 69, 39–46. [Google Scholar] [CrossRef]
- Geisler-Lee, J.; Brooks, M.; Gerfen, J.; Wang, Q.; Fotis, C.; Sparer, A.; Ma, X.; Berg, R.H.; Geisler, M. Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials 2014, 4, 301–318. [Google Scholar] [CrossRef]
- Vinković, T.; Novák, O.; Strnad, M.; Goessler, W.; Jurašin, D.D.; Parađiković, N.; Vrček, I.V. Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ. Res. 2017, 156, 10–18. [Google Scholar] [CrossRef]
- Ke, M.; Qu, Q.; Peijnenburg, W.J.G.M.; Li, X.; Zhang, M.; Zhang, Z.; Lu, T.; Pan, X.; Qian, H. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Sci. Total Environ. 2018, 644, 1070–1079. [Google Scholar] [CrossRef] [PubMed]
- Allegra, V.; Zarba, A.S.; Muratore, F. The ornamental potted plants: Circular economy in agriculture. Qual. Access Success 2019, 20, 7–12. [Google Scholar]
- Okubo, H.; Sochacki, D. Botanical and horticultural aspects of major ornamental geophytes. In Ornamental Geophytes: From Basic Science to Sustainable Production; Kamenetsky, R., Okubo, H., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 79–116. [Google Scholar] [CrossRef]
- Beers, C.M.; Barba-Gonzalez, R.; van Silfhout, A.A.; Ramanna, M.S.; van Tuyl, J.M. Mitotic and meiotic polyploidization in lily hybrids for transferring Botrytis resistance. Acta Hortic. 2004, 673, 449–452. [Google Scholar] [CrossRef]
- Conijn, C.G.M. Developments in the control of lily diseases. Acta Hortic. 2014, 1027, 213–229. [Google Scholar] [CrossRef]
- Salachna, P.; Grzeszczuk, M.; Soból, M. Effects of chitooligosaccharide coating combined with selected ionic polymers on the stimulation of Ornithogalum saundersiae growth. Molecules 2017, 22, 1903. [Google Scholar] [CrossRef]
- Cristiano, G.; Pallozzi, E.; Conversa, G.; Tufarelli, V.; De Lucia, B. Effects of an animal-derived biostimulant on the growth and physiological parameters of potted snapdragon (Antirrhinum majus L.). Front. Plant Sci. 2018, 9, 861. [Google Scholar] [CrossRef] [PubMed]
- De Lucia, B.; Vecchietti, L. Type of bio-stimulant and application method effects on stem quality and root system growth in LA Lily. Eur. J. Hortic. Sci. 2012, 77, 10. [Google Scholar]
- Shafiee-Masouleh, S.S.; Hatamzadeh, A.; Samizadeh, H.; Rad-Moghadam, K. Enlarging bulblet by magnetic and chelating structures of nano-chitosan as supplementary fertilizer in Lilium. Hortic. Environ. Biot. 2014, 55, 437–444. [Google Scholar] [CrossRef]
- Byczyńska, A.; Zawadzińska, A.; Salachna, P. Silver nanoparticles preplant bulb soaking affects tulip production. Acta Agric. Scand. B Soil Plant 2019, 69, 250–256. [Google Scholar] [CrossRef]
- Arnon, D.I.; Allen, M.B.; Whatley, F.R. Photosynthesis by isolated chloroplasts IV. General concept and comparison of three photochemical reactions. Biochim. Biophys. Acta Gen. Subj. 1956, 20, 449–461. [Google Scholar] [CrossRef]
- Hager, A.; Meyer-Bertenrath, T. Die isolierung und quantitative bestimmung der carotinoide und chlorophylle von blättern, algen und isolierten chloroplasten mit hilfe dünnschichtchromatographischer methoden. Planta 1966, 69, 198–217. [Google Scholar] [CrossRef] [PubMed]
- Zuverza-Mena, N.; Armendariz, R.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effects of silver nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional value. Front. Plant Sci. 2016, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Byczyńska, A.; Zawadzińska, A.; Salachna, P. Effects of nano-silver on bulblet production from bulb scales of lilium. Propag. Ornam. Plants 2018, 18, 104–106. [Google Scholar]
- Gioi, D.H.; Huong, B.T.T.; Luu, N.T.B. The effects of different concentrations of nano silver on elimination of bacterial contaminations and stimulation of morphogenesis of Sorbonne lily in vitro culture. Acta Hortic. 2019, 1237, 227–234. [Google Scholar] [CrossRef]
- Tung, H.T.; Nam, N.B.; Huy, N.P.; Luan, V.Q.; Hien, V.T.; Phuong, T.T.B.; Nhut, D.T. A system for large scale production of chrysanthemum using microponics with the supplement of silver nanoparticles under light-emitting diodes. Sci. Hortic. 2018, 232, 153–161. [Google Scholar] [CrossRef]
- Al-Huqail, A.A.; Hatata, M.M.; Al-Huqail, A.A.; Ibrahim, M.M. Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi J. Biol. Sci. 2018, 25, 313–319. [Google Scholar] [CrossRef]
- Barabanov, P.V.; Gerasimov, A.V.; Blinov, A.V.; Kravtsov, A.A.; Kravtsov, V.A. Influence of nanosilver on the efficiency of Pisum sativum crops germination. Ecotoxicol. Environ. Saf. 2018, 147, 715–719. [Google Scholar] [CrossRef]
- Yin, L.; Colman, B.P.; McGill, B.M.; Wright, J.P.; Bernhardt, E.S. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 2012, 7, 47674. [Google Scholar] [CrossRef] [PubMed]
- Mehrian, S.K.; Heidari, R.; Rahmani, F.; Najafi, S. Effect of chemical synthesis silver nanoparticles on germination indices and seedlings growth in seven varieties of Lycopersicon esculentum Mill (tomato) plants. J. Clust. Sci. 2016, 27, 327–340. [Google Scholar] [CrossRef]
- Das, P.; Barua, S.; Sarkar, S.; Karak, N.; Bhattacharyya, P.; Raza, N.; Bhattacharya, S. Plant extract–mediated green silver nanoparticles: Efficacy as soil conditioner and plant growth promoter. J. Hazard. Mater. 2018, 346, 62–72. [Google Scholar] [CrossRef]
- Barbasz, A.; Kreczmer, B.; Oćwieja, M. Effects of exposure of callus cells of two wheat varieties to silver nanoparticles and silver salt (AgNO3). Acta Physiol. Plant. 2016, 38, 76. [Google Scholar] [CrossRef]
- Lee, W.M.; Kwak, J.I.; An, Y.J. Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere 2012, 86, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Syu, Y.Y.; Hung, J.H.; Chen, J.C.; Chuang, H.W. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol. Biochem. 2014, 83, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Krishnaraj, C.; Jagan, E.G.; Ramachandran, R.; Abirami, S.M.; Mohan, N.; Kalaichelvan, P.T. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem. 2012, 47, 651–658. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Blain, R.B. Hormesis and plant biology. Environ. Pollut. 2009, 157, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Maldonado, A.; Ortega-Ortíz, H.; Morales-Díaz, A.; González-Morales, S.; Morelos-Moreno, Á.; Sandoval-Rangel, A.; Cadenas-Pliego, G.; Benavides-Mendoza, A. Nanoparticles and nanomaterials as plant biostimulants. Int. J. Mol. Sci. 2019, 20, 162. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.K.S.; Qayyum, M.F.; Abdel-Hadi, A.M.; Rehman, R.A.; Ali, S.; Rizwan, M. Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Arch. Agron. Soil Sci. 2017, 63, 1736–1747. [Google Scholar] [CrossRef]
- Iqbal, M.; Raja, N.I.; Hussain, M.; Ejaz, M.; Yasmeen, F. Effect of silver nanoparticles on growth of wheat under heat stress. Iran J. Sci. Technol. A 2019, 43, 387–395. [Google Scholar] [CrossRef]
- Morales, M.I.; Rico, C.M.; Hernandez-Viezcas, J.A.; Nunez, J.E.; Barrios, A.C.; Tafoya, A.; Flores-Marges, J.P.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J. Agric. Food Chem. 2013, 61, 6224–6230. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, M.; Liné, C.; Bedolla, D.E.; Stein, R.J.; Kaegi, R.; Sarret, G.; Pradas Del Real, A.E.; Castillo-Michel, H.; Abhilash, P.C.; Larue, C. Assessing the impacts of sewage sludge amendment containing nano-TiO2 on tomato plants: A life cycle study. J. Hazard. Mater. 2019, 369, 191–198. [Google Scholar] [CrossRef] [PubMed]
AgNP Treatment | Plant Height (cm) | No. of Leaves Per Plant | Greenness Index | Leaf Fresh Weight | Bulb Fresh Weight (g/Plant) | No. of Scales Per Bulb |
---|---|---|---|---|---|---|
(SPAD) | (g/Plant) | |||||
Concentration (C) | ||||||
0 ppm | 44.7 b | 21.3 c | 52.3 c | 20.8 c | 21.4 c | 18.5 c |
25 ppm | 45.7 ab | 25.6 ab | 56.8 b | 27.3 a | 31.3 b | 19.8 bc |
50 ppm | 48.1 a | 27.1 a | 61.5 a | 28.1 a | 37.1 a | 23.0 a |
100 ppm | 46.8 ab | 23.5 bc | 61.9 a | 31.3 a | 35.1 a | 22.9 a |
150 ppm | 45.6 ab | 23.3 bc | 61.2 a | 25.7 b | 31.0 b | 21.1. ab |
Method (M) | ||||||
Bulb soaks | 47.2 a | 26.9 a | 61.2 a | 28.2 a | 33.3 a | 23.2 a |
Drenches | 45.0 b | 22.4 b | 58.1 b | 26.1 b | 31.0 b | 20.3 b |
Foliar sprays | 46.4 ab | 23.2 b | 57.0 b | 25.6 b | 29.2 c | 19.8 b |
Two-way ANOVA | ||||||
C | ** | *** | *** | *** | *** | ** |
M | * | *** | ** | ** | *** | *** |
C × M | ns | ** | * | ns | *** | ns |
AgNP Treatment | Days to Anthesis | No. of Flowers Per Plant | Tepal Length (cm) | Tepal Width (cm) | Flower Longevity (Days) |
---|---|---|---|---|---|
Concentration (C) | |||||
0 ppm | 109 b | 2.7 b | 11.7 a | 5.76 a | 9.50 b |
25 ppm | 107 a | 3.6 ab | 11.9 a | 5.76 a | 10.3 ab |
50 ppm | 106 a | 4.0 a | 12.0 a | 5.89 a | 11.4 a |
100 ppm | 106 a | 4.0 a | 12.0 a | 5.93 a | 11.0 ab |
150 ppm | 107 a | 3.4 ab | 12.0 a | 5.80 a | 10.6 ab |
Method (M) | |||||
Bulb soaks | 106 a | 4.0 a | 11.9 a | 5.91 a | 10.3 a |
Drenches | 107 b | 3.1 b | 11.8 a | 5.74 a | 11.0 a |
Foliar sprays | 107 b | 3.4 b | 12.0 a | 5.84 a | 10.4 a |
Two-way ANOVA | |||||
C | ** | * | ns | ns | * |
M | * | ** | ns | ns | ns |
C × M | ns | ns | ns | ns | ns |
AgNP Treatment | No. of Leaves Per Plant | Greenness Index | Bulb Fresh Weight (g/Plant) | |
---|---|---|---|---|
Method | Concentration | (SPAD) | ||
Bulb soaks | 0 ppm | 21.3 c | 52.3 d | 21.4 g |
25 ppm | 29.2 ab | 59.2 abcd | 40.2 a | |
50 ppm | 24.8 bc | 68.3 a | 39.3 ab | |
100 ppm | 24.5 bc | 66.1 ab | 33.4 cd | |
150 ppm | 34.5 a | 60.1 abcd | 32.2 de | |
Drenches | 0 ppm | 21.3 c | 52.3 d | 21.4 g |
25 ppm | 24.0 bc | 56.1 cd | 26.4 fg | |
50 ppm | 22.0 c | 56.7 cd | 40.9 a | |
100 ppm | 23.0 bc | 62.1 abc | 33.8 bcd | |
150 ppm | 21.8 c | 63.3 abc | 32.6 cde | |
Foliar sprays | 0 ppm | 21.3 c | 52.3 d | 21.4 g |
25 ppm | 23.7 bc | 55.1 cd | 27.4 ef | |
50 ppm | 23.1 bc | 59.5 abcd | 31.0 def | |
100 ppm | 23.0 bc | 57.6 bcd | 37.9 abc | |
150 ppm | 25.1 bc | 60.3 abcd | 28.4 def |
Parameters | AgNP Concentration | One-Way ANOVA | ||||
---|---|---|---|---|---|---|
0 | 25 ppm | 50 ppm | 100 ppm | 150 ppm | ||
Plant height (cm) | 48.8 a | 53.3 b | 54.7 ab | 56.5 a | 53.5 b | ** |
No. of leaves per plant | 58.3 b | 59.3 ab | 63.0 ab | 65.7 a | 61.7 ab | * |
Greenness index (SPAD) | 48.5 c | 54.6 b | 56.6 ab | 59.4 a | 55.4 ab | ** |
Leaves fresh weight (g) | 35.3 b | 45.4 a | 50.6 a | 52.2 a | 50.0 a | ** |
Bulb fresh weight (g) | 52.4 b | 73.7 a | 79.8 a | 82.0 a | 74.2 a | *** |
No. of scales per bulb | 31.7 c | 38.3 b | 39.7 b | 43.0 a | 43.3 a | ** |
Days to anthesis | 113 b | 110 a | 110 a | 109 a | 111 ab | * |
No. of flowers per plant | 6.7 b | 7.5 a | 7.7 a | 7.7 a | 7.0 a | * |
Tepal length (cm) | 12.4 b | 13.6 a | 13.7 a | 14.1 a | 13.6 a | ** |
Tepal width (cm) | 6.19 b | 6.80 ab | 6.84 ab | 7.03 a | 6.93 ab | * |
Flower longevity (days) | 14.2 b | 15.3 ab | 16.5 ab | 18.2 a | 15.5 ab | * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salachna, P.; Byczyńska, A.; Zawadzińska, A.; Piechocki, R.; Mizielińska, M. Stimulatory Effect of Silver Nanoparticles on the Growth and Flowering of Potted Oriental Lilies. Agronomy 2019, 9, 610. https://doi.org/10.3390/agronomy9100610
Salachna P, Byczyńska A, Zawadzińska A, Piechocki R, Mizielińska M. Stimulatory Effect of Silver Nanoparticles on the Growth and Flowering of Potted Oriental Lilies. Agronomy. 2019; 9(10):610. https://doi.org/10.3390/agronomy9100610
Chicago/Turabian StyleSalachna, Piotr, Andżelika Byczyńska, Agnieszka Zawadzińska, Rafał Piechocki, and Małgorzata Mizielińska. 2019. "Stimulatory Effect of Silver Nanoparticles on the Growth and Flowering of Potted Oriental Lilies" Agronomy 9, no. 10: 610. https://doi.org/10.3390/agronomy9100610
APA StyleSalachna, P., Byczyńska, A., Zawadzińska, A., Piechocki, R., & Mizielińska, M. (2019). Stimulatory Effect of Silver Nanoparticles on the Growth and Flowering of Potted Oriental Lilies. Agronomy, 9(10), 610. https://doi.org/10.3390/agronomy9100610