Sensitivity of Maize Yield in Smallholder Systems to Climate Scenarios in Semi-Arid Regions of West Africa: Accounting for Variability in Farm Management Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Model Description
2.3. Data Sources for Model Calibration
2.4. Data Sources for Model Evaluation
2.5. Simulation of Historical and Future Climate Impact on Maize Yields in Farming Zones
2.6. Model Evaluation
2.7. Assessment of Impact of Climate Scenarios
3. Results
3.1. Projected Changes in Future Climate
3.2. Model Calibration
3.3. Model Evaluation
3.4. Simulated Maize Yields under Historical and Future Climate Scenarios
3.5. Impact of Climate Change Scenarios on Maize Yields
3.6. Variability in the Impact of Climate Change on Maize Yields among Farmers under Future Climate Scenarios
3.7. Effects of Soil Type and Management Practices on the Variation in Yield Lose among Farms
4. Discussion
4.1. Variations in the Impact of Climate Scenarios among Farms
4.2. Impact of Climate Change Scenarios on Maize Yields
4.3. Drivers of Yield Changes under Climate Change Scenarios
4.4. Diversity in the Impact of Climate Scenarios among Farms
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Climate Description | GM* (days) | CV (%) | Max* (days) | Min* (days) | Mean Δ (%) | RSD of Δ (%) | Min Δ (%) | Max Δ (%) |
---|---|---|---|---|---|---|---|---|
Nioro, RCP 4.5 | ||||||||
Historical | 54 | 1 | 55 | 53 | - | - | - | - |
Cool/Dry | 51 | 1 | 52 | 50 | −5 | 7 | −6 | −4 |
Cool/Wet | 52 | 1 | 53 | 51 | −4 | 8 | −4 | −3 |
Middle | 51 | 1 | 52 | 50 | −5 | 5 | −6 | −4 |
Hot/Wet | 51 | 1 | 51 | 50 | −6 | 5 | −6 | −5 |
Hot/Dry | 51 | 2 | 57 | 49 | −5 | 33 | −7 | 5 |
Nioro, RCP 8.5 | ||||||||
Cool/Dry | 51 | 1 | 53 | 50 | −5 | 20 | −5 | −2 |
Cool/Wet | 51 | 1 | 52 | 50 | −5 | 3 | −6 | −5 |
Middle | 50 | 1 | 51 | 49 | −6 | 4 | −7 | −5 |
Hot/Wet | 50 | 1 | 51 | 49 | −7 | 4 | −8 | −7 |
Hot/Dry | 49 | 2 | 57 | 48 | −9 | 4 | −10 | 5 |
Navrongo, RCP 4.5 | ||||||||
Historical | 54 | 2 | 55 | 51 | - | - | - | - |
Cool/Dry | 51 | 1 | 52 | 49 | −5 | 3 | −4 | −5 |
Cool/Wet | 52 | 1 | 52 | 49 | −5 | 3 | −4 | −5 |
Middle | 52 | 1 | 52 | 49 | −5 | 3 | −4 | −5 |
Hot/Wet | 50 | 1 | 51 | 48 | −7 | 4 | −5 | −7 |
Hot/Dry | 50 | 1 | 51 | 48 | −7 | 5 | −5 | −7 |
Navrongo, RCP 8.5 | ||||||||
Cool/Dry | 51 | 1 | 51 | 48 | −7 | 4 | −5 | −7 |
Cool/Wet | 51 | 1 | 51 | 48 | −7 | 5 | −5 | −7 |
Middle | 50 | 1 | 50 | 48 | −8 | 8 | −5 | −9 |
Hot/Wet | 50 | 1 | 50 | 47 | −9 | 5 | −7 | −9 |
Hot/Dry | 49 | 1 | 50 | 47 | −10 | 3 | −8 | −10 |
Tamale, RCP 4.5 | ||||||||
Historical | 56 | 1 | 57 | 52 | - | - | - | - |
Cool/Dry | 53 | 1 | 54 | 50 | −4 | 10 | −4 | −5 |
Cool/Wet | 53 | 2 | 54 | 50 | −5 | 5 | −4 | −6 |
Middle | 53 | 1 | 53 | 50 | −5 | 3 | −5 | −6 |
Hot/Wet | 51 | 1 | 53 | 49 | −7 | 2 | −7 | −7 |
Hot/Dry | 51 | 1 | 53 | 49 | −7 | 3 | −6 | −8 |
Tamale, RCP 8.5 | ||||||||
Cool/Dry | 51 | 1 | 52 | 49 | −7 | 5 | −6 | −8 |
Cool/Wet | 51 | 1 | 52 | 49 | −8 | 6 | −6 | −9 |
Middle | 52 | 1 | 53 | 49 | −7 | 5 | −7 | −8 |
Hot/Wet | 50 | 1 | 51 | 48 | −10 | 2 | −9 | −10 |
Hot/Dry | 50 | 1 | 51 | 48 | −9 | 2 | −8 | −10 |
Climate Description | GM* (days) | CV (%) | Max* (days) | Min* (days) | Mean Δ (%) | RSD of Δ (%) | Min Δ (%) | Max Δ (%) |
---|---|---|---|---|---|---|---|---|
Nioro, RCP 4.5 | ||||||||
Historical | 90 | 0 | 90 | 89 | - | - | - | - |
Cool/Dry | 85 | 0 | 86 | 84 | −6 | 3 | −6 | −5 |
Cool/Wet | 86 | 0 | 87 | 86 | −4 | 5 | −4 | −4 |
Middle | 85 | 0 | 86 | 84 | −6 | 3 | −6 | −5 |
Hot/Wet | 84 | 0 | 85 | 84 | −6 | 3 | −7 | −6 |
Hot/Dry | 84 | 1 | 86 | 82 | −7 | 12 | −9 | −4 |
Nioro, RCP 8.5 | ||||||||
Cool/Dry | 85 | 1 | 87 | 84 | −5 | 11 | −7 | −3 |
Cool/Wet | 85 | 0 | 85 | 84 | −6 | 2 | −6 | −5 |
Middle | 84 | 0 | 85 | 83 | −6 | 3 | −7 | −6 |
Hot/Wet | 83 | 0 | 83 | 82 | −8 | 2 | −8 | −8 |
Hot/Dry | 81 | 1 | 89 | 81 | −10 | 2 | −10 | −2 |
Navrongo, RCP 4.5 | ||||||||
Historical | 98 | 1 | 99 | 95 | - | - | - | - |
Cool/Dry | 93 | 1 | 93 | 89 | −6 | 1 | −5 | −6 |
Cool/Wet | 94 | 1 | 94 | 90 | −5 | 3 | −4 | −5 |
Middle | 93 | 1 | 94 | 90 | −5 | 2 | −5 | −5 |
Hot/Wet | 91 | 1 | 92 | 88 | −7 | 3 | −7 | −8 |
Hot/Dry | 91 | 1 | 92 | 88 | −7 | 2 | −7 | −8 |
Navrongo, RCP 8.5 | ||||||||
Cool/Dry | 91 | 1 | 92 | 88 | −7 | 2 | −7 | −7 |
Cool/Wet | 92 | 1 | 92 | 88 | −7 | 4 | −7 | −7 |
Middle | 89 | 1 | 90 | 87 | −9 | 3 | −8 | −9 |
Hot/Wet | 89 | 1 | 90 | 86 | −9 | 3 | −9 | −9 |
Hot/Dry | 89 | 1 | 90 | 85 | −10 | 1 | −9 | −10 |
Tamale, RCP 4.5 | ||||||||
Historical | 100 | 1 | 101 | 97 | - | - | - | - |
Cool/Dry | 96 | 1 | 96 | 93 | −4 | 6 | −4 | −5 |
Cool/Wet | 95 | 1 | 96 | 91 | −5 | 7 | −4 | −6 |
Middle | 94 | 0 | 95 | 92 | −6 | 4 | −5 | −6 |
Hot/Wet | 92 | 0 | 93 | 89 | −8 | 3 | −7 | −8 |
Hot/Dry | 93 | 1 | 93 | 89 | −8 | 7 | −6 | −8 |
Tamale, RCP 8.5 | ||||||||
Cool/Dry | 92 | 0 | 93 | 90 | −8 | 3 | −7 | −8 |
Cool/Wet | 92 | 1 | 93 | 90 | −8 | 4 | −7 | −9 |
Middle | 93 | 1 | 93 | 90 | −8 | 4 | −7 | −8 |
Hot/Wet | 90 | 1 | 90 | 87 | −11 | 3 | −10 | −11 |
Hot/Dry | 90 | 1 | 91 | 87 | −10 | 2 | −10 | −11 |
References
- Faye, B.; Webber, H.; Naab, J.B.; MacCarthy, D.S.; Adam, M.; Ewert, F.; Lamers, J.P.A.; Schleussner, C.-F.; Ruane, A.; Gessner, U.; et al. Impacts of 1.5 versus 2.0 C on cereal yields in the West African Sudan Savanna. Environ. Res. Lett. 2018, 13, 034014. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Rind, D.; Lacis, A.; Manley, D.E. Our Warming Planet: Topics in Climate Dynamics; World Scientific: Singapore, 2018; Volume 1. [Google Scholar]
- Challinor, A.J.; Parkes, B.; Ramirez-Villegas, J. Crop yield response to climate change varies with cropping intensity. Glob. Chang. Biol. 2015, 21, 1679–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Environmental Protection Agency. Initial National Communication under the United Nations’ Framework Convention on Climate Change, Government of the Republic of Ghana; Environmental Protection Agency: Washington, DC, USA, 2001; p. 172. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). The Physical Science Basis, Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; Volume 996. [Google Scholar]
- Hulme, M.; Doherty, R.; Ngara, T.; New, M.; Lister, D. African climate change: 1900–2100. Clim. Res. 2001, 17, 145–168. [Google Scholar] [CrossRef]
- Laux, P.; Wagner, S.; Wagner, A.; Jacobeit, J.; Bárdossy, A.; Kunstmann, H. Modelling daily precipitation features in the Volta Basin of West Africa. Int. J. Climatol. 2009, 29, 937–954. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Food Agriculture (MoFA). Agriculture in Ghana. Facts and Figures 2010. Ministry of Food and Agriculture, Statistics, Research and Information Directorate; Ministry of Food Agriculture: Accra, Ghana, 2011. [Google Scholar]
- Hellmuth, M.E.; Moorhead, A.; Thomas, M.C.; Williams, J. Climate Risk Management in Africa: Learning from Practice. IRI; Columbia University: New York, NY, USA, 2007. [Google Scholar]
- Cooper, P.; Dimes, J.; Rao, K.; Shapiro, B.; Shiferaw, B.; Twomlow, S. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agric. Ecosyst. Environ. Res. Lett. 2008, 126, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Food security and food production systems. In Climate Change 2014: Impacts, Adaptation and Vulnerability. Working Group II Contribution to the IPCC 5th Assessment Report; Cambridge University Press: Cambridge, UK, 2014; pp. 485–533. [Google Scholar]
- Ramírez Villegas, J.; Thornton, P.K. Climate Change Impacts on African Crop Production. CCAFS Working Paper No. 119; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2015. [Google Scholar]
- Jones, P.G.; Thornton, P.K. The potential impacts of climate change in tropical agriculture: The case of maize production in Africa and Latin America in 2055. Glob. Environ. Chang. 2003, 13, 51–59. [Google Scholar] [CrossRef]
- Müller, C.; Cramer, W.; Hare, W.L.; Lotze-Campen, H. Climate change risks for African agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 4313–4315. [Google Scholar] [CrossRef] [Green Version]
- Tesfaye, K.; Gbegbelegbe, S.; Cairns, J.E.; Shiferaw, B.; Prasanna, B.M.; Sonder, K.; Boote, K.; Makumbi, D.; Robertson, R. Maize systems under climate change in sub-Saharan Africa: Potential impacts on production and food security. Int. J. Clim. Chang. Strateg. Manag. 2015, 7, 247–271. [Google Scholar] [CrossRef]
- Traore, B.; Corbeels, M.; Van Wijk, M.T.; Rufino, M.C.; Giller, K.E. Effects of climate variability and climate change on crop production in southern Mali. Eur. J. Agron. 2013, 49, 115–125. [Google Scholar] [CrossRef]
- Akumaga, U.; Tarhule, A.; Piani, C.; Traore, B.; Yusuf, A. Utilizing Process-Based Modeling to Assess the Impact of Climate Change on Crop Yields and Adaptation Options in the Niger River Basin, West Africa. Agronomy 2018, 8, 11. [Google Scholar] [CrossRef]
- Roudier, P.; Sultan, B.; Quirion, P.; Berg, A. The impact of future climate change on West African crop yields: What does the recent literature say? Glob. Environ. Chang. 2011, 21, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Hoogenboom, G.; Porter, C.; Shelia, V.; Boote, K.; Singh, U.; White, J.; Hunt, L.; Ogoshi, R.; Lizaso, J.; Koo, J. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7; DSSAT Foundation: Gainesville, FL, USA, 2017. [Google Scholar]
- Porter, C.H.; Villalobos, C.; Holzworth, D.; Nelson, R.; White, J.W.; Athanasiadis, I.N.; Janssen, S.; Ripoche, D.; Cufi, J.; Raes, D. Harmonization and translation of crop modeling data to ensure interoperability. Environ. Model. Softw. 2014, 62, 495–508. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.; Antle, J.M.; Nelson, G.C.; Porter, C.; Janssen, S. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agric. For. Meteorol. 2013, 170, 166–182. [Google Scholar] [CrossRef]
- Ruane, A.C.; McDermid, S.P. Selection of a representative subset of global climate models that captures the profile of regional changes for integrated climate impacts assessment. Earth Perspect. 2017, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- MacCarthy, D.S.; Adiku, S.G.; Freduah, B.S.; Gbefo, F. Using CERES-Maize and ENSO as decision support tools to evaluate climate-sensitive farm management practices for maize production in the northern regions of Ghana. Front. Plant Sci. 2017, 8, 31. [Google Scholar] [CrossRef]
- Batjes, N.H. Soil Parameter Estimates for Senegal and the Gambia Derived from SOTER and WISE (SOTWIS-Senegal, ver. 1.0); ISRIC-World Soil Information: Wageningen, The Netherlands, 2008. [Google Scholar]
- Adnan, A.A.; Jibrin, J.M.; Abdulrahman, B.L.; Shaibu, A.S.; Garba, I.I. CERES–Maize model for determining the optimum planting dates of early maturing maize varieties in Northern Nigeria. Front. Plant Sci. 2017, 8, 1118. [Google Scholar] [CrossRef]
- Fosu-Mensah, B.; MacCarthy, D.; Vlek, P.; Safo, E.Y. Simulating impact of seasonal climatic variation on the response of maize (Zea mays L.) to inorganic fertilizer in sub-humid Ghana. Nutr. Cycl. Agroecosyst. 2012, 94, 255–271. [Google Scholar] [CrossRef]
- Ruane, A.C.; Winter, J.M.; McDermid, S.P.; Hudson, N.I. AgMIP climate data and scenarios for integrated assessment: The Agricultural Model Intercomparison and Improvement Project (AgMIP) Integrated Crop and Economic Assessments, Part 1. In Handbook of Climate Change and Agroecosystems; ICP Series on Climate Change Impacts, Adaptation, and Mitigation; Rosenzweig, C., Hillel, D., Eds.; Imperial College Press: London, UK, 2015; Volume 3, pp. 45–78. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747. [Google Scholar] [CrossRef]
- Abera, K.; Crespo, O.; Seid, J.; Mequanent, F. Simulating the impact of climate change on maize production in Ethiopia, East Africa. Environ. Syst. Res. 2018, 7, 4. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. J. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Adiku, S.G.; MacCarthy, D.S.; Hathie, I.; Diancoumba, M.; Freduah, B.S.; Amikuzuno, J.; Traore, P.S.; Traore, S.; Koomson, E.; Agali, A. Climate change impacts on west african agriculture: An integrated regional assessment (CIWARA). The Agricultural Model Intercomparison and Improvement Project (AgMIP) Integrated Crop and Economic Assessments, Part 2. In Handbook of Climate Change and Agroecosystems; ICP Series on Climate Change Impacts, Adaptation and Mitigation; Rosenzweig, C., Hillel, D., Eds.; Imperial College Press: London, UK, 2015; pp. 25–73. [Google Scholar]
- Adiku, S.G.K.; Debrah-Afanyede, E.; Greatrex, H.; Zougmoré, R.B.; MacCarthy, D.S. Weather-index based crop insurance as a social adaptation to climate change and variability in the Upper West Region of Ghana: Developing a participatory approach. In CCAFS Working Paper No. 189; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2017; p. 44. [Google Scholar]
- Valdivia, R.O.; Antle, J.M.; Rosenzweig, C.; Ruane, A.C.; Vervoort, J.; Ashfaq, M.; Hathie, I.; Tui, S.H.-K.; Mulwa, R.; Nhemachena, C.; et al. Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation; Rosenzweig, C., Hillel, D., Eds.; Imperial College Press: London, UK, 2015; Volume 3, pp. 101–156. [Google Scholar]
- MacCarthy, D.; Adiku, S.; Yangyuoru, M. Assessing the potential impact of climate change on maize production in two farming zones of Ghana using the CERES-Maize Model. Ghana Policy Journal Special Issue: Climate Change in Ghana: Impacts on Agriculture and the policy implications. Ghana Policy J. 2013, 5, 29–42. [Google Scholar]
- Traore, B.; Descheemaeker, K.; Van Wijk, M.T.; Corbeels, M.; Supit, I.; Giller, K.E. Modelling cereal crops to assess future climate risk for family food self-sufficiency in southern Mali. Field Crop. Res. 2017, 201, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Thomson, A.M.R.A.; Brown, N.J.; Rosenberg, N.J.; Lazaurralde, R.C.; Benson, V. Climate change impacts for the conterminous USA: An integrated assessment Part 3. Dry land production of grain and forage Crops. Clim. Chang. 2005, 69, 43–65. [Google Scholar] [CrossRef]
- Tachie-Obeng, E.; Akponikpe, P.; Adiku, S. Considering effective adaptation options to impacts of climate change for maize production in Ghana. Environ. Dev. 2013, 5, 131–145. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Gourdji, S.M.; Sibley, A.M.; Lobell, D.B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Res. Lett. 2013, 8, 024041. [Google Scholar] [CrossRef]
- Teixeira, E.I.; Fischer, G.; Van Velthuizen, H.; Walter, C.; Ewert, F. Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteorol. 2013, 170, 206–215. [Google Scholar] [CrossRef]
- Kassie, B.; Van Ittersum, M.; Hengsdijk, H.; Asseng, S.; Wolf, J.; Rötter, R.P. Climate-induced yield variability and yield gaps of maize (Zea mays L.) in the Central Rift Valley of Ethiopia. Field Crop. Res. 2014, 160, 41–53. [Google Scholar] [CrossRef]
Location | Soil ID | L (cm) | SLL (cm3/cm3) | SDUL (cm3/cm3) | SAT (cm3/cm3) | BD (g/cm3) | OC (%) | pH | NH4 (mg/kg) | NO3 (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|
Nioro | ITSN840080 | 10 | 0.094 | 0.17 | 0.297 | 1.34 | 0.340 | 5.1 | 1.2 | 0.1 |
20 | 0.093 | 0.168 | 0.295 | 1.34 | 0.308 | 5.1 | 1.0 | 0.1 | ||
40 | 0.081 | 0.149 | 0.271 | 1.46 | 0.264 | 5.0 | 0.5 | 0.1 | ||
60 | 0.088 | 0.161 | 0.293 | 1.48 | 0.250 | 5.3 | 0.5 | 0.1 | ||
80 | 0.085 | 0.159 | 0.305 | 1.51 | 0.240 | 5.4 | 0.5 | 0.1 | ||
100 | 0.054 | 0.103 | 0.203 | 1.54 | 0.220 | 5.4 | 0.5 | 0.1 | ||
ITSN840042 | 10 | 0.109 | 0.185 | 0.444 | 1.40 | 0.480 | 6.1 | 1.2 | 0.1 | |
20 | 0.109 | 0.185 | 0.444 | 1.40 | 0.480 | 6.1 | 1.0 | 0.1 | ||
40 | 0.167 | 0.253 | 0.452 | 1.38 | 0.420 | 5.1 | 0.5 | 0.1 | ||
60 | 0.217 | 0.305 | 0.445 | 1.4 | 0.417 | 5.0 | 0.5 | 0.1 | ||
80 | 0.261 | 0.35 | 0.420 | 1.47 | 0.362 | 5.0 | 0.5 | 0.1 | ||
100 | 0.260 | 0.348 | 0.456 | 1.37 | 0.320 | 5.0 | 0.5 | 0.1 | ||
ITSN840067 | 10 | 0.100 | 0.162 | 0.380 | 1.46 | 0.538 | 5.6 | 1.2 | 0.1 | |
20 | 0.100 | 0.162 | 0.380 | 1.46 | 0.538 | 5.6 | 1.0 | 0.1 | ||
40 | 0.120 | 0.188 | 0.373 | 1.48 | 0.44 | 5.1 | 0.5 | 0.1 | ||
60 | 0.133 | 0.195 | 0.358 | 1.53 | 0.424 | 5.1 | 0.5 | 0.1 | ||
80 | 0.143 | 0.200 | 0.375 | 1.48 | 0.380 | 5.1 | 0.5 | 0.1 | ||
100 | 0.155 | 0.218 | 0.398 | 1.51 | 0.300 | 5.1 | 0.5 | 0.1 | ||
ITSN840056 | 10 | 0.076 | 0.154 | 0.396 | 1.42 | 0.310 | 6.4 | 1.2 | 0.1 | |
20 | 0.076 | 0.154 | 0.396 | 1.42 | 0.310 | 6.4 | 1.0 | 0.1 | ||
40 | 0.121 | 0.199 | 0.376 | 1.48 | 0.295 | 6.4 | 0.5 | 0.1 | ||
60 | 0.129 | 0.204 | 0.359 | 1.53 | 0.260 | 6.4 | 0.5 | 0.1 | ||
80 | 0.128 | 0.203 | 0.375 | 1.48 | 0.246 | 6.4 | 0.5 | 0.1 | ||
100 | 0.166 | 0.246 | 0.352 | 1.50 | 0.246 | 5.4 | 0.5 | 0.1 |
Location | Soil ID | L (cm) | SLL (cm3/cm3) | SDUL (cm3/cm3) | SAT (cm3/cm3) | BD (g/cm3) | OC (%) | pH | NH4 (mg/kg) | NO3 (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|
Navrongo | GHNA01 | 5 | 0.052 | 0.176 | 0.352 | 1.43 | 0.30 | 5.5 | 1.0 | 0.5 |
15 | 0.052 | 0.176 | 0.352 | 1.43 | 0.30 | 5.5 | 1.0 | 0.5 | ||
30 | 0.052 | 0.176 | 0.321 | 1.45 | 0.29 | 5.3 | 0.5 | 0.5 | ||
50 | 0.073 | 0.192 | 0.320 | 1.45 | 0.25 | 5.3 | 0.5 | 0.5 | ||
GHNA02 | 5 | 0.082 | 0.213 | 0.352 | 1.56 | 0.39 | 6.2 | 1.0 | 0.5 | |
15 | 0.082 | 0.213 | 0.352 | 1.56 | 0.39 | 6.2 | 1.0 | 0.5 | ||
30 | 0.090 | 0.209 | 0.321 | 1.58 | 0.36 | 5.9 | 0.5 | 0.5 | ||
50 | 0.110 | 0.205 | 0.320 | 1.56 | 0.32 | 5.9 | 0.5 | 0.5 | ||
GHNA03 | 5 | 0.054 | 0.131 | 0.353 | 1.67 | 0.58 | 5.1 | 2.0 | 0.5 | |
15 | 0.054 | 0.131 | 0.353 | 1.67 | 0.58 | 5.1 | 1.0 | 0.5 | ||
30 | 0.094 | 0.119 | 0.359 | 1.74 | 0.56 | 5.4 | 1.0 | 0.5 | ||
50 | 0.106 | 0.192 | 0.369 | 1.83 | 0.45 | 5.3 | 0.5 | 0.5 | ||
GHNA04 | 5 | 0.085 | 0.156 | 0.315 | 1.49 | 0.80 | 5.2 | 2.0 | 0.5 | |
15 | 0.085 | 0.156 | 0.315 | 1.49 | 0.80 | 5.2 | 1.0 | 0.5 | ||
30 | 0.091 | 0.184 | 0.379 | 1.55 | 0.64 | 5.4 | 1.0 | 0.5 | ||
50 | 0.132 | 0.21 | 0.372 | 1.58 | 0.51 | 5.2 | 0.5 | 0.5 | ||
Tamale | GURU01 | 15 | 0.097 | 0.160 | 0.373 | 1.55 | 0.37 | 6.3 | 2.0 | 0.5 |
30 | 0.102 | 0.170 | 0.377 | 1.57 | 0.35 | 6.3 | 1.0 | 0.5 | ||
45 | 0.147 | 0.234 | 0.392 | 1.59 | 0.31 | 6.3 | 0.5 | 0.5 | ||
60 | 0.143 | 0.227 | 0.386 | 1.6 | 0.17 | 5.9 | 0.5 | 0.5 | ||
GBUL01 | 15 | 0.097 | 0.161 | 0.377 | 1.57 | 0.38 | 5.7 | 2.0 | 0.5 | |
30 | 0.101 | 0.168 | 0.377 | 1.58 | 0.31 | 6.0 | 1.0 | 0.5 | ||
45 | 0.142 | 0.226 | 0.382 | 1.59 | 0.26 | 6.1 | 0.5 | 0.5 | ||
60 | 0.143 | 0.227 | 0.386 | 1.59 | 0.14 | 5.9 | 0.5 | 0.5 | ||
DIMA01 | 15 | 0.085 | 0.156 | 0.409 | 1.49 | 0.80 | 5.2 | 2.0 | 0.5 | |
30 | 0.131 | 0.204 | 0.389 | 1.55 | 0.64 | 5.4 | 1.0 | 0.5 | ||
45 | 0.132 | 0.210 | 0.382 | 1.58 | 0.21 | 5.2 | 0.5 | 0.5 | ||
60 | 0.192 | 0.277 | 0.382 | 1.58 | 0.14 | 5.3 | 0.5 | 0.5 | ||
KPAL01 | 15 | 0.147 | 0.218 | 0.383 | 1.57 | 0.48 | 5.1 | 2.0 | 0.5 | |
30 | 0.155 | 0.221 | 0.373 | 1.57 | 0.38 | 5.2 | 1.0 | 0.5 | ||
45 | 0.162 | 0.245 | 0.388 | 1.57 | 0.31 | 5.9 | 0.5 | 0.5 | ||
60 | 0.193 | 0.279 | 0.386 | 1.60 | 0.17 | 6.1 | 0.5 | 0.5 | ||
LANG01 | 15 | 0.072 | 0.125 | 0.388 | 1.56 | 0.31 | 5.5 | 2.0 | 0.5 | |
30 | 0.071 | 0.129 | 0.385 | 1.57 | 0.29 | 5.3 | 1.0 | 0.5 | ||
45 | 0.107 | 0.174 | 0.371 | 1.60 | 0.24 | 5.3 | 0.5 | 0.5 | ||
60 | 0.116 | 0.191 | 0.376 | 1.61 | 0.10 | 5.3 | 0.5 | 0.5 | ||
NYAN01 | 15 | 0.077 | 0.141 | 0.466 | 1.34 | 0.51 | 5.5 | 2.0 | 0.5 | |
30 | 0.089 | 0.153 | 0.358 | 1.64 | 0.48 | 5.7 | 1.0 | 0.5 | ||
45 | 0.107 | 0.174 | 0.338 | 1.70 | 0.34 | 5.7 | 0.5 | 0.5 | ||
60 | 0.129 | 0.205 | 0.311 | 1.78 | 0.10 | 5.8 | 0.5 | 0.5 |
Description of Genetic Coefficients | DSSAT ID | TZEEY-SRBC5 | Obatanpa |
---|---|---|---|
Degree days (base 8 °C) from emergence to end of juvenile phase | P1 | 250 | 280 |
Photoperiod sensitivity | P2 | 0 | 0 |
Degree days (base 8 °C) from silking to physiological maturity | P5 | 720 | 837 |
Potential kernel number (/plant) | G2 | 850 | 540 |
Potential kernel growth rate (mg/day) | G3 | 8 | 7.5 |
Phyllochron interval | PHINT | 55 | 40 |
GCMs | ||
---|---|---|
Climate Scenario | RCP 4.5 | RCP 8.5 |
Nioro | ||
Cool/Wet | GFDL-ESM2M | GFDL-ESM2M |
Hot/Wet | GISS-ES-H | GISS-E2-H |
Middle | bcc-csm1-1 | BNU-ESM |
Cool/Dry | MRI-CGCM3 | CESMI-BGC |
Hot/Dry | IPSL-CM5B-LR | CMCC-CM |
Navrongo | ||
Cool/Wet | CCSM4 | CCSM4 |
Hot/Wet | CMCC-CM | CMCC-CMS |
Middle | MRI-CGCM3 | GFDL-ESM2M |
Cool/Dry | bcc-csm1-1 | BNU-ESM |
Hot/Dry | CMCC-CMS | MPI-ESM-MR |
Tamale | ||
Cool/Wet | IPSL-CM5B-LR | IPSL-CM5B-LR |
Hot/Wet | HadGEM2-AO | CanESM2 |
Middle | CESMI-BGC | GFDL-ESM2 |
Cool/Dry | BNU-ESM | MIROC5 |
Hot/Dry | CMCC-CMS | HadGEM2-ES |
Temp Δ °C | Rainfall Amount Δ % | Rainfall Events % | ||||
---|---|---|---|---|---|---|
Climate Scenario | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 |
Nioro | ||||||
Historical | 28.24 °C | 741 mm | 46 days | |||
Cool/Wet | 0.99 | 1.52 | 0 | 7 | 1 | 2 |
Hot/Wet | 1.75 | 2.20 | 5 | −2 | 5 | 0 |
Middle | 1.34 | 1.79 | −9 | −5 | −6 | −6 |
Cool/Dry | 1.33 | 1.30 | −22 | −32 | −14 | −37 |
Hot/Dry | 1.73 | 2.61 | −32 | −26 | −29 | −40 |
Navrongo | ||||||
Historical | 29.08 °C | 891 mm | 63 days | |||
Cool/Wet | 1.14 | 1.72 | 7 | 12 | 2 | 4 |
Hot/Wet | 1.85 | 2.72 | 4 | 11 | −8 | −4 |
Middle | 1.32 | 1.96 | 4 | 3 | −1 | 1 |
Cool/Dry | 1.37 | 1.72 | −1 | −3 | −1 | −1 |
Hot/Dry | 1.84 | 2.47 | 0 | 0 | −5 | −13 |
Tamale | ||||||
Historical | 28.56 °C | 1065 mm | 68 days | |||
Cool/Wet | 1.28 | 1.98 | −2 | 6 | −2 | −3 |
Hot/Wet | 1.95 | 2.81 | 3 | −11 | −5 | −12 |
Middle | 1.41 | 1.85 | 2 | 6 | 0 | 0 |
Cool/Dry | 1.06 | 1.72 | −2 | −1 | −1 | −1 |
Hot/Dry | 1.84 | 2.60 | 1 | 5 | −5 | −2 |
Evaluation Statistic | Nioro | Navrongo | Tamale |
---|---|---|---|
Anthesis | |||
RMSE (days) | 2.1 | 2.0 | 4.0 |
RRMSE (%) | 4.1 | 3 | 7 |
MAE (days) | 1.9 | 1.5 | 3.4 |
Maturity | |||
RMSE (days) | 4.1 | 3 | 5 |
RRMSE (%) | 4.9 | 3 | 5 |
MAE (days) | 4.1 | 1.1 | 4.6 |
Grain yield | |||
RMSE (kg/ha) | 183 | 193 | 324 |
RRMSE (%) | 28 | 23 | 20 |
NSE | 0.84 | 0.89 | 0.81 |
d-value | 0.96 | 0.97 | 0.94 |
MAE (kg/ha) | 157 | 166 | 259 |
Climate Description | GM * (kg/ha) | CV (%) | Max * (kg/ha) | Min * (kg/ha) | Mean Δ (%) | RSD of Δ (%) | Min Δ (%) | Max Δ (%) |
---|---|---|---|---|---|---|---|---|
Nioro, RCP 4.5 | ||||||||
Historical | 934 | 79 | 3176 | 208 | - | - | - | - |
Cool/Dry | 803 | 67 | 2081 | 231 | −13 | 58 | −34 | −1 |
Cool/Wet | 853 | 78 | 2853 | 189 | −9 | 14 | −13 | −7 |
Middle | 797 | 75 | 2456 | 196 | −14 | 17 | −23 | −11 |
Hot/Wet | 682 | 79 | 2258 | 146 | −27 | 14 | −34 | −19 |
Hot/Dry | 735 | 64 | 1963 | 218 | −19 | 59 | −38 | 9 |
Nioro, RCP 8.5 | ||||||||
Cool/Dry | 821 | 60 | 1900 | 298 | −10 | 116 | −41 | 11 |
Cool/Wet | 773 | 79 | 2616 | 162 | −17 | 13 | −24 | −14 |
Middle | 828 | 75 | 2611 | 196 | −11 | 34 | −20 | −5 |
Hot/Wet | 632 | 76 | 1961 | 145 | −32 | 8 | −38 | −27 |
Hot/Dry | 553 | 62 | 1343 | 179 | −39 | 19 | −60 | −27 |
Navrongo, RCP 4.5 | ||||||||
Historical | 1212 | 55 | 3377 | 331 | - | - | - | - |
Cool/Dry | 1054 | 54 | 2850 | 288 | −13 | 13 | −10 | −16 |
Cool/Wet | 1107 | 56 | 3128 | 291 | −9 | 14 | −6 | −14 |
Middle | 1067 | 54 | 2976 | 279 | −12 | 18 | −6 | −16 |
Hot/Wet | 997 | 53 | 2683 | 280 | −17 | 16 | −14 | −26 |
Hot/Dry | 1059 | 53 | 2753 | 303 | −12 | 47 | −9 | −28 |
Navrongo, RCP 8.5 | ||||||||
Cool/Dry | 1028 | 54 | 2796 | 293 | −15 | 20 | −11 | −23 |
Cool/Wet | 1027 | 56 | 2910 | 275 | −16 | 13 | −11 | −21 |
Middle | 926 | 53 | 2423 | 278 | −23 | 20 | −16 | −35 |
Hot/Wet | 937 | 51 | 2395 | 269 | −22 | 27 | −18 | −33 |
Hot/Dry | 975 | 51 | 2507 | 277 | −19 | 64 | −10 | −32 |
Tamale, RCP 4.5 | ||||||||
Historical | 1876 | 32 | 3044 | 575 | - | - | - | - |
Cool/Dry | 1679 | 30 | 2738 | 530 | −10 | 35 | −1 | −15 |
Cool/Wet | 1679 | 29 | 2698 | 591 | −9 | 37 | 3 | −19 |
Middle | 1586 | 31 | 2530 | 486 | −15 | 15 | −4 | −19 |
Hot/Wet | 1424 | 29 | 2212 | 481 | −23 | 17 | −15 | −30 |
Hot/Dry | 1499 | 29 | 2444 | 543 | −19 | 37 | −5 | −30 |
Tamale, RCP 8.5 | ||||||||
Cool/Dry | 1430 | 32 | 2316 | 439 | −24 | 9 | −16 | −29 |
Cool/Wet | 1430 | 30 | 2267 | 466 | −23 | 14 | −13 | −28 |
Middle | 1516 | 31 | 2422 | 483 | −19 | 14 | −13 | −24 |
Hot/Wet | 1182 | 26 | 1846 | 477 | −35 | 24 | −17 | −45 |
Hot/Dry | 1265 | 29 | 1992 | 431 | −32 | 13 | −24 | −38 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freduah, B.S.; MacCarthy, D.S.; Adam, M.; Ly, M.; Ruane, A.C.; Timpong-Jones, E.C.; Traore, P.S.; Boote, K.J.; Porter, C.; Adiku, S.G.K. Sensitivity of Maize Yield in Smallholder Systems to Climate Scenarios in Semi-Arid Regions of West Africa: Accounting for Variability in Farm Management Practices. Agronomy 2019, 9, 639. https://doi.org/10.3390/agronomy9100639
Freduah BS, MacCarthy DS, Adam M, Ly M, Ruane AC, Timpong-Jones EC, Traore PS, Boote KJ, Porter C, Adiku SGK. Sensitivity of Maize Yield in Smallholder Systems to Climate Scenarios in Semi-Arid Regions of West Africa: Accounting for Variability in Farm Management Practices. Agronomy. 2019; 9(10):639. https://doi.org/10.3390/agronomy9100639
Chicago/Turabian StyleFreduah, Bright S., Dilys S. MacCarthy, Myriam Adam, Mouhamed Ly, Alex C. Ruane, Eric C. Timpong-Jones, Pierre S. Traore, Kenneth J. Boote, Cheryl Porter, and Samuel G. K. Adiku. 2019. "Sensitivity of Maize Yield in Smallholder Systems to Climate Scenarios in Semi-Arid Regions of West Africa: Accounting for Variability in Farm Management Practices" Agronomy 9, no. 10: 639. https://doi.org/10.3390/agronomy9100639
APA StyleFreduah, B. S., MacCarthy, D. S., Adam, M., Ly, M., Ruane, A. C., Timpong-Jones, E. C., Traore, P. S., Boote, K. J., Porter, C., & Adiku, S. G. K. (2019). Sensitivity of Maize Yield in Smallholder Systems to Climate Scenarios in Semi-Arid Regions of West Africa: Accounting for Variability in Farm Management Practices. Agronomy, 9(10), 639. https://doi.org/10.3390/agronomy9100639