Evaluation of Organic Substrates and Microorganisms as Bio-Fertilisation Tool in Container Crop Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physicochemical Properties of Substrates
2.2. Production
Microbial Activity in the Substrate
2.3. Nutritional Crop Status
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Substrates
3.2. Effect of Substrate and PGPB on Yield
3.3. Microbial Activity
3.4. Pearson Correlations between Microbial Activity and Yield
3.5. Pearson Correlations between Microbial Activity and Substrate Properties
3.6. Crop Nutritional Status
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fu, H.; Zhang, G.; Zhang, F.; Sun, Z.; Geng, G.; Li, T. Effects of continuous tomato monoculture on soil microbial properties and enzyme activities in a solar greenhouse. Sustainability 2017, 9, 317. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, F.; Zhang, G.; Zhang, Y.; Yang, L. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study. Front. Plant Sci. 2017, 8, 1978. [Google Scholar] [CrossRef]
- Mejía, P.; Salas, M.; López, M. Evaluation of physicochemical properties and enzymatic activity of organic substrates during four crop cycles in soilless containers. Food Sci. Nutr. 2018, 1–13. [Google Scholar]
- Jindo, K.; Chocano, C.; De Aguilar, J.M.; Gonzalez, D.; Hernandez, T.; Garcia, C. Impact of compost application during 5 years on crop production, soil microbial activity, carbon fraction, and humification process. Commun. Soil Sci. Plant Anal. 2016, 47, 1907–1919. [Google Scholar] [CrossRef]
- Haouvang, L.C.; Ngakou, A.; Yemefack, M.; Mbailao, M. Effect of organic fertilizers rate on plant survival and mineral properties of Moringa oleifera under greenhouse conditions. Int. J. Recycl. Org. Waste Agric. 2019. [Google Scholar] [CrossRef]
- Adetunji, A.; Lewu, F.; Mulidzi, R.; Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 2017, 17, 794–807. [Google Scholar] [CrossRef]
- Zhou, X.G.; Wu, F.Z. Changes in soil chemical characters and enzyme activities during continuous monocropping of cucumber (Cucumissativus). Pak. J. Bot. 2015, 47, 691–697. [Google Scholar]
- Sekaran, U.; McCoy, C.; Kumar, S.; Subramanian, S. Soil microbial community structure and enzymatic activity responses to nitrogen management and landscape positions in switchgrass (Panicum virgatum L.). GCB Bioenergy 2019, 11, 836–851. [Google Scholar] [CrossRef]
- Sherene, T. Role of soil enzymes in nutrient transformation: A review. Bio Bull. 2017, 3, 109–131. [Google Scholar]
- Nannipieri, P.; Giagnoni, L.; Renella, G.; Puglisi, E.; Ceccanti, B.; Masciandaro, G.; Fornasier, F.; Moscatelli, M.C.; Marinari, S. Soil enzymology: Classical and molecular approaches. Biol. Fertil. Soils 2012, 48, 743–762. [Google Scholar] [CrossRef]
- Zhang, N.; He, X.; Gao, Y.; Li, Y.; Wang, H.; Ma, D.; Zhang, R.; Yang, S. Pedogenic Carbonate and Soil Dehydrogenase Activity in Response to Soil Organic Matter in Artemisia Ordosica Community. Pedosphere 2010, 20, 229–235. [Google Scholar] [CrossRef]
- Gil-Sotres, F.; Trasar-Cepeda, C.; Leirós, M.C.; Seoane, S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 2005, 37, 877–887. [Google Scholar] [CrossRef]
- Merino, C.; Godoy, R.; Matus, F. Soil enzymes and biological activity at different levels of organic matter stability. Soil Sci. Plant Nutr. 2016, 16, 14–30. [Google Scholar]
- Das, D.; Bhattacharyya, P.; Ghosh, B.C.; Banik, P. Bioconversion and biodynamics of Eisenia foetida in different organic wastes through microbially enriched vermiconversion technologies. Ecol. Eng. 2016, 86, 154–161. [Google Scholar] [CrossRef]
- Ahmed, Y.E.; Zaied, K.A.; Kash, K.S.; Farid, M. Evaluation of fruit quality of tomato inoculated with genetically modified strains of pgpr (Azospirillum SP.). Egypt. J. Agric. Res. 2008, 86, 1187–1194. [Google Scholar]
- Mondal, T.; Data, J.K.; Mondal, N.K. Chemical fertilizer in conjunction with biofertilizer and vermicompost induced changes in morpho-physiological and bio-chemical traits of mustard crop. J. Saudi Soc. Agric. Sci. 2017, 16, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Dorodnikov, M.; Blagodatskaya, E.; Blagodatsky, S.; Marhan, S.; Fangmeier, A.; Kuzyakov, Y. Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on aggregate size. Glob. Chang. Biol. 2009, 15, 1603–1614. [Google Scholar] [CrossRef]
- Li, Y.-T.; Rouland, C.; Benedetti, M.; Li, F.; Pando, A.; Lavelle, P.; Dai, J. Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biol. Biochem. 2009, 41, 969–977. [Google Scholar] [CrossRef]
- Watts, D.; Torbert, H.; Feng, Y.; Prior, S. Soil Microbial Community Dynamics as Influenced by Composted Dairy Manure, Soil Properties, and Landscape Position. Soil Sci. 2010, 175, 474–486. [Google Scholar] [CrossRef] [Green Version]
- Casida, L.E. Microbial Metabolic Activity in Soils as Measured by Dehydrogenase Determinations. Appl. Environ. Microbiol. 1977, 34, 630–636. [Google Scholar]
- Ahmed, A.; Nasim, F.; Batool, K.; Bibi, A. Microbial β-Glucosidase: Sources, Production and Applications. J. Appl. Environ. Microbiol. 2017, 5, 31–46. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Pérez-Guzmán, L.; Johnson, J.M.F. Simultaneous determination of β-glucosidase, β-glucosaminidase, acid phosphomonoesterase, and arylsulfatase activities in a soil sample for a biogeochemical cycling index. Appl. Soil Ecol. 2019, 142, 72–80. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 4, 301–307. [Google Scholar] [CrossRef]
- Hochmuth, G.; Maynard, D.; Vavrina, C.; Hanlon, E.; Simonne, E. Plant Tissue Analysis and Interpretation for Vegetable Crops in Florida. In Nutrient Management of Vegetable and Row Crops Handbook; University of Florida: Gainesville, FL, USA, 2004; pp. 45–92. [Google Scholar]
- Murphy, J.; Ripely, J.P. Determination single solution method for the in natural waters. Anal. Chim. Act. 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Abad, M.; Fornes, F.; Carrión, C.; Noguera, V.; Noguera, P.; Maquieira, A.; Puchades, R. Physical Properties of Various Coconut Coir Dusts Compared to Peat. HortScience 2005, 40, 2138–2144. [Google Scholar] [CrossRef] [Green Version]
- Truong, T.H.; Marschner, P. Respiration, available N and microbial biomass N in soil amended with mixes of organic materials differing in C/N ratio and decomposition stage. Geoderma 2018, 319, 167–174. [Google Scholar] [CrossRef]
- Shinohara, M.; Aoyama, C.; Fujiwara, K.; Watanabe, A.; Ohmori, H.; Uehara, Y.; Takano, M. Microbial mineralization of organic nitrogen into nitrate to allow the use of organic fertilizer in hydroponics. Soil Sci. Plant Nutr. 2011, 57, 190–203. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Prasher, S.O.; Yan, B.; Ou, Y.; Cui, H.; Cui, Y. Organic matter, a critical factor to immobilize phosphorus, copper, and zinc during composting under various initial C/N ratios. Bioresour. Technol. 2019, 289, 121745. [Google Scholar] [CrossRef]
- Abul-Soud, M.; Emam, M.; El-Rahman, N. The Potential Use of Vermicompost in Soilless Culture for Producing Strawberry. Int. J. Plant Soil Sci. 2015, 8, 1–15. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Kissel, D.E.; Vigil, M.F. Nitrogen Mineralization from Organic Residues: Research Opportunities. J. Environ. Qual. 2005, 34, 75–79. [Google Scholar] [CrossRef]
- De Boodt, M.; Verdonk, O.; Cappaert, I. Method for measuring the water release curve of organic substrates. Acta Hort. 1974, 37, 2054–2062. [Google Scholar] [CrossRef]
- Abad, M.; Fornes, F.; Carrión, C. Los sustratos en los cultivos sin suelo. In Tratado De Cultivo Sin Suelo; Mundi-Prensa: Madrid, Spain, 2004; pp. 113–158. [Google Scholar]
- Zeng, J.; Liu, X.; Song, L.; Lin, X.; Zhang, H.; Shen, C.; Chu, H. Nitrogen fertilization directly affects soil bacteria nitrogen-use-efficiency of maize. Appl. Soil Ecol. 2016, 107, 324–333. [Google Scholar]
- Singh, R.; Varshney, G. Effects of carbofuran on availability of macronutrients and growth of tomato plants in natural soils and soils amended with inorganic fertilizers and vermicompost. Commun. Soil Sci. Plant Anal. 2013, 44, 2571–2586. [Google Scholar] [CrossRef]
- Manh, V.H.; Wang, C.H. Vermicompost as an important component in substrate: Effects on seedling quality and growth of muskmelon (Cucumis melo L.). APCBEE Proc. 2014, 8, 32–40. [Google Scholar] [CrossRef]
- Karuna, S.H.; Pramod, S.; Eric, M.A.; Kerry, B.W.; Keith, H.; Andrew, S.B. Changes in microbial and nutrient composition associated with rumen content compost incubation. Bioresour. Technol. 2011, 102, 3848–3854. [Google Scholar]
- Wolińska, A.; Stępniewska, Z. Dehydrogenase Activity in the Soil Environment. In Dehydrogenases; Canuto, R.A., Ed.; In Tech: Rijeka, Croatia, 2012; pp. 183–209. [Google Scholar] [CrossRef]
- Henríquez, H.; Uribe, L.; Valenciano, A.; Nogales, R. Actividad enzimática del suelo, Deshidrogenasa, -ß Glucosidasa, Fosfatasa y Ureasa, bajo diferentes cultivos. Agron. Cost. 2014, 38, 43–54. [Google Scholar]
- Wolińska, A.; Stępniewska, Z. Microorganisms Abundance and Dehydrogenase Activity As a Consequence of Soil Reoxidation Process. In Soil Tillage & Microbial Activities; Miransari, M., Ed.; Research Singpost: Kerala, India, 2011; pp. 111–143. [Google Scholar]
- Hayes, J.E.; Richardson, A.E.; Simpson, R.J. Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume species. J. Plant Physiol. 1999, 26, 801–809. [Google Scholar]
- Paz-Ferreiro, J.; Trasar-Cepeda, C.; Leirós, M.C.; Seoane, S.; Gil-Sotres, F. Biochemical properties of acid soils under native grassland in a temperate humid zone. N. Z. J. Agric. Res. 2007, 50, 537–548. [Google Scholar] [CrossRef]
- Turner, B.L.; Baxter, R.; Whitton, B.A. Seasonal phosphatse activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition. Environ. Pollut. 2002, 120, 313–317. [Google Scholar] [CrossRef]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Phosphorus in Action. Soil Biol. 2011, 26, 215–243. [Google Scholar]
- Ali, J.; Chandra, S.D.; Bano, A.; Gupta, A.; Sharma, S.; Bajpai, P.; Pathak, N. Exploiting Microbial Enzymes for Augmenting Crop Production. Enzym. Food Biotechnol. 2019, 29, 503–519. [Google Scholar]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.; Contosta, A.R.; Cusack, D.; Frey, S.; Gallo, M.E.; et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Cui, J.; Mi, Z.; Tian, D.; Wang, J.; Ma, Z.; Wang, B.; Chen, H.Y.H.; Niu, S. Responses of soil enzymatic activities to transgenic Bacillus thuringiensis (Bt) crops—A global meta-analysis. Sci. Total Environ. 2019, 651, 1830–1838. [Google Scholar] [CrossRef] [PubMed]
- Haynes, R.J. Size and activity of the soil microbial biomass under grass and arable management. Biol. Fertil. Soils 1999, 30, 210–216. [Google Scholar] [CrossRef]
- García-Ruiz, R.; Ochoa, V.; Viñegla, B.; Hinojosa, M.B.; Peña-Santiago, R.; Liébanas, G.; Linares, J.C.; Carreira, J.A. Soil enzymes, nematode community and selected physico-chemical properties as soil quality indicators in organic and conventional olive oil farming: Influence of seasonality and site features. Appl. Soil Ecol. 2009, 41, 305–314. [Google Scholar] [CrossRef]
- Meyer, A.H.; Wooldridge, J.; Dames, J.F. Variation in urease and β-glucosidase activities with soil depth and root density in a ‘cripp’s pink’/m7 apple orchard under conventional and organic management. S. Afr. J. Plant Soil. 2015, 32, 227–234. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Wu, Z.; Sun, C. Kinetic parameters of soil β-glucosidase response to environmental temperature and moisture regimes. Rev. Bras. Ciênc do Solo. 2011, 35, 1285–1291. [Google Scholar] [CrossRef]
- Fontaine, S.; Marotti, A.; Abbadie, L. The Priming Effect of Organic Matter: A Question of Microbial Competition. Soil Biol. Biochem. 2003, 35, 837–843. [Google Scholar] [CrossRef]
- Teimouri, M.; Mohamadi, P.; Jalili, A.; Dick, W. Assessing soil quality through soil chemical properties and enzyme activities in semiarid area, Iran. Appl. Ecol. Environ. Res. 2018, 16, 2113–2127. [Google Scholar] [CrossRef]
- Cadahía, C. La savia como índice de fertilización; Mundi-Prensa: Madrid, Spain, 2008; p. 256. [Google Scholar]
- Ferreira, C.M.; Soares, H.M.; Soares, E.V. Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Sci. Total Environ. 2019, 682, 779–799. [Google Scholar] [CrossRef] [Green Version]
- Subhashini, D.V.; Anuradha, M.; Damodar Reddy, D.; Vasanthi, J. Development of bioconsortia for optimizing nutrient supplementation through microbes for sustainable tobacco production. Int. J. Plant Prod. 2016, 10, 479–490. [Google Scholar]
Substrate VC:CF (%v:v) | Treatment | Microorganisms (PGPB) | Concentration (CFU g−1) |
---|---|---|---|
0:100 | AZ | Azotobacter vinelandii | 1 × 108 |
BM | Bacillus megaterium | 1 × 108 | |
FA | Frateuria aurantia | 1 × 108 | |
C | Control | - | |
40:60 | AZ | Azotobacter vinelandii | 1 × 108 |
BM | Bacillus megaterium | 1 × 108 | |
FA | Frateuria aurantia | 1 × 108 | |
C | Control | - | |
60:40 | AZ | Azotobacter vinelandii | 1 × 108 |
BM | Bacillus megaterium | 1 × 108 | |
FA | Frateuria aurantia | 1 × 108 | |
C | Control | - |
Substrate (VC:CF) | Norg % | OM % | C/N | RAW % | TP % | AVP % | BD g dm/L | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0:100 | 0.91c | 0.89b | 73.1a | 81.9a | 41a | 34a | 22.4b | 33.7a | 95.7a | 90.4a | 36.6a | 23.7b | 75c | 73c |
40:60 | 1.05a | 0.95a | 19.3b | 19.7b | 10b | 9.4b | 29.2a | 31.3a | 88.1b | 80.7b | 26.0b | 25.0a | 454b | 448b |
60:40 | 0.99b | 0.96a | 17.5b | 18.9b | 9.5b | 9.1b | 31.7a | 28.6b | 80.5c | 77.2c | 19.0c | 17.0c | 558a | 533a |
Norg I | OM I | C/N I | RAW I | TP I | AVP I | BD I | |
---|---|---|---|---|---|---|---|
Norg F | 0.84 | −0.99 | −0.99 | 0.99 | −0.92 | −0.96 | 1.00 |
OM F | −0.90 | 1.00 | 1.00 | −0.97 | 0.87 | 0.92 | −0.98 |
C/N F | −0.90 | 1.00 | 1.00 | −0.97 | 0.87 | 0.92 | −0.98 |
RAW F | −0.54 | 0.86 | 0.86 | −0.96 | 1.00 | 0.99 | −0.94 |
TP F | −0.81 | 0.99 | 0.99 | −1.00 | 0.94 | 0.97 | −1.00 |
AVP F | −0.07 * | 0.39 * | 0.38 * | −0.59 | 0.78 | 0.70 | −0.55 |
BD F | 0.82 | −0.99 | −0.99 | 1.00 | −0.94 | −0.97 | 1.00 |
Crop | Treatment | Substrate Mixture | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0:100 | 40:60 | 60:40 | 2 PGPB | |||||||||
Tomato | AV | 6.64 | a | B | 8.19 | a | A | 7.95 | a | A | 7.59 | A |
BM | 6.50 | a | B | 7.34 | b | A | 7.34 | ab | A | 7.06 | B | |
FA | 6.42 | a | B | 7.61 | ab | A | 7.53 | ab | A | 7.18 | B | |
Control | 6.31 | a | B | 7.35 | b | A | 7.17 | b | A | 6.95 | B | |
1 substrate | 6.46 | B | 7.62 | A | 7.50 | A | ||||||
Melon | AV | 4.19 | ab | B | 6.00 | ab | A | 5.81 | a | A | 5.33 | B |
BM | 3.91 | c | B | 5.79 | b | A | 5.45 | ab | A | 5.05 | BC | |
FA | 4.82 | a | B | 6.23 | a | A | 5.90 | a | A | 5.65 | A | |
Control | 4.03 | ab | B | 5.68 | b | A | 5.19 | b | A | 4.97 | C | |
1 substrate | 4.24 | C | 5.93 | A | 5.59 | B |
Enzyme | Treat | Tomato | Melon | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0:100 | 40:60 | 60:40 | 0:100 | 40:60 | 60:40 | ||||||||
DHA (µ PNP g−1 24 h−1) | AV | 187 ± 20 | a | 241 ± 21 | ab | 264 ± 16 | a | 206 ± 14 | a | 455 ± 76 | a | 310 ± 95 | ab |
BM | 183 ± 17 | a | 233 ± 32 | b | 247 ± 20 | ab | 166 ± 28 | b | 421 ± 87 | a | 323 ± 102 | ab | |
FA | 191 ± 40 | a | 270 ± 26 | a | 252 ± 24 | ab | 207 ± 32 | a | 470 ± 104 | a | 358 ± 23 | a | |
C | 168 ± 34 | a | 211 ± 30 | b | 233 ± 18 | b | 155 ± 22 | b | 380 ± 108 | a | 293 ± 83 | b | |
Mean | 183 ± 29 | B | 239 ± 33 | A | 249 ± 20 | A | 184 ± 33 | C | 431 ± 95 | A | 321 ± 80 | B | |
FTA (μg PNP g−1 h−1) | AV | 390 ± 77 | a | 479 ± 30 | a | 474 ± 48 | a | 471 ± 117 | a | 660 ± 143 | a | 769 ± 40 | a |
BM | 398 ± 52 | a | 450 ± 56 | ab | 450 ± 32 | a | 446 ± 82 | a | 655 ± 120 | a | 777 ± 89 | a | |
FA | 359 ± 48 | a | 480 ± 24 | a | 471 ± 28 | a | 454 ± 89 | a | 681 ± 144 | a | 761 ± 102 | a | |
C | 361 ± 55 | a | 424 ± 51 | b | 400 ± 20 | a | 413 ± 57 | a | 518 ± 136 | b | 734 ± 52 | a | |
Mean | 377 ± 58 | B | 449 ± 46 | A | 459 ± 44 | A | 446 ± 86 | C | 629 ± 121 | B | 760 ± 72 | A | |
β-GLU (μg PNP g−1 h−1) | AV | 276 ± 20 | a | 365 ± 23 | a | 365 ± 29 | a | 539 ± 98 | a | 707 ± 98 | a | 717 ± 80 | a |
BM | 277 ± 17 | a | 328 ± 76 | ab | 352 ± 19 | ab | 588 ± 48 | a | 648 ± 71 | a | 742 ± 63 | a | |
FA | 262 ± 27 | a | 303 ± 26 | b | 361 ± 23 | ab | 550 ± 76 | a | 708 ± 82 | a | 686 ± 48 | a | |
C | 273 ± 32 | a | 283 ± 36 | b | 338 ± 38 | b | 540 ± 83 | a | 691 ± 89 | a | 749 ± 61 | a | |
Mean | 272 ± 24 | B | 321 ± 52 | A | 335 ± 28 | A | 554 ± 90 | B | 689 ± 64 | A | 724 ± 54 | A |
Melon | kg/m−2 | DHA | FTA | β-GLU | kg/m−2 | DHA | FTA | β-GLU |
---|---|---|---|---|---|---|---|---|
Yield | 0.76 | 0.83 | 0.76 | 0.94 | 0.77 | 0.75 | ||
p-Value | 0.0040 | 0.0008 | 0.0044 | 0.0000 | 0.0033 | 0.0045 | ||
DHA | 0.76 | 0.94 | 0.81 | 0.94 | 0.64 | 0.72 | ||
p-Value | 0.0040 | 0.0000 | 0.0016 | 0.0000 | 0.0250 | 0.0081 | ||
FTA | 0.83 | 0.94 | 0.88 | 0.77 | 0.64 | 0.79 | ||
p-Value | 0.0008 | 0.0000 | 0.0002 | 0.0033 | 0.0250 | 0.0024 | ||
B-GLU | 0.76 | 0.81 | 0.88 | 0.75 | 0.72 | 0.79 | ||
p-Value | 0.0044 | 0.0016 | 0.0002 | 0.0045 | 0.0081 | 0.0024 |
Norg | OM | C/N | RAW | TP | AVP | BD | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Crop 1 | I | F | I | F | I | F | I | F | I | F | I | F | I | F |
DHA | 0.744 | 0.892 | −0.887 | −0.858 | −0.885 | −0.885 | 0.886 | −0.817 | −0.701 | −0.892 | −0.840 | −0.888 | 0.891 | 0.892 |
FTA | 0.718 | 0.874 | −0.866 | −0.864 | −0.864 | −0.864 | 0.870 | −0.808 | −0.675 | −0.874 | −0.816 | −0.868 | 0.873 | 0.874 |
β-GLU | 0.561 * | 0.833 | −0.802 | −0.796 | −0.797 | −0.795 | 0.859 | −0.863 | −0.504 * | −0.844 | −0.703 | −0.807 | 0.849 | 0.842 |
Crop 2 | I | F | I | F | I | F | I | F | I | F | I | F | I | F |
DHA | 0.964 | 0.799 | −0.851 | −0.858 | −0.857 | −0.859 | 0.722 | −0.505 * | −0.962 | −0.772 | −0.931 | −0.844 | 0.757 | 0.775 |
FTA | 0.614 | 0.912 | −0.878 | −0.871 | −0.872 | −0.871 | 0.941 | −0.946 | −0.551 * | −0.924 | −0.770 | −0.803 | 0.930 | 0.923 |
β-GLU | 0.811 | 0.918 | −0.920 | −0.920 | −0.921 | −0.920 | 0.900 | −0.805 | −0.772 | −0.913 | −0.891 | −0.921 | 0.910 | 0.914 |
Ion | Treatment | 60 DAT | 90 DAT | 120 DAT | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0:100 | 40:60 | 60:40 | 0:100 | 40:60 | 60:40 | 0:100 | 40:60 | 60:40 | ||
NO3− | AV | 644a | 863a | 830a | 739a | 817a | 961a | 691a | 839a | 853a |
BM | 681a | 758ab | 825a | 667ab | 703c | 932a | 611a | 744b | 816a | |
FA | 682a | 839ab | 800a | 759a | 773b | 999a | 591a | 829a | 908a | |
C | 587a | 736b | 795b | 610b | 672c | 702b | 575a | 702b | 849a | |
Mean | 649B | 799A | 813A | 694C | 741B | 899A | 617C | 778B | 856A | |
H2PO4− | AV | 254a | 237a | 284ab | 256a | 260a | 274B | 234a | 252b | 348a |
BM | 266a | 253a | 320ab | 287a | 271a | 356a | 234a | 271a | 367a | |
FA | 277a | 241a | 357a | 300a | 215ab | 270b | 269a | 257ab | 319a | |
C | 221a | 245a | 231b | 240a | 192b | 241b | 247a | 247b | 337a | |
Mean | 255B | 244B | 298A | 271A | 234B | 286A | 246B | 257B | 343A | |
K+ | AV | 2111a | 2517a | 2301a | 2027a | 3209a | 2375a | 3806ab | 4200ab | 4354ab |
BM | 2106a | 2558a | 2309a | 2014a | 3150a | 2338a | 3813ab | 3780bc | 4338ab | |
FA | 2118a | 2504a | 2491a | 2027a | 3173a | 2381a | 3853a | 4308a | 4377a | |
C | 2097a | 2473a | 2506a | 2024a | 3101a | 2350a | 3602b | 3600c | 4308b | |
Mean | 2108B | 2513A | 2402A | 2023C | 3158A | 2361B | 3768C | 3972B | 4344A | |
Ca2+ | AV | 259a | 288a | 297a | 516b | 562a | 570a | 484a | 565a | 706a |
BM | 274a | 288ab | 317a | 645a | 605a | 649a | 399a | 557a | 545a | |
FA | 270a | 316ab | 321a | 632a | 586a | 523a | 346ab | 513a | 561a | |
C | 253a | 286b | 289a | 419c | 556a | 566a | 243b | 478a | 536a | |
Mean | 264A | 294A | 306A | 553A | 577A | 577A | 368B | 528A | 587A |
Ion | Treatment | 50 DAT | 80 DAT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0:100 | 40:60 | 60:40 | 0:100 | 40:60 | 60:40 | ||||||||
NO3− | AV | 878 | a | 946 | a | 942 | b | 884 | a | 967 | ab | 956 | a |
BM | 876 | a | 855 | b | 854 | b | 757 | a | 817 | c | 861 | a | |
FA | 902 | a | 1014 | a | 1212 | a | 989 | a | 1047 | a | 873 | a | |
Control | 807 | a | 863 | b | 705 | b | 805 | a | 910 | bc | 808.5 | a | |
1 substrate | 866 | B | 920 | A | 928 | A | 859 | B | 935 | A | 875 | B | |
H2PO4− | AV | 264 | a | 337 | b | 389 | a | 407 | a | 425 | a | 450 | a |
BM | 318 | a | 438 | a | 378 | a | 403 | a | 436 | a | 432 | ab | |
FA | 359 | a | 424 | a | 292 | a | 334 | a | 394 | a | 392 | b | |
Control | 347 | a | 344 | b | 342 | a | 324 | a | 338 | b | 356 | ab | |
1 substrate | 322 | A | 386 | A | 350 | A | 367 | A | 398 | A | 407 | A | |
K+ | AV | 2653 | a | 2521 | a | 2818 | a | 3879 | a | 5180 | a | 5514 | a |
BM | 2419 | b | 2422 | a | 2484 | a | 3906 | a | 5184 | a | 4487 | b | |
FA | 2513 | ab | 2281 | a | 2771 | a | 3803 | a | 5232 | a | 5536 | a | |
Control | 2759 | a | 2498 | a | 2593 | a | 3518 | b | 4915 | a | 5092 | ab | |
1 substrate | 2586 | A | 2430 | B | 2666 | A | 3776 | B | 5128 | A | 5157 | A | |
Ca2+ | AV | 246 | a | 356 | b | 507 | a | 421 | a | 523 | ab | 554 | a |
BM | 280 | a | 520 | a | 424 | b | 457 | a | 623 | a | 646 | a | |
FA | 238 | a | 552 | a | 413 | b | 433 | a | 592 | a | 620 | a | |
Control | 241 | a | 361 | b | 390 | b | 384 | a | 386 | b | 566 | a | |
1 substrate | 251 | B | 447 | A | 433 | A | 423 | C | 531 | B | 596 | A |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, J.L.; Salas, M.d.C. Evaluation of Organic Substrates and Microorganisms as Bio-Fertilisation Tool in Container Crop Production. Agronomy 2019, 9, 705. https://doi.org/10.3390/agronomy9110705
Ruiz JL, Salas MdC. Evaluation of Organic Substrates and Microorganisms as Bio-Fertilisation Tool in Container Crop Production. Agronomy. 2019; 9(11):705. https://doi.org/10.3390/agronomy9110705
Chicago/Turabian StyleRuiz, Jose Luis, and Maria del Carmen Salas. 2019. "Evaluation of Organic Substrates and Microorganisms as Bio-Fertilisation Tool in Container Crop Production" Agronomy 9, no. 11: 705. https://doi.org/10.3390/agronomy9110705
APA StyleRuiz, J. L., & Salas, M. d. C. (2019). Evaluation of Organic Substrates and Microorganisms as Bio-Fertilisation Tool in Container Crop Production. Agronomy, 9(11), 705. https://doi.org/10.3390/agronomy9110705