Critical Success Factors for the Adoption of Decision Tools in IPM
Abstract
:1. Integrated Pest Management: Principles, Barriers and Benefits
2. Decision Tools for IPM
2.1. Benefits of Decision Tools in IPM
2.2. Modelling Approaches Used in DTs
- Empiric (data-based) models organizing data and standardising their relationship in terms of mathematical or statistical representations (e.g., correlation between pest abundance and air temperature). Empiric models provide useful insight to explore the relationships within a system that are unknown or poorly known;
- Mechanistic or process-based models describing a process (e.g., pest population dynamics/epidemics) based on the underlying functional mechanisms of the process. Mechanistic models are crucial to evaluate the biological responses as function of one or more environmental independent variables (e.g., air temperature, relative humidity, etc.).
2.3. Intended Use of DTs
2.3.1. Decision on Whether Prevention and/or Suppression Measures Are Needed
2.3.2. Decision on Scheduling Crop Protection Interventions
2.3.3. Optimization of Pest Monitoring Programs
2.3.4. Supporting Decision on Pesticide Use
2.3.5. Estimate the Environmental Fate of Pesticides
3. Drivers Influencing the Adoption of DTs for IPM
3.1. Technological Constraints
3.2. Socio-Economic Constraints
4. Towards Wider Adopton of DTs in IPM
4.1. The DTs Considers Crop Protection as Part of a Multicomponent System
4.2. The DT Has Been Calibrated and Validated
4.3. The DT Is Open and Transparent
4.4. The DT Is User-Friendly
- Learning time. Clarity of the instruction manual and limitation of the time requirements for learning how to use the DT. The organization of training, seminars, workshops, and continuous support to users (e.g., through extension services and experts) may facilitate the long-term adoption of DTs;
- Time spent for navigating in the DT to obtain the information. Some DTs are time consuming because of tedious input requirements or delays in data processing. The time demand on the user has been recognized as a paramount element in determining the adoption of DTs [22,98]. The time needed for inputting, processing, and analyzing data is often a shortcoming for several DTs, discouraging their use within the IPM schemes. For example, the users of the GPFARM (https://www.ars.usda.gov/plains-area/fort-collins-co/center-for-agricultural-resources-research/rangeland-resources-systems-research/docs/system/gpfarm/), a DT for strategic planning of the whole farm, declared not to have enough time to provide inordinate information requested as input by the system; moreover, the excessive run-time required discouraged adoption by producers and consultants;
- Timely information. The information should be provided in a timely manner in order to be effective within the decision-making process. For example, decisions about the control of grape downy mildew (Plasmopara viticola) are taken every 12 h during the most critical periods of the season, and thus information supporting decision-making should be delivered by a DT considering this time interval;
- Time spent for input requirements. Relevant data supplying inputs to DTs are often related to: (i) Agro-meteorology; (ii) crop production and phenology; and (iii) pest presence and abundance. DTs must be supported by monitoring activities and sensors’ networks timely supplying up-to-date data that are needed to run models and generate outputs. Difficulties in rapidly updating the databases (e.g., weather data) reduce the usefulness of the system to the growers;
- Clarity of the output. This is a crucial point for the adoption of a DT [22,121]. Nowadays, most of the DTs are delivered through web-platforms or applications integrating a user-friendly graphical user interface (GUI) allowing the user to navigate within the DT, and consult the main outputs and recommendations. Therefore, accessibility to the use of DTs can be highly increased by the development of easy-to-use GUIs, which can be evaluated following structured methodologies [22,121]. Furthermore, the information provided should not be redundant, difficult to read, or irrelevant to the end-user. Regarding this, Worm and colleagues [122] investigated the direct link between the rate of acceptance of a DT and the overall design of the system. For example, presenting the outputs of a DT in quantitative terms, might lead to difficulties in the interpretation of the information. In some cases, a graphic representation, indicating for instance the overall risks linked to a consequent management action, might be more informative for the end-user [23].
4.5. The DT Is Regularly Maintained and Updated
4.6. The DT Supports and Does Not Replace the Farmer as Decision-Maker
4.7. The DT Provides Benefits to Users
5. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Crop | N. of Pests | N. of DTs 1 | Pest/Mycotoxin Names |
---|---|---|---|
Almond | 7 | 7 | Alternaria alternata, Eurytoma amygdali, Monilinia fructicola, Myzus persicae, Taphrina deformans, Tetranychus urticae, Wilsonomyces carpophilus |
Apples | 5 | 9 | Argyrotaenia pulchellana, Cydia pomonella, Erwinia amylovora, Pandemis cerasana, Venturia inaequalis |
Asparagus | 1 | 1 | Stemphylium vesicarium |
Barley | 12 | 17 | Blumeria graminis, Deoxynivalenol (DON), Drechslera teres, Fusarium avenaceum, F. culmorum, F. graminearum, F. langhsetiae, F. poae, F. sporotrichoides, Microdochium nivale, Puccinia hordei, Rhynchosporium secalis |
Blackberries | 1 | 1 | Drosophila suzukii |
Cherries | 2 | 2 | Drosophila suzukii, Monilinia fructicola |
Cucurbits | 3 | 4 | Golovinomyces orontii, Podosphaera xanthii, Pseudoperonospora cubensis |
Eldberry | 1 | 1 | Drosophila suzukii |
Flowers (cut) | 1 | 1 | Botrytis cinerea |
Grapes | 10 | 19 | Aspergillus carbonarius, Botrytis cinerea, Drosophila suzukii, Erysiphe necator, Guignardia bidwellii, Lobesia botrana, Ochratoxin A, Planococcus ficus, Plasmopara viticola, Scaphoidues titanus |
Kiwifruit | 1 | 1 | Pseudomonas syringae pv. actinidiae |
Legumes | 10 | 10 | Ascochyta rabiei, A. pinodes, Alternaria alternata, Bruchus rufimanus, Colletotrichum lindemuthianum, C. lupini, Cydia nigrana, Helicoverpa (=Heliothis) armigera, Sitona sp., Uromyces phaseoli |
Loquat | 1 | 1 | Fusicladium eriobotryae |
Maize | 16 | 19 | Larvae and adults of Agriotes lineatus, A. obscurus, A. sordidus, A. sputator, Aspegillus flavus, Chaetocnema pulicaria, Diabrotica virgifera, Fusarium graminearum, F. langsethiae, F. verticillioides, Ostrinia nubilalis, Peniciullium spp., Aflatoxins, Fumonisins, DON, T2/HT2 |
Oats | 1 | 1 | DON |
Oilseed rape | 5 | 5 | Brassicogethes aeneus, Ceutorhynchus napi, C. pallidactylus, Psylliodes chrysocephalus, Sclerotinia sclerotiorum |
Olives | 2 | 6 | Fusicladium oleaginum, Bactrocera oleae |
Onions | 1 | 2 | Peronospora desctructor |
Peaches | 9 | 13 | Adoxophyes orana, Anarsia lineatella, Cydia molesta, Monilinia fructicola, Monilinia spp., Sphaerotheca pannosa, Taphrina deformans, Wilsonomyces carpophilus, Xanthomonas arboricola |
Pears | 6 | 8 | Argyrotaenia pulchellana, Cydia pomonella, Erwinia amylovora, Pandemis cerasana, Stemphylium vesicarium, Venturia pirina |
Pistachio | 1 | 1 | Septoria spp. |
Plums | 2 | 2 | Cydia funebrana, Drosophila suzukii |
Potatoes | 9 | 18 | Larvae and adults of Agriotes lineatus, A. obscurus, A. sordidus, A. sputator, Alternaria alternata, A. solani, Leptinotarsa decemlineata, Phthorimaea operculella, Phytophthora infestans |
Raspberries | 1 | 1 | Drosophila suzukii |
Rice | 5 | 5 | Cochliobolus miyabeanus, Pyricularia oryzae, Rhizoctonia solani, Rice Tungro S and B viruses, Xanthomonas campestris pv. oryzae |
Rye | 3 | 3 | Puccinia recondita, Blumeria graminis, Rhynchosporium secalis |
Strawberry | 1 | 2 | Botrytis cinerea |
Sugar beet | 2 | 8 | Erysipahe betae, Cercospora beticola |
Tobacco | 1 | 1 | Peronospora tabacina |
Tomatoes | 7 | 11 | Alternaria solani, Helicoverpa (=Heliothis) armigera, Oidium lycopersici, Phthorimaea operculella, Phytopthora infestans, Pseudomonas syringae, Xanthomonas campestris pv. vesicatoria |
Triticale | 6 | 6 | Puccinia triticina, P. striiformis, Blumeria graminis, Rhynchosporium secalis, Parastagonospora nodorum, Zymoseptoria tritici |
Wheat | 22 | 31 | Blumeria graminis, BYDV, Fusarium avenaceum, F. culmorum, F. graminearum, F. langhsetiae, F. poae, F. sporotrichoides, Microdochium nivale, Parastagonospora nodorum, Puccinia recondita, P. striiformis, P. triticina, Pyrenophora tritici-repentis, Rhopalosiphum maidis, R. padi, Sitobion avenae, Zymoseptoria tritici, DON, Nivalenol (NIV), T2-HT2, Zearalenon (ZEA) |
TOTAL | 155 | 217 |
References
- IPPC; ISPM; FAO. International Plant Protection Convention/International Standards for Phytosanitary Measures/Glossary of Phytosanitary Terms; Food and Agriculture Organization: Rome, Italy, 2007. [Google Scholar]
- Ehler, L.E. Integrated pest management (IPM): Definition, historical development and implementation, and the other IPM. Pest Manag. Sci. 2006, 62, 787–789. [Google Scholar] [CrossRef] [PubMed]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Kilgore, W.W.; Doutt, R.L. Pest Control. Biological, Physical, and Selected Chemical Methods; Academic Press: New York, NY, USA, 1967. [Google Scholar]
- Nagothu, U.S.; Ketelaar, J.W. Save and Grow; Food and Agriculture Organization: Rome, Italy, 2018; Volume 6, ISBN 9789251068717. [Google Scholar]
- Kogan, M.; Bajwa, W.I. Integrated pest management: A global reality? An. Soc. Entomol. Bras. 2006, 28, 1–25. [Google Scholar] [CrossRef]
- Rajalathi, R.; Lagnaoui, A.; Schillhorn-Van Veen, T.; Pehu, E. Sustainable Pest Management: Achievements and Challenges; Agriculture and Rural Development Report No. 32714-GLB; The World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Gliessman, S.R.; Engles, E. Agroecology: The Ecology of Sustainable Food Systems; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9781439895610. [Google Scholar]
- Norris, R.F.; Caswell-Chen, E.P.; Kogan, M. Concepts in Integrated Pest Management; Prentice Hall: Upper Saddle River, NJ, USA, 2003; ISBN 0130870161. [Google Scholar]
- Nutter, F.W.; Teng, P.S.; Royer, M.H. Terms and Concepts for Yield, Crop Loss, and Disease Thresholds. Plant Dis. 1993, 77, 211–215. [Google Scholar]
- Gadanakis, Y.; Bennett, R.; Park, J.; Areal, F.J. Evaluating the Sustainable Intensification of arable farms. J. Environ. Manag. 2015, 150, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Pretty, J.N. The sustainable intensification of agriculture. Nat. Resour. Forum 1997, 21, 247–256. [Google Scholar] [CrossRef]
- Trumble, J.T. IPM: Overcoming Conflicts in Adoption. Integr. Pest Manag. Rev. 1998, 3, 195–207. [Google Scholar] [CrossRef]
- Deike, S.; Pallutt, B.; Christen, O. Investigations on the energy efficiency of organic and integrated farming with specific emphasis on pesticide use intensity. Eur. J. Agron. 2008, 28, 461–470. [Google Scholar] [CrossRef]
- Angioni, A.; Dedola, F. Three years monitoring survey of pesticide residues in Sardinia wines following integrated pest management strategies. Environ. Monit. Assess. 2013, 185, 4281–4289. [Google Scholar] [CrossRef]
- Lechenet, M.; Bretagnolle, V.; Bockstaller, C.; Boissinot, F.; Petit, M.-S.; Petit, S.; Munier-Jolain, N.M. Reconciling Pesticide Reduction with Economic and Environmental Sustainability in Arable Farming. PLoS ONE 2014, 9, e97922. [Google Scholar] [CrossRef] [PubMed]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Jeger, M. Bottlenecks in IPM. Crop Prot. 2000, 19, 787–792. [Google Scholar] [CrossRef]
- Zalucki, M.P.; Adamson, D.; Furlong, M.J. The future of IPM: Whither or wither?: Overview. Aust. J. Entomol. 2009, 48, 85–96. [Google Scholar] [CrossRef]
- Parsa, S.; Morse, S.; Bonifacio, A.; Chancellor, T.C.B.; Condori, B.; Crespo-Pérez, V.; Hobbs, S.L.A.; Kroschel, J.; Ba, M.N.; Rebaudo, F.; et al. Obstacles to integrated pest management adoption in developing countries. Proc. Natl. Acad. Sci. USA 2014, 111, 3889–3894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo, G.; Riravololona, M.; Munier-Jolain, N.M. Using a farming system model to evaluate cropping system prototypes: Are labour constraints and economic performances hampering the adoption of Integrated Weed Management? Eur. J. Agron. 2010, 33, 24–32. [Google Scholar] [CrossRef]
- McCown, R. Changing systems for supporting farmers’ decisions: Problems, paradigms, and prospects. Agric. Syst. 2002, 74, 179–220. [Google Scholar] [CrossRef]
- Magarey, R.D.; Travis, J.W.; Russo, J.M.; Seem, R.C.; Magarey, P.A. Decision Support Systems: Quenching the Thirst. Plant Dis. 2002, 86, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Shtienberg, D. Will Decision-Support Systems Be Widely Used for the Management of Plant Diseases? Annu. Rev. Phytopathol. 2013, 51, 1–16. [Google Scholar] [CrossRef]
- Gent, D.H.; De Wolf, E.; Pethybridge, S.J. Perceptions of Risk, Risk Aversion, and Barriers to Adoption of Decision Support Systems and Integrated Pest Management: An Introduction. Phytopathology 2010, 101, 640–643. [Google Scholar] [CrossRef]
- Goble, T. Integrated Pest Management: Concepts, Tactics, Strategies and Case Studies; Radcliffe, E., Hutchison, W., Cancelado, R., Eds.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Rossi, V.; Caffi, T.; Salinari, F. Helping farmers face the increasing complexity of decision-making for crop protection. Phytopathol. Mediterr. 2012, 51, 457–479. [Google Scholar]
- Trematerra, P. Aspects related to decision support tools and Integrated Pest Management in food chains. Food Control 2013, 34, 733–742. [Google Scholar] [CrossRef]
- Narayana Reddy, M.; Rao, N.H. GIS-Based Decision Support Systems in Agriculture; National Academy of Agricultural Research Management: Rajendranagar, India, 1995. [Google Scholar]
- Akhavan, P.; Jafari, M.; Fathian, M. Critical success factors of knowledge management systems: A multi-case analysis. Eur. Bus. Rev. 2006, 18, 97–113. [Google Scholar] [CrossRef]
- Keating, B.; McCown, R. Advances in farming systems analysis and intervention. Agric. Syst. 2001, 70, 555–579. [Google Scholar] [CrossRef]
- Rossi, V.; Salinari, F.; Poni, S.; Caffi, T.; Bettati, T. Addressing the implementation problem in agricultural decision support systems: The example of vite.net®. Comput. Electron. Agric. 2014, 100, 88–99. [Google Scholar] [CrossRef]
- Meijer, B.J.M.; Kamp, J.A.L.M. Development and introduction of farm management systems. In Proceedings of the Workshop on Computer-Based Plant Protection and Advisory Systems, Copenhagen, Denmark, 27–29 November 1991; Secher, B.J.M., Murali, N.S., Eds.; Springer: Berlin, Germany, 1991. [Google Scholar]
- Rabbinge, R.; Rijsdijk, F.H. EPIPRE: A Disease and Pest Management System for Winter Wheat, taking Account of Micrometeorological Factors 1. EPPO Bull. 1983, 13, 297–305. [Google Scholar] [CrossRef]
- Zadoks, J.C. A quarter century of disease warning, 1958–1983. Plant Dis. 1984, 68, 352–355. [Google Scholar] [CrossRef]
- Damos, P.; Karabatakis, S. Real time pest modeling through the World Wide Web: Decision making from theory to praxis. IOBC WPRS Bull. 2013, 91, 253–258. [Google Scholar]
- Hochman, Z.; Carberry, P.S. Emerging consensus on desirable characteristics of tools to support farmers’ management of climate risk in Australia. Agric. Syst. 2011, 104, 441–450. [Google Scholar] [CrossRef]
- Rossi, V.; Meriggi, P.; Caffi, T.; Giosué, S.; Bettati, T. A web-based decision support system for managing durum wheat crops. In Decision Support Systems, Advances in; BoD—Books on Demand: Norderstedt, Germany, 2010. [Google Scholar]
- Leffelaar, P. On Systems Analysis and Simulation of Ecological Processes with Examples in CSMP and FORTRAN; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Wainwright, J.; Mulligan, M. Environmental Modelling; Wiley-Blackwell: Chichester, UK, 2002. [Google Scholar]
- Madden, L.V.; Ellis, M.A. How to Develop Plant Disease Forecasters. In Experimental Techniques in Plant Disease Epidemiology; Springer: Berlin/Heidelberg, Germany, 1988; pp. 191–208. [Google Scholar]
- Shoemaker, C. Applications of dynamic programming and other optimization methods in pest management. IEEE Trans. Automat. Contr. 1981, 26, 1125–1132. [Google Scholar] [CrossRef]
- Mahaman, B.; Passam, H.; Sideridis, A.; Yialouris, C. DIARES-IPM: A diagnostic advisory rule-based expert system for integrated pest management in Solanaceous crop systems. Agric. Syst. 2003, 76, 1119–1135. [Google Scholar] [CrossRef]
- Schepers, H. Decision support systems for integrated control of late blight. Plant Breed. Seed Sci. 2004, 50, 57–61. [Google Scholar]
- Damos, P. Modular structure of web-based decision support systems for integrated pest management. A review. Agron. Sustain. Dev. 2015, 35, 1347–1372. [Google Scholar] [CrossRef]
- Caffi, T.; Legler, S.E.; Bugiani, R.; Rossi, V. Combining sanitation and disease modelling for control of grapevine powdery mildew. Eur. J. Plant Pathol. 2013, 135, 817–829. [Google Scholar] [CrossRef]
- Dury, J.; Schaller, N.; Garcia, F.; Reynaud, A.; Bergez, J.E. Models to support cropping plan and crop rotation decisions. A review. Agron. Sustain. Dev. 2012, 32, 567–580. [Google Scholar] [CrossRef]
- Reichenbach, S.E.; Waltman, W.J.; Jindal, G.; Nelson, L.A.; Meyer, S.J.; Peake, J.S.; Fithian, W.; Dappen, P. The Planting Date Calculator: A Decision-Support Tool for Agriculture; Computer Science and Engineering Department, University of Nebraska—Lincoln: Lincoln, NE, USA, 2003. [Google Scholar]
- Carisse, O.; Tremblay, D.-M.; Jobin, T.; Walker, A.S. Disease Decision Support Systems: Their Impact on Disease Management and Durability of Fungicide Effectiveness. In Fungicides; InTech: London, UK, 2010. [Google Scholar]
- Haverkort, A.J.; Struik, P.C. (Eds.) Potato in Progress: Science Meets Practice; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005. [Google Scholar]
- Haneklaus, S.; Schroeder, D.; Schnug, E. Decision Making Strategies for Fertilizer Use in Precision Agriculture. In Precision Agriculture; Robert, P.C., Rust, R.H., Larson, W.E., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 1999. [Google Scholar]
- He, J.; Wang, J.; He, D.; Dong, J.; Wang, Y. The design and implementation of an integrated optimal fertilization decision support system. Math. Comput. Model. 2011, 54, 1167–1174. [Google Scholar] [CrossRef]
- MacCarthy, D.S.; Kihara, J.; Masikati, P.; Adiku, S.G.K. Decision support tools for site-specific fertilizer recommendations and agricultural planning in selected countries in sub-Sahara Africa. Nutr. Cycl. Agroecosyst. 2018, 110, 343–359. [Google Scholar] [CrossRef]
- Machet, J.-M.; Dubrulle, P.; Damay, N.; Duval, R.; Julien, J.-L.; Recous, S. A Dynamic Decision-Making Tool for Calculating the Optimal Rates of N Application for 40 Annual Crops While Minimising the Residual Level of Mineral N at Harvest. Agronomy 2017, 7, 73. [Google Scholar] [CrossRef]
- Kleinhenz, B.; Rossberg, D. Structure and development of decision-support systems and their use by the state plant protection services in Germany. EPPO Bull. 2000, 30, 93–97. [Google Scholar] [CrossRef]
- Racca, P.; Kleinhenz, B.; Zeuner, T.; Keil, B.; Tschöpe, B.; Jung, J. Decision Support Systems in Agriculture: Administration of Meteorological Data, Use of Geographic Information Systems (GIS) and Validation Methods in Crop Protection Warning Service. In Efficient Decision Support Systems—Practice and Challenges From Current to Future; InTech: London, UK, 2011. [Google Scholar]
- Jensen, A.L.; Boll, P.S.; Thysen, I.; Pathak, B. Pl@nteInfo®—A web-based system for personalised decision support in crop management. Comput. Electron. Agric. 2000, 25, 271–293. [Google Scholar] [CrossRef]
- Thysen, I. PlanteInfo—Ten years of online information and decision support for crop production in Denmark. In Proceedings of the Making Science Work on the Farm: A Workshop on Decision Support Systems for Irish Agriculture; Joint Working Group in Applied Agricultural Meteorology (AGMET), Dublin, Ireland, 25 January 2007; pp. 11–23. [Google Scholar]
- VanKirk, J.R.; Isard, S.A.; Cardwell, K.F.; Draper, M.A. The ipmPIPE: Overview, Lessons, Opportunities, and Challenges. J. Integr. Pest Manag. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Gilioli, G.; Pasquali, S.; Marchesini, E. A modelling framework for pest population dynamics and management: An application to the grape berry moth. Ecol. Modell. 2016, 320, 348–357. [Google Scholar] [CrossRef]
- Damos, P.; Savopoulou-Soultani, M. Temperature-driven models for insect development and vital thermal requirements. Psyche 2012, 2012, 123405. [Google Scholar] [CrossRef]
- Gilioli, G.; Pasquali, S.; Marchesini, E.; Salinari, F. Simulation models-Insect pests. In Proceedings of the MoDeM_IVM Conference at Vinitech, Bordeaux, France, 29 November 2012. [Google Scholar]
- Cicogna, A.; Dietrich, S.; Gani, M.; Giovanardi, R.; Sandra, M. Use of meteorological radar to estimate leaf wetness as data input for application of territorial epidemiological model (downy mildew—Plasmopara viticola). Phys. Chem. Earth Parts A/B/C 2005, 30, 201–207. [Google Scholar] [CrossRef]
- Rossi, V.; Caffi, T.; Giosuè, S.; Bugiani, R. A mechanistic model simulating primary infections of downy mildew in grapevine. Ecol. Modell. 2008, 212, 480–491. [Google Scholar] [CrossRef]
- Caffi, T.; Rossi, V.; Legler, S.E.; Bugiani, R. A mechanistic model simulating ascosporic infections by Erysiphe necator, the powdery mildew fungus of grapevine. Plant Pathol. 2011, 60, 522–531. [Google Scholar] [CrossRef]
- Rossi, V.; Onesti, G.; Legler, S.E.; Caffi, T. Use of systems analysis to develop plant disease models based on literature data: Grape black-rot as a case-study. Eur. J. Plant Pathol. 2015, 141, 427–444. [Google Scholar] [CrossRef]
- González-Domínguez, E.; Caffi, T.; Ciliberti, N.; Rossi, V. A Mechanistic Model of Botrytis cinerea on Grapevines That Includes Weather, Vine Growth Stage, and the Main Infection Pathways. PLoS ONE 2015, 10, e0140444. [Google Scholar] [CrossRef]
- Plant, R.E.; Mangel, M. Modeling and Simulation in Agricultural Pest Management. SIAM Rev. 1987, 29, 235–261. [Google Scholar] [CrossRef]
- Higley, L.; Pedigo, L. Economic Thresholds for Integrated Pest Management; University of Nebraska Press: Lincoln, NE, USA, 1996. [Google Scholar]
- Brown, G.C. Simple Models of Natural Enemy Action and Economic Thresholds. Am. Entomol. 1997, 43, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Garrett, K.A.; Forbes, G.A.; Savary, S.; Skelsey, P.; Sparks, A.H.; Valdivia, C.; Van Bruggen, A.H.C.; Willocquet, L.; Djurle, A.; Duveiller, E.; et al. Complexity in climate-change impacts: An analytical framework for effects mediated by plant disease. Plant Pathol. 2011, 60, 15–30. [Google Scholar] [CrossRef]
- Perini, A.; Susi, A. Developing a decision support system for integrated production in agriculture. Environ. Model. Softw. 2004, 19, 821–829. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Kalra, N.; Chander, S.; Pathak, H. InfoCrop: A dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. I. Model description. Agric. Syst. 2006, 89, 1–25. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. A Modelling System for the Assessment of the Agricultural Impacts of Climate Change; FAO: Rome, Italy, 2015; p. 28. [Google Scholar]
- Cerda, R.; Avelino, J.; Gary, C.; Tixier, P.; Lechevallier, E.; Allinne, C. Primary and Secondary Yield Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee. PLoS ONE 2017, 12, e0169133. [Google Scholar] [CrossRef] [PubMed]
- Savary, S.; Nelson, A.D.; Djurle, A.; Esker, P.D.; Sparks, A.; Amorim, L.; Bergamin Filho, A.; Caffi, T.; Castilla, N.; Garrett, K.; et al. Concepts, approaches, and avenues for modelling crop health and crop losses. Eur. J. Agron. 2018, 100, 4–18. [Google Scholar] [CrossRef]
- Prasad, Y.; Prabhakar, M. Pest monitoring and forecasting. Integrated Pest Management: Principles and Practice; Cabi: Oxfordshire, UK, 2012; pp. 41–57. [Google Scholar]
- Ravlin, F.W. Development of monitoring and decision-support systems for integrated pest management of forest defoliators in North America. For. Ecol. Manage. 1991, 39, 3–13. [Google Scholar] [CrossRef]
- Birch, L.C. The Role of Weather in Determining the Distribution and Abundance of Animals. Cold Spring Harb. Symp. Quant. Biol. 1957, 22, 203–218. [Google Scholar] [CrossRef]
- Gage, S.H.; Whalon, M.E.; Miller, D.J. Pest Event Scheduling System for Biological Monitoring and Pest Management. Environ. Entomol. 1982, 11, 1127–1133. [Google Scholar] [CrossRef]
- Otuka, A.; Watanabe, T.; Suzuki, Y.; Matsumura, M.; Furuno, A.; Chino, M. Real-time prediction system for migration of rice planthoppers Sogatella furcifera (Horvath) and Nilaparvata lugens (Stal) (Homoptera: Delphacidae). Appl. Entomol. Zool. 2005, 40, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Nurhayati, E.; Koesmaryono, Y. Impron Predictive Modeling of Rice Yellow Stem Borer Population Dynamics under Climate Change Scenarios in Indramayu. IOP Conf. Ser. Earth Environ. Sci. 2017, 58, 012054. [Google Scholar] [CrossRef]
- Cook, S.M.; Döring, T.F.; Ferguson, A.W.; Martin, J.L.; Skellern, M.P.; Smart, L.E.; Watts, N.P.; Welham, S.J.; Woodcock, C.; Pickett, J.A. Development of an Integrated Pest Management Strategy for Control of Pollen Beetles in Winter Oilseed Rape; HGCA Project Report No. 504; Home Grown Cereals Authority (HGCA): Kenilworth, UK, 2013; pp. 2–32. [Google Scholar]
- Rossi, V.; Racca, P.; Battilani, P.A. simulation model for Cercospora leaf spot epidemics on sugarbeet. Phytopathol. Mediterr. 1994, 33, 105–112. [Google Scholar]
- Caffi, T.; Rossi, V. Fungicide models are key components of multiple modelling approaches for decision-making in crop protection. Phytopathol. Mediterr. 2018, 57, 153–169. [Google Scholar]
- Bouma, E. GEWIS, a weather-based decision support system for timing the application of plant protection products. EPPO Bull. 2003, 33, 483–487. [Google Scholar] [CrossRef]
- Gil, E. Design of a Decision Support Method to Determine Volume Rate for Vineyard Spraying. Appl. Eng. Agric. 2009, 25, 145–151. [Google Scholar] [CrossRef]
- Barani, A.; Franchi, A.; Bugiani, R.; Montermini, A. Efficacy of unit canopy row spraying system for control of European vine moth (Lobesia botrana) in vineyards. Agric. Eng. Int. 2008, 10, 08005. [Google Scholar]
- Gil, E.; Llorens, J.; Landers, A.; Llop, J.; Giralt, L. Field validation of dosaviña, a decision support system to determine the optimal volume rate for pesticide application in vineyards. Eur. J. Agron. 2011, 35, 33–46. [Google Scholar] [CrossRef]
- Vacante, V.; Gilioli, G. The effects of triflumuron against the western flower thrips (Frankliniella occidentalis (Pergande)) on pepper: An evaluation based on the analysis of population dynamics. J. Appl. Entomol. 2003, 127, 413–420. [Google Scholar] [CrossRef]
- Cohen, J.E.; Schoenly, K.; Heong, K.L.; Justo, H.; Arida, G.; Barrion, A.T.; Litsinger, J.A. A Food Web Approach to Evaluating the Effect of Insecticide Spraying on Insect Pest Population Dynamics in a Philippine Irrigated Rice Ecosystem. J. Appl. Ecol. 1994, 31, 747. [Google Scholar] [CrossRef] [Green Version]
- Barclay, H.J. Models for Pest Control Using Predator Release, Habitat Management and Pesticide Release in Combination. J. Appl. Ecol. 1982, 19, 337. [Google Scholar] [CrossRef]
- Tsai, M.; Elgethun, K.; Ramaprasad, J.; Yost, M.; Felsot, A.; Hebert, V.; Fenske, R. The Washington aerial spray drift study: Modeling pesticide spray drift deposition from an aerial application. Atmos. Environ. 2005, 39, 6194–6203. [Google Scholar] [CrossRef]
- Jarvis, N.J.; Hollis, J.M.; Nicholls, P.H.; Mayr, T.; Evans, S.P. MACRO—DB: A decision-support tool for assessing pesticide fate and mobility in soils. Environ. Model. Softw. 1997, 12, 251–265. [Google Scholar] [CrossRef]
- Rydahl, P.; Hagelskjaer, L.; Pedersen, L.; Bojer, O.Q. User interfaces and system architecture of a web-based decision support system for integrated pest management in cereals. EPPO Bull. 2003, 33, 473–481. [Google Scholar] [CrossRef]
- Brown, C.D.; Hart, A.; Lewis, K.A.; Dubus, I.G. p-EMA (I): Simulating the environmental fate of pesticides for a farm-level risk assessment system. Agronomie 2003, 23, 67–74. [Google Scholar] [CrossRef]
- Strassemeyer, J.; Daehmlow, D.; Dominic, A.R.; Lorenz, S.; Golla, B. SYNOPS-WEB, an online tool for environmental risk assessment to evaluate pesticide strategies on field level. Crop Prot. 2017, 97, 28–44. [Google Scholar] [CrossRef]
- Knight, J.D. The role of decision support systems in integrated crop protection. Agric. Ecosyst. Environ. 1997, 64, 157–163. [Google Scholar] [CrossRef]
- Yang, X.B. Risk Assessment: Concepts, Development, and Future Opportunities. Plant Heal. Prog. 2003, 4, 16. [Google Scholar] [CrossRef]
- Webster, J.P.G. Reflections on the economics of decision support systems. In Proceedings of the 3rd international Congress for Computer Technology. Integrated Decision Support Systems in Agriculture-Successful Practical Applications, Frankfurt, Germany, 27–30 May 1990; Deutsche Landwirtschafts-Gesellschaft (DLG): Frankfurt, Germany, 1990; pp. 307–317. [Google Scholar]
- Jones, V.P.; Brunner, J.F.; Grove, G.G.; Petit, B.; Tangren, G.V.; Jones, W.E. A web-based decision support system to enhance IPM programs in Washington tree fruit. Pest Manag. Sci. 2010, 66, 587–595. [Google Scholar] [CrossRef]
- Matthews, K.B.; Schwarz, G.; Buchan, K.; Rivington, M.; Miller, D. Wither agricultural DSS? Comput. Electron. Agric. 2008, 61, 149–159. [Google Scholar] [CrossRef] [Green Version]
- McCown, R.L. A cognitive systems framework to inform delivery of analytic support for farmers’ intuitive management under seasonal climatic variability. Agric. Syst. 2012, 105, 7–20. [Google Scholar] [CrossRef]
- Kerr, D. Factors influencing the Development and Adoption of Knowledge Based Decision Support Systems for Small, Owner-Operated Rural Business. Artif. Intell. Rev. 2004, 22, 127–147. [Google Scholar] [CrossRef]
- Ascough, J.C.; Mcmaster, G.S.; Dunn, G.H.; Andales, A.A. The GPFARM DS for agroecosystem sustainability: The past, future, and lessons learned. In Proceedings of the Environmental Modeling International Conference Proceedings. International Modeling and Environmental Software Society, Modeling for Environment’s Sake, Ottawa, ON, Canada, 5–8 July 2010; pp. 2540–2547. [Google Scholar]
- Kuehne, G.; Llewellyn, R.; Pannell, D.J.; Wilkinson, R.; Dolling, P.; Ouzman, J.; Ewing, M. Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy. Agric. Syst. 2017, 156, 115–125. [Google Scholar] [CrossRef]
- Rose, D.C.; Sutherland, W.J.; Parker, C.; Lobley, M.; Winter, M.; Morris, C.; Twining, S.; Ffoulkes, C.; Amano, T.; Dicks, L.V. Decision support tools for agriculture: Towards effective design and delivery. Agric. Syst. 2016, 149, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.M. Diffusion of Innovations; Simon and Schuster: New York, NY, USA, 2010. [Google Scholar]
- Jørgensen, L.N.; Noe, E.; Nielsen, G.C.; Jensen, J.E.; Ørum, J.E.; Pinnschmidt, H.O. Problems with disseminating information on disease control in wheat and barley to farmers. Eur. J. Plant Pathol. 2008, 121, 303–312. [Google Scholar] [CrossRef]
- Thomas, C.S.; Skinner, P.W.; Fox, A.D.; Greer, C.A.; Gubler, W.D. Utilization of GIS/GPS-Based Information Technology in Commercial Crop Decision Making in California, Washington, Oregon, Idaho, and Arizona. J. Nematol. 2002, 34, 200–206. [Google Scholar] [PubMed]
- Gubler, W.D.; Rademacher, M.R.; Vasquez, S.J. Control of Powdery Mildew Using the UC Davis Powdery Mildew Risk Index; APS: St. Paul, MN, USA, 1999. [Google Scholar]
- Lybbert, T.J.; Gubler, W.D. California Wine Grape Growers’ Use of Powdery Mildew Forecasts. ARE Updat. 2008, 11, 11–14. [Google Scholar]
- Rossi, V.; Salinari, F.; Bernazzani, R.; Giosuè, S.; Mazzoni, E. Models for pest’s epidemiology: Review, documentation and evaluation for Pest Risk Analysis (Mopest). EFSA Support. Publ. 2009, 6, 28E. [Google Scholar] [CrossRef]
- Röling, N.; Wagemakers, M.A.E. Facilitating Sustainable Agriculture: Participatory Learning and Adaptive Management in Times of Environmental Uncertainty; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Wearing, C.H. Evaluating the IPM Implementation Process. Annu. Rev. Entomol. 1988, 33, 17–38. [Google Scholar] [CrossRef]
- Oliver, D.M.; Fish, R.D.; Winter, M.; Hodgson, C.J.; Heathwaite, A.L.; Chadwick, D.R. Valuing local knowledge as a source of expert data: Farmer engagement and the design of decision support systems. Environ. Model. Softw. 2012, 36, 76–85. [Google Scholar] [CrossRef]
- Igbaria, M.; Guimaraes, T. Empirically testing the outcomes of user involvement in DSS development. Omega 1994, 22, 157–172. [Google Scholar] [CrossRef]
- Caffi, T.; Helsen, H.H.M.; Rossi, V.; Holb, I.J.; Strassemeyer, J.; Buurma, J.S.; Capowiez, Y.; Simon, S.; Alaphilippe, A. Multicriteria evaluation of innovative IPM systems in pome fruit in Europe. Crop Prot. 2017, 97, 101–108. [Google Scholar] [CrossRef]
- Gilioli, G.; Pasquali, S.; Ruggeri, F. Bayesian Inference for Functional Response in a Stochastic Predator–Prey System. Bull. Math. Biol. 2008, 70, 358–381. [Google Scholar] [CrossRef] [PubMed]
- Öhlmér, B.; Olson, K.; Brehmer, B. Understanding farmers’ decision making processes and improving managerial assistance. Agric. Econ. 1998, 18, 273–290. [Google Scholar] [CrossRef]
- Cox, P.G. Some issues in the design of agricultural decision support systems. Agric. Syst. 1996, 52, 355–381. [Google Scholar] [CrossRef] [Green Version]
- Worm, G.I.M.; van der Helm, A.W.C.; Lapikas, T.; van Schagen, K.M.; Rietveld, L.C. Integration of models, data management, interfaces and training support in a drinking water treatment plant simulator. Environ. Model. Softw. 2010, 25, 677–683. [Google Scholar] [CrossRef]
- Stone, P.; Hochman, Z. If Interactive Decision Support Systems Are the Answer, Have We Been Asking the Right Questions; New Direct Reprint no: 5084; The Regional Institute Ltd: Canberra, Australia, 2004. [Google Scholar]
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D.; et al. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- Rossi, V.; Caffi, T.; Legler, S.E.; Carotenuto, E.; Bigot, G. Large-scale application of a web-based Decision Support System for sustainable viticulture. In Proceedings of the IOBC/WPRS Working Group “Integrated protection and production in Viticulture”, Ascona, Switzerland, 13–17 October 2013. [Google Scholar]
- Caffi, T.; Rossi, V.; Bugiani, R. Evaluation of a Warning System for Controlling Primary Infections of Grapevine Downy Mildew. Plant Dis. 2010, 94, 709–716. [Google Scholar] [CrossRef] [Green Version]
- Caffi, T.; Legler, S.E.; Rossi, V.; Bugiani, R. Evaluation of a Warning System for Early-Season Control of Grapevine Powdery Mildew. Plant Dis. 2012, 96, 104–110. [Google Scholar] [CrossRef] [Green Version]
- McCown, R.L.; Carberry, P.S.; Hochman, Z.; Dalgliesh, N.P.; Foale, M.A. Re-inventing model-based decision support with Australian dryland farmers. 1. Changing intervention concepts during 17 years of action research. Crop Pasture Sci. 2009, 60, 1017. [Google Scholar] [CrossRef]
- Rickert, U. Role and potential of IT, Intranet and Internet for advisory services. In Proceedings of the European Conference of European Federation for Information Technology in Agriculture, Bonn, Germany, 27–30 September 1999; Helbig, R., Schiefer, G., Eds.; FAO: Rome, Italy, 1999. [Google Scholar]
- Kuhlmann, F. Farm-level-information-systems: Developments and perspectives. In Proceedings of the 2nd European Conference of the European Federation for Information Technology in Agriculture, Food, and the Environment, Bonn, Germany, 27–30 September 1999; pp. 7–17. [Google Scholar]
- Lefebvre, M.; Langrell, S.R.H.; Gomez-y-Paloma, S. Incentives and policies for integrated pest management in Europe: A review. Agron. Sustain. Dev. 2015, 35, 27–45. [Google Scholar] [CrossRef]
Characteristic | Mechanistic Models | Empiric Models |
---|---|---|
Data requirements | Data on biological response to external drivers are needed | Wide and representative field data are required for developing the model |
Knowledge on the organism to be modelled | Detailed knowledge on biological processes is required | A specific knowledge on the pest is not needed |
Explanatory ability | Seek for a mechanistic exploration of biological processes | Do not provide an explanation of the biological mechanisms underlying a process |
Predictive ability | Prediction is possible in a wide range of agricultural contexts | No prediction is possible outside the range of input data (extrapolation) and under different agricultural contexts |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, V.; Sperandio, G.; Caffi, T.; Simonetto, A.; Gilioli, G. Critical Success Factors for the Adoption of Decision Tools in IPM. Agronomy 2019, 9, 710. https://doi.org/10.3390/agronomy9110710
Rossi V, Sperandio G, Caffi T, Simonetto A, Gilioli G. Critical Success Factors for the Adoption of Decision Tools in IPM. Agronomy. 2019; 9(11):710. https://doi.org/10.3390/agronomy9110710
Chicago/Turabian StyleRossi, Vittorio, Giorgio Sperandio, Tito Caffi, Anna Simonetto, and Gianni Gilioli. 2019. "Critical Success Factors for the Adoption of Decision Tools in IPM" Agronomy 9, no. 11: 710. https://doi.org/10.3390/agronomy9110710
APA StyleRossi, V., Sperandio, G., Caffi, T., Simonetto, A., & Gilioli, G. (2019). Critical Success Factors for the Adoption of Decision Tools in IPM. Agronomy, 9(11), 710. https://doi.org/10.3390/agronomy9110710