Effective Plant Ages for Screening for Field Resistance to Alternaria Leaf Spot (Caused by Alternaria spp.) under Natural Infection in Jerusalem artichoke (Helianthus tuberosus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Preparation of Potted Plants
2.3. Preparation of Experimental Field and Crop Management
2.4. Disease Assessment
2.5. Statistical Analysis
3. Results
3.1. Disease Parameters
3.2. Correlation between Different Plant Ages for Disease Parameters
3.3. Soil Properties and Weather Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jerusalem Artichoke Alternative Field Crops Manual. Available online: http://www.hort.purdue.edu/newcrop/afcm/jerusart.html (accessed on 2 April 2018).
- Gunnarsson, I.B.; Svensson, S.E.; Johansson, E.; Karakashev, D.; Angelidaki, I. Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop. Ind. Crops Prod. 2014, 56, 231–240. [Google Scholar] [CrossRef]
- Baldini, M.; Danuso, F.; Monti, A.; Amaaducci, M.T.; Stevanato, P.; De Mastro, G. Chicory and Jerusalem artichoke productivity in different areas of Italy, in relation to water availability and time of harvest. Ital. J. Agron. 2006, 6, 126–132. [Google Scholar] [CrossRef]
- Baldini, M.; Danuso, F.; Rocca, A.; Bulfoni, E.; Monti, A.; De Mastro, G. Jerusalem artichoke (Helianthus tuberosus L.) productivity in different Italian growing areas: A modeling approach. Ital. J. Agron. 2011, 2, 291–307. [Google Scholar] [CrossRef]
- Kays, S.J.; Nottingham, S.F. Biology and Chemistry of Jerusalem Artichoke Helianthus Tuberosus L.; CRC Press Taylor & Francis: Boca Raton, FL, USA, 2008. [Google Scholar]
- Ruttanaprasert, R.; Banterng, P.; Jogloy, S.; Vorasoot, N.; Kesmala, T.; Kanwar, R.S.; Holbrook, C.C.; Patanothai, A. Genotypic variability for tuber yield, biomass and drought tolerance in Jerusalem artichoke germplasm. Turk. J. Agric. For. 2014, 38, 570–580. [Google Scholar] [CrossRef]
- Sennoi, R.; Jogloy, S.; Saksirirat, W.; Kesmala, T.; Patanothai, A. Genotypic variation of resistance to southern stem rot of Jerusalem artichoke caused by Sclerotium rolfsii. EUPHYTICA 2013, 190, 415–424. [Google Scholar] [CrossRef]
- Viriyasuthee, W.; Saksirirat, W.; Saepaisan, S.; Gleason, M.L.; Jogloy, S. Variability of Alternaria leaf spot in Jerusalem artichoke (Helianthus tuberosus L.) accessions grown in a humid tropical region. Agronomy 2019, 9, 268. [Google Scholar] [CrossRef]
- Dudhe, M.Y.; Bharsakle, S.S. Screening of germplasm line for resistance to Alterneria blight and necrosis disease in sunflower. Crop Prot. Prod. 2005, 2, 84–87. [Google Scholar]
- Early Blight of Potato and Tomato. Available online: https://www.apsnet.org/edcenter/disandpath/fungalasco/pdlessons/Pages/PotatoTomato.aspx (accessed on 16 July 2019).
- Gopalakrishnan, C.; Manivannan, N.; Vindhiyavarman, P.; Thiyagarajan, K. Evaluation and identification of Alternaria leaf spot resistant sunflower genotypes. EJPB 2010, 1, 177–181. [Google Scholar]
- Vloutoglou, I.; Kalogerakis, S.N. Effects of inoculum concentration, wetness duration and plant age on development of early blight (Alternaria solani) and on shedding of leaves in tomato plants. Plant Pathol. 2000, 49, 339–345. [Google Scholar] [CrossRef]
- Morris, J.B.; Yang, S.M.; Wilson, L. Reaction of Helianthus species to Alternaria helionthi. Plant Dis. 1983, 67, 539–540. [Google Scholar] [CrossRef]
- Doullah, M.A.U.; Meah, M.B.; Okazaki, K. Development of an effective screening method for partial resistance to Alternaria brassicicola (dark leaf spot) in Brassica rapa. Eur. J. Plant Pathol. 2006, 116, 33–43. [Google Scholar] [CrossRef]
- Lipps, P.E.; Herr, L.J. Reactions of Helianthus annuus and H. tuberosus plant introductions to Alternaria helianthi. Plant Dis. 1986, 70, 831–835. [Google Scholar] [CrossRef]
- Sennoi, R.; Jogloy, S.; Saksirirat, W.; Banterng, P.; Kesmala, T.; Patanothai, A. Evaluation of seedling and adult plant stages resistance Sclerotium rolfsii Sacc. in Jerusalem artichoke (Helianthus tuberosus L.). SABRAO J. Breed. Genet. 2013, 45, 324–331. [Google Scholar]
- Junsopa, C.; Jogloy, S.; Saksirirat, W.; Songsri, P.; Kesmala, T.; Shew, B.B. Association of seedling and adult plant resistance to Sclerotium rolfsii in Jerusalem artichoke (Helianthus tuberosus L.) under field conditions. Eur. J. Plant Pathol. 2018, 151, 251–255. [Google Scholar] [CrossRef]
- Mayee, C.D.; Datar, V.V. Phytopathometry Tech Bull-1; Marathwad Agricultural University: Parabhani, India, 1986. [Google Scholar]
- Anfok, G.H. Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum. Mill cv. Vollendung) to cucumber mosaic virus. Crop Prot. 2000, 19, 401–405. [Google Scholar] [CrossRef]
- Ojiambo, P.S.; Narla, R.D.; Ayiecho, P.O.; Nyabundi, J.O. Effect of infection level of sesame (Sesamum indicum L.) seed by Alternaria sesame on severity of Alternaria leaf spot. Tare 1998, 1, 125–130. [Google Scholar]
- Statistix8. Analytical Software User’s Manual; Analytical Software: Tallahassee, FL, USA, 2003. [Google Scholar]
- Paungbut, D.; Jogloy, S.; Vorasoot, N.; Patanothai, A. Growth and phenology of Jerusalem artichoke (Helianthus tuberosus L.). Pak. J. Bot. 2015, 47, 2207–2214. [Google Scholar]
- Tadesse, W.; Reents, H.J.; Hsam, S.L.K.; Zeller, F.J. Relationship of seedling and adult plant resistance and evaluation of wheat germplasm against tan spot (Pyrenophora tritici-repentis). Genet. Resour. Crop Evol. 2011, 58, 339–346. [Google Scholar] [CrossRef]
- Chongo, G.; Gossen, B.G. Effect of plant age on resistance to Ascochyta rabiei in chickpea. Can. J. Plant Pathol. 2001, 23, 358–363. [Google Scholar] [CrossRef]
- Fehr, W.R. Principles of Cultivar Development; Macmillan Publishing Company: New York, NY, USA, 1987. [Google Scholar]
Source of Variation | df | Disease Incidence a | Disease Severity a | AUDPC-DI | AUDPC-DS | ||||
---|---|---|---|---|---|---|---|---|---|
Experiment (E) | 1 | 3403 | * | 210 | ** | 4082 | 1702 | ||
Rep/experiment | 6 | 347 | 7 | 97991 | 3606 | ||||
Variety (V) | 5 | 19292 | ** | 26952 | ** | 7203785 | ** | 7133429 | ** |
Plant age (A) | 2 | 3333 | ** | 8821 | ** | 3445610 | ** | 2449838 | ** |
V × A | 10 | 2000 | ** | 302 | ** | 867887 | ** | 104968 | ** |
E × V | 5 | 1403 | ** | 454 | ** | 89341 | ** | 128169 | ** |
E × A | 2 | 1944 | ** | 1219 | ** | 499313 | ** | 547661 | ** |
E × V × A | 10 | 1944 | ** | 182 | ** | 297073 | ** | 57083 | ** |
Pool error | 102 | 200 | 7 | 58601 | 2062 | ||||
CV (%) | 16.56 | 6.47 | 17.76 | 7.40 |
Varieties | Disease Incidence a | Disease Severity a | Area under Disease Progress Curve for Disease Incidence | Area under Disease Progress Curve for Disease Severity | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant Age 20 DAT | Plant Age 40 DAT | Plant Age 60 DAT | Plant Age 20 DAT | Plant Age 40 DAT | Plant Age 60 DAT | Plant Age 20 DAT | Plant Age 40 DAT | Plant Age 60 DAT | Plant Age 20 DAT | Plant Age 40 DAT | Plant Age 60 DAT | |||||||||||||
Resistant varieties | ||||||||||||||||||||||||
JA15 | 25 | b | 0 | b | 100 | a | 3 | d | 0 | e | 11 | e | 325 | b | 33 | c | 1267 | b | 36 | d | 4 | e | 141 | e |
JA86 | 100 | a | 100 | a | 100 | a | 11 | c | 13 | d | 33 | d | 734 | b | 1184 | b | 1800 | a | 81 | d | 152 | d | 444 | c |
JA116 | 100 | a | 100 | a | 100 | a | 11 | c | 11 | d | 33 | d | 717 | b | 1233 | b | 1300 | b | 80 | d | 137 | d | 330 | d |
Susceptible varieties | ||||||||||||||||||||||||
HEL246 | 100 | a | 100 | a | 100 | a | 78 | a | 96 | a | 100 | a | 1800 | a | 1800 | a | 1800 | a | 1289 | a | 1437 | a | 1511 | a |
HEL293 | 100 | a | 100 | a | 100 | a | 78 | a | 78 | b | 96 | b | 1633 | a | 1800 | a | 1800 | a | 1048 | b | 1119 | b | 1486 | a |
JA109 | 100 | a | 100 | a | 100 | a | 35 | b | 35 | c | 50 | c | 1800 | a | 1800 | a | 1800 | a | 487 | c | 517 | c | 683 | b |
Mean | 88 | B | 83 | B | 100 | A | 36 | C | 39 | B | 54 | A | 1168 | C | 1308 | B | 1628 | A | 504 | C | 561 | B | 766 | A |
Varieties | Disease Incidence a | Disease Severity a | Areas under Disease Progress Curve of Disease Incidence | Areas under Disease Progress Curve of Disease Severity | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant Age 20 DAT | Plant Age 40 DAT | Plant Age 60 DAT | Plant Age 20 DAT | Plant Age 40 DAT | Plant Age 60 DAT | Plant Age 20 DAT | Plant Age 40 DAT | Plant Age 60 DAT | Plant Age 20 DAT | Plant Age 40 DAT | Plant Age 60 DAT | |||||||||||||
Resistant varieties | ||||||||||||||||||||||||
JA15 | 0 | b | 25 | b | 25 | b | 0 | c | 3 | d | 3 | d | 0 | c | 450 | b | 450 | b | 0 | e | 50 | e | 50 | d |
JA86 | 100 | a | 100 | a | 100 | a | 11 | b | 24 | c | 33 | c | 467 | b | 1467 | a | 1800 | a | 52 | d | 250 | d | 483 | c |
JA116 | 0 | b | 100 | a | 100 | a | 0 | c | 33 | b | 56 | b | 0 | c | 1800 | a | 1800 | a | 0 | e | 554 | c | 728 | b |
Susceptible varieties | ||||||||||||||||||||||||
HEL246 | 100 | a | 100 | a | 100 | a | 56 | a | 78 | a | 100 | a | 1800 | a | 1800 | a | 1800 | a | 737 | a | 1309 | b | 1700 | a |
HEL293 | 100 | a | 100 | a | 100 | a | 54 | a | 80 | a | 100 | a | 1800 | a | 1800 | a | 1800 | a | 696 | b | 1433 | a | 1726 | a |
JA109 | 100 | a | 100 | a | 100 | a | 11 | b | 33 | b | 56 | b | 1800 | a | 1800 | a | 1800 | a | 98 | c | 495 | c | 743 | b |
Mean | 67 | B | 88 | A | 88 | A | 22 | C | 42 | B | 58 | A | 978 | B | 1520 | A | 1575 | A | 264 | C | 682 | B | 905 | A |
DI20 | DI40 | DS20 | DS40 | AUDPC-DI20 | AUDPC-DI40 | AUDPC-DS20 | AUDPC-DS40 | |
---|---|---|---|---|---|---|---|---|
DI40 | 0.62 ** | |||||||
DI60 | 0.47 ** | 0.62 ** | ||||||
DS40 | 0.92 ** | |||||||
DS60 | 0.88 ** | 0.97 ** | ||||||
AUDPC-DI40 | 0.60 ** | |||||||
AUDPC-DI60 | 0.50 ** | 0.80 ** | ||||||
AUDPC-DS40 | 0.88 ** | |||||||
AUDPC-DS60 | 0.85 ** | 0.98 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viriyasuthee, W.; Saepaisan, S.; Saksirirat, W.; Gleason, M.L.; Chen, R.S.; Jogloy, S. Effective Plant Ages for Screening for Field Resistance to Alternaria Leaf Spot (Caused by Alternaria spp.) under Natural Infection in Jerusalem artichoke (Helianthus tuberosus L.). Agronomy 2019, 9, 754. https://doi.org/10.3390/agronomy9110754
Viriyasuthee W, Saepaisan S, Saksirirat W, Gleason ML, Chen RS, Jogloy S. Effective Plant Ages for Screening for Field Resistance to Alternaria Leaf Spot (Caused by Alternaria spp.) under Natural Infection in Jerusalem artichoke (Helianthus tuberosus L.). Agronomy. 2019; 9(11):754. https://doi.org/10.3390/agronomy9110754
Chicago/Turabian StyleViriyasuthee, Wanalai, Suwita Saepaisan, Weerasak Saksirirat, Mark L. Gleason, Ruey Shyang Chen, and Sanun Jogloy. 2019. "Effective Plant Ages for Screening for Field Resistance to Alternaria Leaf Spot (Caused by Alternaria spp.) under Natural Infection in Jerusalem artichoke (Helianthus tuberosus L.)" Agronomy 9, no. 11: 754. https://doi.org/10.3390/agronomy9110754
APA StyleViriyasuthee, W., Saepaisan, S., Saksirirat, W., Gleason, M. L., Chen, R. S., & Jogloy, S. (2019). Effective Plant Ages for Screening for Field Resistance to Alternaria Leaf Spot (Caused by Alternaria spp.) under Natural Infection in Jerusalem artichoke (Helianthus tuberosus L.). Agronomy, 9(11), 754. https://doi.org/10.3390/agronomy9110754