Quantile Regression Applied to Genome-Enabled Prediction of Traits Related to Flowering Time in the Common Bean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phenotypic and Genotypic Data
2.2. Phenotypic Data Analyses
2.3. Genomic Prediction Models
3. Results
3.1. Model Selection and Genetic Parameters
3.2. Prediction Accuracy of Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [PubMed]
- Resende, M.F.R., Jr.; Muñoz, P.; Resende, M.D.V.; Garrick, D.J.; Fernando, R.L.; Davis, J.M.; Jokela, E.J.; Martin, T.A.; Peter, G.F.; Kirst, M. Accuracy of Genomic Selection Methods in a Standard Data Set of Loblolly Pine (Pinus taeda L.). Genetics 2012, 190, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Crossa, J.; Beyene, Y.; Kassa, S.; Pérez, P.; Hickey, J.M.; Chen, C.; de los Campos, G.; Burgueño, J.; Windhausen, V.S.; Buckler, E.; et al. Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3-Genes Genomes Genet. 2013, 3, 1903–1926. [Google Scholar] [CrossRef]
- Crispim, A.C.; Kelly, M.J.; Guimarães, S.E.; Silva, F.F.; Fortes, M.R.S.; Wenceslau, R.R.; Moore, S. Multi-trait GWAS and new candidate genes annotation for growth curve parameters in Brahman cattle. PLoS ONE 2015, 10, e0139906. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.F.; Soares, M.L.; Silva, F.F.; Veroneze, R.; Knol, E.F.; Lopes, P.S.; Guimarães, S.E.F. Genomic selection for boar taint compounds and carcass traits in a commercial pig population. Livest. Sci. 2015, 174, 10–17. [Google Scholar] [CrossRef]
- Maurer, A.; Draba, V.; Jiang, Y.; Schnaithmann, F.; Sharma, R.; Schumann, R.; Kilian, B.; Reif, J.C.; Pillen, K. Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genom. 2015, 16, 290. [Google Scholar] [CrossRef]
- Varona, L.; Ibañez-Escriche, N.; Quintanilla, R.; Noguera, J.L.; Casellas, J. Bayesian analysis of quantitative traits using skewed distributions. Genet. Res. 2008, 90, 179–190. [Google Scholar] [CrossRef]
- Mathur, P.K.; Ten Napel, J.; Bloemhof, S.; Heres, L.; Knol, E.F.; Mulder, H.A. A human nose scoring system for boar taint and its relationship with androstenone and skatole. Meat Sci. 2012, 91, 414–422. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Li, R. Quantile regression for analyzing heterogeneity un Ultra-high dimension. J. Am. Stat. Assoc. 2012, 107, 214–222. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G.W. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Briollais, L.; Durrieu, G. Application of quantile regression to recent genetic and omic studies. Hum. Genet. 2014, 133, 951–966. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.; Silva, F.F.; Resende, M.D.V.; Cruz, C.D.; Nascimento, A.C.C.; Viana, J.M.S.; Azevedo, C.F.; Barroso, L.M.A. Regularized quantile regression applied to genome-enabled prediction of quantitative traits. Genet. Mol. Res. 2017, 16, gmr16019538. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, J. L1-norm quantile regression. J. Comp. Graph. Stat. 2008, 17, 1–23. [Google Scholar] [CrossRef]
- Kamfwa, K.; Cichy, K.A.; Kelly, J.D. Genome-Wide Association Study of Agronomic Traits in Common Bean. Plant Genome 2015, 8, 1–12. [Google Scholar] [CrossRef]
- Buratto, J.S.; Cirino, V.M.; Fonseca Junior, N.S.; Prete, C.E.C.; Faria, R.T. Agronomic performance and grain yield in early common bean genotypes in Paraná state. Semina Ciênc Agrár 2007, 28, 373–380. [Google Scholar] [CrossRef]
- De los Campos, G.; Naya, H.; Gianola, D.; Crossa, J.; Legarra, A.; Manfredi, E.; Weigel, K.; Cotes, J.M. Predicting Quantitative Traits with Regression Models for Dense Molecular Markers and Pedigree. Genetics 2009, 182, 375–385. [Google Scholar] [CrossRef]
- Barili, L.D.; Vale, N.M.; Prado, A.L.; Carneiro, J.E.S.; Silva, F.F.; Nascimento, M. Genotype-environment interaction in common bean cultivars with carioca grain cultivated in Brazil in the last 40 years. Crop Breed. Appl. Biotechnol. 2015, 15, 244–250. [Google Scholar] [CrossRef]
- Nascimento, M.; Nascimento, A.C.C.; Silva, F.F.; Barili, L.D.; Vale, N.M.; Carneiro, J.E.S.; Carneiro, P.C.; Cruz, C.D.; Serao, N.V.L. Quantile regression for genome-wide association study of flowering time-related traits in common bean. PLoS ONE 2018, 3, e0190303. [Google Scholar] [CrossRef]
- Gilmour, A.R.; Gogel, B.J.; Cullis, B.R.; Thompson, R. ASReml User Guide Release, 3.0; VSN International Ltd.: Hemel Hempstead, UK, 2009. [Google Scholar]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Koenker, R. Quantreg: Quantile Regression. Available online: https://CRAN.R-project.org/package=quantreg (accessed on 20 April 2018).
- De los Campos, G.; Rodriguez, P.P. BGLR: Bayesian Generalized Linear Regression. Available online: https://cran.r-project.org/web/packages/BGLR/index.html (accessed on 1 March 2018).
- R Core Team. A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Geweke, J. Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics; Bernardo, L.M., Berger, J.O., Dawid, A.P., Smith, A.F.M., Eds.; Oxford University: New York, NY, USA, 1992; pp. 625–631. [Google Scholar]
- Cerna, J.; Beaver, J.S. Inheritance of early maturity of indeterminate dry bean. Crop Sci. 1990, 30, 1215–1218. [Google Scholar] [CrossRef]
- Msolla, S.N.; Mduruma, Z.O. Estimate of Heritability for Maturity Characteristics of an Early x Late Common Bean (Phaseolus Vulgaris L.) Cross (TMO 216 x CIAT 16-1) and Relationships Among Maturity Traits with Yield and Components of Yield. J. Agric. Sci. 2007, 8, 11–18. [Google Scholar]
- Moghaddam, S.F.; Mamidi, S.; Osorno, J.M.; Lee, R.; Brick, M.; Kelly, J.; Miklas, P.; Urrea, C.; Song, Q.; Cregan, P.; et al. Genome-Wide Association Study Identifies Candidate Loci Underlying Agronomic Traits in a Middle American Diversity Panel of Common Bean. Plant Genome 2016, 9, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Scully, B.T.; Wallace, D.H.; Viands, D.R. Heritability and correlation of biomass, growth rates, harvest index and phenology to the yield of common beans. J. Am. Soc. Hortic. Sci. 1991, 116, 127–130. [Google Scholar] [CrossRef]
- Barroso, L.M.A.; Nascimento, M.; Nascimento, A.C.C.; Silva, F.F.; Serão, N.V.L.; Cruz, C.D.; Resende, M.D.V.; Silva, F.L.; Azevedo, C.F.; Lopes, P.S.; et al. Regularized quantile regression for SNP marker estimation of pig growth curves. J. Anim. Sci. Biotechnol. 2017, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Infoteca-e: Repositório de Informação Tecnológica da Embrapa. Available online: https://www.infoteca.cnptia.embrapa.br/handle/doc/217045 (accessed on 30 May 2018).
- Chiorato, A.F.; Carbonell, S.A.M.; Carvalho, C.R.L.; Barros, V.L.N.P.; Borges, W.L.B.; Ticelli, M.; Gallo, P.B.; Finoto, E.L.; Santos, N.C.B. ‘IAC IMPERADOR’: Early maturity “carioca” bean cultivar. Crop Breed. Appl. Biotechnol. 2012, 12, 297–300. [Google Scholar] [CrossRef]
- IAPAR. Instituto Agronômico Do Paraná—IAPAR. Available online: http://www.iapar.br/modules/conteudo/conteudo.php?conteudo=1960 (accessed on 30 May 2018).
- Carneiro, J.E.S.; Abreu, A.F.B.; Ramalho, M.A.P.; de Paula, T.J.; Del Peloso, M.J.; Melo, L.C.; Pereira, H.S.; Pereira Filho, I.A.; Martins, M.; Vieira, R.F.; et al. BRSMG Madrepérola: Common bean cultivar with late-darkening carioca grain. Crop Breed. Appl. Biotechnol. 2012, 12, 281–284. [Google Scholar] [CrossRef]
- Wang, K.; Li, W.D.; Zhang, C.K.; Wang, Z.; Glessner, J.T.; Grant, S.F.A.; Zhao, H.; Hakonarson, H.; Price, R.A. A genome-wide association study on obesity and obesity-related traits. PLoS ONE 2011, 7, e18939. [Google Scholar] [CrossRef]
- Cook, B.L.; Manning, W.G. Thinking beyond the mean: A practical guide for using quantile regression methods for health services research. Shanghai Arch. Psychiatry 2013, 25, 55–59. [Google Scholar]
- Heckman, J.J. Sample selection bias as a specification error. Econometrica 1979, 47, 153–161. [Google Scholar] [CrossRef]
Trait | Mean (SD) | Minimum | Maximum | Skewness |
---|---|---|---|---|
DFF (days) | 34.74 (5.52) | 20.00 | 49.00 | −1.08 |
DTF (days) | 42.30 (5.56) | 27.00 | 55.00 | −1.32 |
Trait | Method | ||||||||
---|---|---|---|---|---|---|---|---|---|
BLASSO | BayesB | RR-BLUP | RQR0.2 | RQR0.3 | RQR0.5 | RQR0.7 | RQR0.8 | ||
DFF | PA 1 | 0.32 | 0.31 | 0.33 | 0.37 | 0.38 | 0.25 | −0.02 | −0.05 |
SE 2 | 0.03 | 0.02 | 0.03 | 0.03 | 0.02 | 0.04 | 0.03 | 0.06 | |
DTF | PA | 0.29 | 0.27 | 0.30 | 0.34 | 0.32 | 0.10 | 0.01 | −0.06 |
SE | 0.03 | 0.02 | 0.03 | 0.02 | 0.01 | 0.04 | 0.03 | 0.04 |
Traits | Method | BLASSO | BayesB | RR-BLUP | RQR 1 |
---|---|---|---|---|---|
DFF | BLASSO | 1.00 | 1.00 | 0.63 | |
BayesB | 0.99 (0.90) | 1.00 | 0.63 | ||
RR-BLUP | 0.99 (0.99) | 0.98 (0.89) | 0.63 | ||
RQR 1 | 0.63 (0.36) | 0.69 (0.41) | 0.62 (0.32) | ||
DTF | BLASSO | 1.00 | 1.00 | 0.63 | |
BayesB | 0.99 (0.91) | 1.00 | 0.63 | ||
RR-BLUP | 1.00 (0.99) | 0.99 (0.91) | 0.63 | ||
RQR 1 | 0.67 (0.38) | 0.73 (0.43) | 0.65 (0.38) |
Method | Computational Time |
---|---|
BLASSO | 264.08 |
BayesB | 258.90 |
RR-BLUP | 0.28 |
RQR 1 | 178.38 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, A.C.; Nascimento, M.; Azevedo, C.; Silva, F.; Barili, L.; Vale, N.; Carneiro, J.E.; Cruz, C.; Carneiro, P.C.; Serão, N. Quantile Regression Applied to Genome-Enabled Prediction of Traits Related to Flowering Time in the Common Bean. Agronomy 2019, 9, 796. https://doi.org/10.3390/agronomy9120796
Nascimento AC, Nascimento M, Azevedo C, Silva F, Barili L, Vale N, Carneiro JE, Cruz C, Carneiro PC, Serão N. Quantile Regression Applied to Genome-Enabled Prediction of Traits Related to Flowering Time in the Common Bean. Agronomy. 2019; 9(12):796. https://doi.org/10.3390/agronomy9120796
Chicago/Turabian StyleNascimento, Ana Carolina, Moyses Nascimento, Camila Azevedo, Fabyano Silva, Leiri Barili, Naine Vale, José Eustáquio Carneiro, Cosme Cruz, Pedro Crescencio Carneiro, and Nick Serão. 2019. "Quantile Regression Applied to Genome-Enabled Prediction of Traits Related to Flowering Time in the Common Bean" Agronomy 9, no. 12: 796. https://doi.org/10.3390/agronomy9120796
APA StyleNascimento, A. C., Nascimento, M., Azevedo, C., Silva, F., Barili, L., Vale, N., Carneiro, J. E., Cruz, C., Carneiro, P. C., & Serão, N. (2019). Quantile Regression Applied to Genome-Enabled Prediction of Traits Related to Flowering Time in the Common Bean. Agronomy, 9(12), 796. https://doi.org/10.3390/agronomy9120796