The Effect of Autumn Foliar Fertilization on the Yield and Quality of Winter Oilseed Rape Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatments
2.2. Experimental Design and Crop Management
2.3. Analysis of Biometric Parameters
2.4. Chemical Composition of Plants
2.5. Processing Suitability of Seeds
2.6. Statistical Analysis
2.7. Weather Conditions
3. Results
3.1. Autumn Growth and Overwintering
3.2. Yield Components and Seed Yield
3.3. Nutritional Value and Feed Value of Winter Oilseed Rape Seeds
4. Discussion
4.1. Autumn Growth and Overwintering
4.2. Seed Yield and Seed Quality
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Faostat, Food and Agriculture Organization Corporate Statistical Database. Available online: http://www.apps.fao.org (accessed on 25 September 2019).
- Bushong, J.A.; Griffith, A.P.; Peeper, T.F.; Epplin, F.M. Continuous winter wheat versus a winter canola-winter wheat rotation. Agron. J. 2012, 104, 324–330. [Google Scholar] [CrossRef]
- Majewski, E. Selected production, economic and environmental aspects of crop rotations. Rocz. Nauk Rol. 2010, 97, 159–169. (In Polish) [Google Scholar]
- Broniarz, J.; Paczocha, J. Oliseed and fibre crops. In Descriptive List of Agricultural Plant Cultivars; Gacek, E.S., Ed.; Research Center for Cultivar Testing: Słupia Wielka, Poland, 2014; pp. 67–103. (In Polish) [Google Scholar]
- Jankowski, K.J.; Budzyński, W.S.; Kijewski, Ł.; Zając, T. Biomass quality of Brassica oilseed crops in response to sulfur fertilization. Agron. J. 2015, 107, 1377–1391. [Google Scholar] [CrossRef]
- Sieling, K.; Kage, H. Efficient N management using winter oilseed rape. A review. Agron. Sustain. Dev. 2010, 30, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Waalen, W.M.; Stavang, J.A.; Olsen, J.E.; Rognli, O.A. The relationship between vernalization saturation and the maintenance of freezing tolerance in winter rapeseed. Environ. Exp. Bot. 2014, 106, 164–173. [Google Scholar] [CrossRef]
- Velička, R.; Pupalienė, R.; Butkevičienė, L.M.; Kriaučiūnienė, Z. Peculiarities of overwintering of hybrid and conventional cultivars of winter rapeseed depending on the sowing date. Acta Sci. Pol Agric. 2012, 11, 53–66. [Google Scholar]
- Colnenne, C.; Meynard, J.M.; Roche, R.; Reau, R. Effects of nitrogen deficiencies on autumnal growth of oilseed rape. Eur. J. Agron. 2002, 17, 11–28. [Google Scholar] [CrossRef]
- Johnson, B.L.; Mckay, K.R.; Schneiter, A.A.; Hanson, B.K.; Schatz, B.G. Influence of planting date on canola and crambe production. J. Prod. Agric. 1995, 8, 594–599. [Google Scholar] [CrossRef] [Green Version]
- Christen, O.; Friedt, W. Winterraps. Das Handbuch für Profis [Winter Oilseed Rape. A Manual for Professionals]; DLG Verlag: Frankfurt, Germany, 2007. (In German) [Google Scholar]
- Lääniste, P.; Jõudu, J.; Eremeev, V.; Mäeorg, E. Sowing date influence on winter oilseed rape overwintering in Estonia. Acta Agric. Scand. Sect. B Soil Plant Sci. 2007, 57, 342–348. [Google Scholar] [CrossRef]
- Su, W.; Liu, B.; Liu, X.; Li, X.; Ren, T.; Cong, R.; Lu, J. Effect of depth of fertilizer banded-placement on growth, nutrient uptake and yield of oilseed rape (Brassica napus L.). Eur. J. Agron. 2015, 62, 38–45. [Google Scholar] [CrossRef]
- Girma, K.; Martin, K.L.; Freeman, K.W.; Mosali, J.; Teal, R.K.; Raun, W.R.; Moges, S.M.; Arnall, D.B. Determination of optimum rate and growth for foliar applied phosphorus in corn. Commun. Soil Sci. Plan. 2007, 38, 1137–1154. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K.; Filho, M.B.; Moreira, A.; Guimaraes, C.M. Foliar fertilization of crop plants. J. Plant Nutr. 2009, 32, 1044–1066. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; Langeluddecke, P.; Stauss, R.; Van Den Boom, T.; Weber, E.; Witzen-Berger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Weber, E.; Bleiholder, H. BBCH-scales identifying the development stages of maize, rapeseed, faba bean, sunflower and pea - with illustrations. Gesunde Pflanz. 1990, 42, 308–321. (In German) [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources, 2nd ed.; World Soil Resources Reports No. 103; FAO: Rome, Italy, 2006; p. 132. [Google Scholar]
- Michalski, K.; Kołodziej, K.; Krzymański, J. Quantitative analysis of glucosinolates in seeds of oilseed rape—Effect of sample preparation on analytical results. In Proceedings of the 9th International Rapeseed Congress, Cambridge, UK, 4–7 July 1995; pp. 911–913. [Google Scholar]
- STATSOFT INC. Statistica (Data Analysis Software System), 10th ed. 2011. Available online: http:/www.statsoft.com (accessed on 25 September 2019).
- Jankowski, K.J. Habitat, Agrotechnological and Economic Conditions of Winter Rapeseed Production for Consumption and Energy Purposes. Habilitation Thesis, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland, 2007; pp. 1–174. [Google Scholar]
- Bankina, B.; Balodis, O.; Gaile, Z. Advances of fungicide application for winter oilseed rape. In Fungicide; Carisse, O., Ed.; InTech: Rijeka, Croatia, 2010; pp. 157–176. [Google Scholar]
- Diepenbrock, W. Yield analysis of winter oilseed rape (Brassica napus L.): A review. Field Crop. Res. 2000, 67, 35–49. [Google Scholar] [CrossRef]
- Pietola, L.; Alakukku, L. Root growth dynamics and biomass input by Nordic annual field crops. Agric. Ecosyst. Environ. 2005, 108, 135–144. [Google Scholar] [CrossRef]
- Pullens, J.W.M.; Sharif, B.; Trnka, M.; Balek, J.; Semenov, M.A.; Olesen, J.E. Risk factors for European winter oilseed rape production under climate change. Agric. For. Meteorol. 2019, 272–273, 30–39. [Google Scholar] [CrossRef]
- Béreš, J.; Bečka, D.; Tomášek, J.; Vašák, J. Effect of autumn nitrogen fertilization on winter oilseed rape growth and yield parameters. Plant Soil Environ. 2019, 65, 435–441. [Google Scholar]
- Szewczuk, C. Effect of application of chosen foliar fertilizers on winter hardiness and seed yields of winter rape. Acta Agrophysica 2003, 85, 289–295. (In Polish) [Google Scholar]
- Kwiatkowski, C.A. Response of winter rape (Brassica napus L. ssp. oleifera Metzg., Sinsk) to foliar fertilization and different seeding rates. Acta Agrobot. 2012, 65, 161–170. [Google Scholar] [CrossRef]
- Kocoń, A. Foliar top dressing efficiency of winter wheat and rape of chosen fertilizers in optimal fertilization and soil moisture conditions. Ann. UMCS Sec. E Agric. 2009, 64, 23–28. (In Polish) [Google Scholar]
- Sikora, H. Changes in the content and uptake of minerals by winter oilseed rape. Zesz. Probl. IHAR 1989, 1, 136–145. (In Polish) [Google Scholar]
- Wójtowicz, M.; Wielebski, F. Compensation ability in oilseed rape damaged by stress factors occurring in different stages of plant development and their effectiveness (a review). Rośliny Oleiste—Oilseed Crops 2011, 32, 223–230. (In Polish) [Google Scholar]
- Rosiak, E. Rapeseed Market—Current Status and Future Prospects; IEiGŻ: Warszawa, Poland, 2016; pp. 1–54. (In Polish) [Google Scholar]
- European Commission. Prospects for Agricultural Markets and Income in the EU 2013–2023. Available online: http://ec.europa.eu/agriculture/sites/ agriculture/files/markets-and-prices/medium-term-outlook/2013/fullrep_en.pdf (accessed on 28 July 2019).
- Dubois, V.; Breton, S.; Linder, M.; Fanni, J.; Parmentier, M. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur. J. Lipid. Sci. Technol. 2007, 109, 710–732. [Google Scholar] [CrossRef]
Years | pH (1 mol KCl) | Corg (%) | N–NO3 (mg kg−1) | N–NH4 (mg kg−1) | Available Macronutrients and Micronutrients (mg kg−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0–30 † | 31–60 | 61–90 | 0–30 | 31–60 | 61–90 | P | K | Mg | Cu | Zn | Mn | Fe | ||||
2012/2013 | 5.36 | 1.06 | 8.78 | 9.22 | 7.26 | 3.14 | 1.93 | 2.04 | 55.8 | 107.1 | 55 | 8.9 | 2.1 | 10.8 | 195.2 | 1950 |
2013/2014 | 6.51 | 2.06 | 5.07 | 6.97 | 3.28 | 1.07 | 1.02 | 1.75 | 64.1 | 103.8 | 63 | 3.8 | 1.9 | 14.4 | 184.0 | 2100 |
2014/2015 | 6.26 | 1.02 | 1.24 | 4.67 | 3.24 | 1.37 | 1.67 | 1.22 | 146.9 | 132.8 | 49 | 4.4 | 2.0 | 9.0 | 204.0 | 1700 |
Parameter | Foliar Fertilization in Autumn | ||
---|---|---|---|
Control | 1 Application | 2 Applications | |
2012/2013 | |||
Number of leaves (plant−1) | 6.5 | 6.6 | 6.7 |
Height of the shoot apical meristem (mm) | 39.8 | 39.8 | 41.2 |
Root crown diameter (mm) | 9.5 | 9.5 | 9.6 |
Dry matter content of rosettes (g plant−1) | 9.3 b | 9.6 a | 9.7 a |
Taproot length (cm) | 18.2 b | 18.2 b | 19.4 a |
Dry matter content of taproot (g plant−1) | 3.7 b | 3.9 b | 4.5 a |
Overwintering success (%) | 87.2 b | 87.3 b | 95.7 a |
2013/2014 | |||
Number of leaves (plant−1) | 5.6 c | 6.0 b | 6.3 a |
Height of the shoot apical meristem (mm) | 32.4 b | 35.1 a | 36.6 a |
Root crown diameter (mm) | 2.9 b | 3.6 b | 4.8 a |
Dry matter content of rosettes (g plant−1) | 7.4 b | 9.3 b | 9.9 a |
Taproot length (cm) | 15.1 | 15.7 | 16.1 |
Dry matter content of taproot (g plant−1) | 2.3 | 2.4 | 2.5 |
Overwintering success (%) | 75.9 b | 77.2 b | 87.6 a |
2014/2015 | |||
Number of leaves (plant−1) | 7.5 b | 7.7 b | 8.2 a |
Height of the shoot apical meristem (mm) | 43.5 | 45.5 | 46.1 |
Root crown diameter (mm) | 6.2 | 6.6 | 6.6 |
Dry matter content of rosettes (g plant−1) | 4.4 | 4.7 | 4.7 |
Taproot length (cm) | 18.5 | 18.6 | 18.6 |
Dry matter content of taproot (g plant−1) | 0.8 | 0.9 | 1.0 |
Overwintering success (%) | 80.2 | 80.8 | 89.7 |
Across years (2012–2015) | |||
Number of leaves (plant−1) | 6.6 b | 6.7 b | 7.0 a |
Height of the shoot apical meristem (mm) | 39.4 | 39.9 | 40.6 |
Root crown diameter (mm) | 6.3 b | 6.5 b | 7.0 a |
Dry matter content of rosettes (g plant−1) | 7.1 | 7.9 | 8.0 |
Taproot length (cm) | 17.1 b | 17.6 a | 17.7 a |
Dry matter content of taproot (g plant−1) | 2.3 b | 2.5 ab | 2.6 a |
Overwintering success (%) | 81.1 b | 81.7 b | 91.0 a |
Parameter | Foliar Fertilization in Autumn | ||
---|---|---|---|
Control | 1 Application | 2 Applications | |
Rosettes | |||
N (g kg−1 DM) | 41.7 b | 42.7 b | 45.7 a |
P (g kg−1 DM) | 4.7 | 4.8 | 5.1 |
K (g kg−1 DM) | 35.5 b | 37.3 ab | 39.5 a |
Mg (g kg−1 DM) | 2.0 b | 2.2 ab | 2.4 a |
Ca (g kg−1 DM) | 15.2 | 15.1 | 17.3 |
Cu (mg kg−1 DM) | 4.5 | 4.9 | 5.0 |
Zn (mg kg−1 DM) | 36.4 | 38.9 | 39.3 |
Mn (mg kg−1 DM) | 54.1 | 51.5 | 50.9 |
Fe (mg kg−1 DM) | 272.0 | 289.9 | 269.1 |
Roots | |||
N (g kg−1 DM) | 22.5 | 21.6 | 22.7 |
P (g kg−1 DM) | 5.4 | 5.1 | 5.0 |
K (g kg−1 DM) | 25.3 c | 26.0 b | 28.2 a |
Mg (g kg−1 DM) | 1.6 | 1.6 | 1.6 |
Ca (g kg−1 DM) | 2.9 | 2.6 | 3.0 |
Cu (mg kg−1 DM) | 4.9 b | 5.2 a | 5.5 a |
Zn (mg kg−1 DM) | 34.2 | 34.9 | 36.0 |
Mn (mg kg−1 DM) | 58.3 b | 62.9 a | 62.0 a |
Fe (mg kg−1 DM) | 415.7 b | 495.4 a | 490.6 a |
Parameter | Foliar Fertilization in Autumn | ||
---|---|---|---|
Control | 1 Application | 2 Applications | |
2012/2013 | |||
Plants m−2 | 33.8 | 35.2 | 41.8 |
Siliques plant−1 | 130.4 a | 123.8 b | 117.1c |
Seeds silique−1 | 29.2 b | 31.2 a | 31.2 a |
1000-seed weight (g 87% DM) | 5.61 | 5.62 | 5.64 |
Seed yield (g plant−1 87% DM) | 20.6 | 19.9 | 17.5 |
Seed yield (Mg ha−1 87% DM) | 6.93 b | 6.97 b | 7.27 a |
2013/2014 | |||
Plants m−2 | 44.4 | 45.7 | 47.5 |
Siliques plants−1 | 135.3 | 128.5 | 137.3 |
Seeds silique−1 | 22.9 b | 23.5 ab | 23.6 a |
1000-seed weight (g 87% DM) | 5.27 b | 5.63 a | 5.64 a |
Seed yield (g plant−1 87% DM) | 16.3 | 16.1 | 15.7 |
Seed yield (Mg ha−1 87% DM) | 7.24 b | 7.33 ab | 7.43 a |
2014/2015 | |||
Plants m−2 | 29.5 | 30.6 | 34.6 |
Siliques plant−1 | 221.2 a | 204.6 a | 161.4 b |
Seeds silique−1 | 23.3 b | 25.3 a | 25.8 a |
1000-seed weight (g 87% DM) | 4.75 b | 4.85 a | 4.89 a |
Seed yield (g plant−1 87% DM) | 22.2 | 22.0 | 19.7 |
Seed yield (Mg ha−1 87% DM) | 6.56 b | 6.70 a | 6.79 a |
Across years (2012–2015) | |||
Plants m−2 | 35.9 b | 37.2 ab | 41.3 a |
Siliques plant−1 | 162.3a | 152.3 b | 138.6c |
Seeds silique−1 | 25.1 b | 26.2 ab | 26.9 a |
1000-seed weight (g 87% DM) | 5.21 b | 5.37 a | 5.39 a |
Seed yield (g plant−1 87% DM) | 19.7 a | 19.3 a | 17.6 b |
Seed yield (Mg ha−1 87% DM) | 6.91 b | 7.00 ab | 7.16 a |
Parameter | Foliar Fertilization in Autumn | ||
---|---|---|---|
Control | 1 Application | 2 Applications | |
Crude fat content of seeds | |||
g kg−1 DM | 491.9 b | 493.2 b | 499.3 a |
Fatty acid concentrations | |||
C16 (%) | 4.8 | 4.8 | 4.8 |
C18 (%) | 1.6 | 1.6 | 1.7 |
C18:1 (%) | 62.4 b | 63.3 a | 63.0 a |
C18:2 (%) | 19.2 a | 18.2 c | 18.6 b |
C18:3 (%) | 10.8 | 10.9 | 10.7 |
C20:1 (%) | 1.2 | 1.2 | 1.2 |
1.79 a | 1.67 b | 1.74 a | |
Total saturated FAs (%) | 6.4 | 6.4 | 6.5 |
Total MUFAs (%) | 63.6 b | 64.5 a | 64.2 a |
Total PUFAs (%) | 30.0 a | 29.1 b | 29.3 b |
Parameter | Foliar Fertilization in Autumn | ||
---|---|---|---|
Control | 1 Application | 2 Applications | |
Total protein content of seeds | |||
g kg−1 DM | 193.6 | 194.3 | 193.6 |
Concentrations of ADF and NDF | |||
NDF (%) | 28.3 | 28.6 | 28.1 |
ADF (%) | 22.9 | 23.2 | 22.6 |
GLS content (μmol g−1) of seeds | |||
Gluconapin | 0.81 c | 2.02 a | 1.09 b |
Glucobrassicanapin | 0.31 | 0.47 | 0.33 |
Progoitrin | 3.30 b | 3.19 b | 5.63 a |
Napoleiferin | 0.09 | 0.10 | 0.11 |
Glucobrassicin | 0.18 | 0.18 | 0.19 |
4-OH-glucobrassicin | 2.98 c | 3.42 a | 3.14 b |
Alkenyl GLS | 4.42 c | 5.68 b | 7.05 a |
Indole GLS | 3.25 c | 3.70 a | 3.44 b |
1.36 c | 1.54 b | 2.05 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankowski, K.J.; Sokólski, M.; Szatkowski, A. The Effect of Autumn Foliar Fertilization on the Yield and Quality of Winter Oilseed Rape Seeds. Agronomy 2019, 9, 849. https://doi.org/10.3390/agronomy9120849
Jankowski KJ, Sokólski M, Szatkowski A. The Effect of Autumn Foliar Fertilization on the Yield and Quality of Winter Oilseed Rape Seeds. Agronomy. 2019; 9(12):849. https://doi.org/10.3390/agronomy9120849
Chicago/Turabian StyleJankowski, Krzysztof Józef, Mateusz Sokólski, and Artur Szatkowski. 2019. "The Effect of Autumn Foliar Fertilization on the Yield and Quality of Winter Oilseed Rape Seeds" Agronomy 9, no. 12: 849. https://doi.org/10.3390/agronomy9120849
APA StyleJankowski, K. J., Sokólski, M., & Szatkowski, A. (2019). The Effect of Autumn Foliar Fertilization on the Yield and Quality of Winter Oilseed Rape Seeds. Agronomy, 9(12), 849. https://doi.org/10.3390/agronomy9120849