From Emergence to Flowering: Four Beet (Beta vulgaris ssp.) Cultivars’ Phenological Response to Seed Priming
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
4.1. Emergence
4.2. Bolting
4.3. Flowering
4.4. Required GDD from Emergence to Bolting and Flowering
4.5. Side Branches
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Area under curve | AUC |
Growing degree days | GDD |
Rotate per minute | rpm |
Sugar beet | SB |
Fordhook giant | FG |
Detroit beet | DB |
Bull’s blood | BB |
Phenological development stages | BBCH derived from Biologische Bundesanstalt, Bundessortenamt and CHemical industry. |
Difference in required GDD between Bolting and Flowering | ΔGDD Bolting-Flowering |
References
- OECD. Section 8-Sugar Beet (Beta vulgaris L.). In Safety Assessment of Transgenic Organisms; OECD: Paris, France, 2006; Volume 1, ISBN 9789264095380. [Google Scholar]
- Hermann, K.; Meinhard, J.; Dobrev, P.; Linkies, A.; Pesek, B.; Heß, B.; Macháčková, I.; Fischer, U.; Leubner-Metzger, G. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): A comparative study of fruits and seeds. J. Exp. Bot. 2007, 58, 3047–3060. [Google Scholar] [CrossRef] [PubMed]
- Draycott, A.P. Sugar Beet; Draycott, A. Philip (Formerly of Broom’s Barn Research Station); Bury St Edmunds, S., Ed.; Blackwell: Suffolk, UK, 2006; ISBN 978-1-4051-1911-5. [Google Scholar]
- Curcic, Z.; Ciric, M.; Nagl, N.; Taski-Ajdukovic, K. Effect of Sugar Beet Genotype, Planting and Harvesting Dates and Their Interaction on Sugar Yield. Front. Plant Sci. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nan, J.; Yu, B. OMICS technologies and applications in sugar beet. Front. Plant Sci. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abo-Elwafa, S.F.; Abdel-Rahim, H.M.; Abou-Salama, A.M.; Teama, E.A. Sugar beet floral induction and fertility: Effect of vernalization and day-length extension. Sugar Tech 2006, 8, 281–287. [Google Scholar] [CrossRef]
- Durrant, M.J.; Mash, S.J.; Jaggard, K.W. Effects of seed advancement and sowing date on establishment, bolting and yield of sugarbeet. J. Agric. Sci. 1993, 121, 333–341. [Google Scholar] [CrossRef]
- Kockelmann, A.; Tilcher, R.; Fischer, U. Seed production and processing. Sugar Tech 2010, 12, 267–275. [Google Scholar] [CrossRef]
- Mutasa-Göttgens, E.S.; Qi, A.; Zhang, W.; Schulze-Buxloh, G.; Jennings, A.; Hohmann, U.; Müller, A.E.; Hedden, P. Bolting and flowering control in sugar beet: Relationships and effects of gibberellin, the bolting gene B and vernalization. AoB Plant. 2010, 2010, plq012. [Google Scholar] [CrossRef] [Green Version]
- Sadeghian, S.Y.; Johansson, E. Genetic study of bolting and stem length in sugar beet (Beta vulgaris L.) using a factorial cross design. Euphytica 1993, 65, 177–185. [Google Scholar] [CrossRef]
- Milford, G.F.J.; Jarvis, P.J.; Walters, C. A vernalization-intensity model to predict bolting in sugar beet. J. Agric. Sci. 2010, 148, 127–137. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Sinauer, A., Ed.; Sinauer Associates is an imprint of Oxford University Press: Sunderland, MA, USA, 2015; ISBN 9781605355351. [Google Scholar]
- Abe, J.; Guan, G.P.; Shimamoto, Y. A marker-assisted analysis of bolting tendency in sugar beet (Beta vulgaris L.). Euphytica 1997, 94, 137–144. [Google Scholar] [CrossRef]
- Höft, N.; Dally, N.; Hasler, M.; Jung, C. Haplotype variation of flowering time genes of sugar beet and its wild relatives and the impact on life cycle regimes. Front. Plant Sci. 2018, 8, 2211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stout, M.; Owen, F. Vernalization of Sugar-Beet Seed. American Society of Sugar Beet Technologists. In Proceedings of the 3rd Biennial Meeting, Salt Lake City, UT, USA, 5–7 January 1942; pp. 386–395. [Google Scholar]
- Hebblethwaite, P.D. Seed Production; Butterworth-Heinemann Ltd.: Cornell University, Ithaca, NY, USA, 1980; ISBN 0408106212. [Google Scholar]
- Mckinney, H.H. Vernalization and the Growth-Phase Concept. Source Bot. Rev. 1940, 6, 25–47. [Google Scholar] [CrossRef]
- Hébrard, C.; Peterson, D.G.; Willems, G.; Delaunay, A.; Jesson, B.; Lefèbvre, M.; Barnes, S.; Maury, S. Epigenomics and bolting tolerance in sugar beet genotypes. J. Exp. Bot. 2016, 67, 207–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motoki, K.; Kinoshita, Y.; Hosokawa, M. Non-vernalization flowering and seed set of cabbage induced by grafting onto radish rootstocks. Front. Plant Sci. 2019, 9, 1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, G.K.; Rakwal, R. Seed Development: OMICS Technologies Toward Improvement of Seed Quality and Crop Yield; Agrawal, G.K., Rakwal, R., Eds.; Springer: New York, NY, USA, 2012; ISBN 9789400747494. [Google Scholar]
- Jagosz, B. Priming improves germination of monogerm red beet (Beta vulgaris L.) clusters. J. Anim. Plant Sci. 2018, 28, 770–777. [Google Scholar]
- Snyder, F.W. Relation of sugarbeet germination to maturity and fruit moisture at harvest. J. Am. Soc. Sugar Beet Technol. 1971, 16, 541–551. [Google Scholar] [CrossRef]
- Michalska-Klimczak, B.; Wyszyński, Z.; Pačuta, V.; Rašovský, M.; Różańska, A. The effect of seed priming on field emergence and root yield of sugar beet. Plant Soil Environ. 2018, 64, 227–232. [Google Scholar]
- Chen, K.; Arora, R. Priming memory invokes seed stress-tolerance. Environ. Exp. Bot. 2013, 94, 33–45. [Google Scholar] [CrossRef]
- Harris, D.; Joshi, A.; Khan, P.A.; Gothkar, P.; Sodhi, P.S. On-farm seed priming in semi-arid agriculture: Development and evaluation in maize, rice and chickpea in India using participatory methods. Exp. Agric. 1999, 35, 15–29. [Google Scholar] [CrossRef]
- Murray, G.; Swensen, J.B. Emergence of sugar beet seedlings at low soil temperature following seed soaking and priming. Hort Sci. 1993, 28, 31–32. [Google Scholar] [CrossRef] [Green Version]
- Orzeszko-Rywka, A.; Podlaski, S. The effect of sugar beet seed treatments on their vigour. Plant Soil Environ. 2003, 49, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Welbaum, G.E.; Shen, Z.; Oluoch, M.O.; Jett, L.W. The evolution and effects of priming vegetable seeds. Seed Technol. 1998, 20, 209–235. [Google Scholar]
- Farooq, M.; Usman, M.; Nadeem, F.; Rehman, H.; Wahid, A.; Basra, S.M.A.; Siddique, K.H.M. Seed priming in field crops: Potential benefits, adoption and challenges. Crop Pasture Sci. 2019, 70, 731–771. [Google Scholar] [CrossRef]
- Chomontowski, C.; Wzorek, H.; Podlaski, S. Impact of sugar beet seed priming on seed quality and performance under diversified environmental conditions of germination, emergence and growth. J. Plant Growth Regul. 2019. [Google Scholar] [CrossRef] [Green Version]
- Capron, I.; Corbineau, F.; Dacher, F.; Job, C.; Côme, D.; Job, D. Sugarbeet seed priming: Effects of priming conditions on germination, solubilization of 11-S globulin and accumulation of LEA proteins. Seed Sci. Res. 2007, 10, 243–254. [Google Scholar] [CrossRef]
- Lutts, S.; Benincasa, P.; Wojtyla, L.; Kubala, S.; Pace, R.; Lechowska, K.; Quinet, M.; Garnczarska, M. Seed Priming: New Comprehensive Approaches for an Old Empirical Technique. In New Challenges in Seed Biology-Basic and Translational Research Driving Seed Technology; Araujo, S., Balestrazzi, A., Eds.; InTech: Rijeka, Croatia, 2016; ISBN 978-953-51-2659-1. [Google Scholar]
- Taylor, A.G.; Prusinski, J.; Hill, H.J.; Dickson, M.D. Influence of seed hydration on seedling performance. Horttechnology 1992, 2, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Chanthini, K.M.-P.; Stanley-Raja, V.; Thanigaivel, A.; Karthi, S.; Palanikani, R.; Shyam Sundar, N.; Sivanesh, H.; Soranam, R.; Senthil-Nathan, S. Sustainable Agronomic Strategies for Enhancing the Yield and Nutritional Quality of Wild Tomato, Solanum Lycopersicum (l) Var Cerasiforme Mill. Agronomy 2019, 9, 311. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Kermode, A.; And El-Kassaby, Y.A.; El-Kassaby, Y.A. The Role of Moist-Chilling and Thermo-Priming on the Germination Characteristics of White Spruce (Picea Glauca) Seed. Seed Sci. & Technol. 2013, 41, 321–335. [Google Scholar]
- Alipor, S.; Taghvaei, M.; Jalilian, A.; Kazemeini, A.; Razi, H. Hydro-thermal priming enhance seed germination capacity and seedling growth in sugar beet. Cell. Mol. Biol. 2019, 65, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Chiu, K.Y.; Chen, C.L.; Sung, J.M. Effect of priming temperature on storability of primed sh-2 sweet corn seed. Crop Sci. 2002, 42, 1996–2003. [Google Scholar] [CrossRef]
- Abdalla, E.; Osman, A.; Maki, M.; Nur, F.; Ali, S.; Aune, J. The Response of Sorghum, Groundnut, Sesame, and Cowpea to Seed Priming and Fertilizer Micro-Dosing in South Kordofan State, Sudan. Agronomy 2015, 5, 476–490. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, W.M. Muskmelon seed germination and seedling development in response to seed priming. Sci. Agric. 2003, 60, 71–75. [Google Scholar] [CrossRef]
- Coulibaly, A.; Woumou, K.; Aune, J.B. Sustainable Intensification of Sorghum and Pearl Millet Production by Seed Priming, Seed Treatment and Fertilizer Microdosing under Different Rainfall Regimes in Mali. Agronomy 2019, 9, 664. [Google Scholar] [CrossRef] [Green Version]
- Morris, P.C.; Grierson, D.; Whittington, W.J. Endogenous inhibitors and germination of Beta vulgaris. J. Exp. Bot. 1984, 35, 994–1002. [Google Scholar] [CrossRef]
- Stout, M.; Tolman, B. Interference of ammonia, released from sugar beet seed balls, with laboratory germination tests. J. Am. Soc. Soc. Agron. 1941, 33, 65–69. [Google Scholar] [CrossRef]
- Tolman, B.; Stout, M. Toxic effect on germinating sugar-beet seed of water-soluble substances in the seed ball. J. Agric. Res. 1940, 61, 817–830. [Google Scholar]
- Salimi, Z.; Boelt, B. Optimization of Germination Inhibitors Elimination from Sugar Beet (Beta vulgaris L.) Seeds of Different Maturity Classes. Agronomy 2019, 9, 763. [Google Scholar] [CrossRef] [Green Version]
- Meier, U. Beet. In Growth Stages of Mono—And Dicotyledonous Plants; Federal Biological Research Centre for Agriculture and Forestry: Berlin and Braunschweig, Germany, 2001; p. 158. [Google Scholar]
- Brown, R.F.; Mayer, D.G. Representing Cumulative Germination. 1. A Critical Analysis of Single-value Germination Indices. Ann. Bot. 1988, 61, 117–125. [Google Scholar] [CrossRef]
- Joosen, R.V.L.; Kodde, J.; Willems, L.A.J.; Ligterink, W.; Van Der Plas, L.H.W.; Hilhorst, H.W.M. GERMINATOR: A software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. Plant J. 2010, 62, 148–159. [Google Scholar] [CrossRef]
- CoreDevelopmentTeam R: The R Project for Statistical Computing 2015. Available online: https: //cran.r-project.org/mirrors.html (accessed on 10 September 2017).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- Dastanpoor, N.; Fahimi, H.; Shariati, M.; Davazdahemami, S.; Mojtaba, S.; Hashemi, M. Effects of hydropriming on seed germination and seedling growth in sage (Salvia officinalis L.). Afr. J. Biotechnol. 2013, 12, 1223–1228. [Google Scholar]
- Noorhosseini, S.A.; Nargesh, J.K.; Damalas, C.A. Improving seed germination and early growth of garden cress (Lepidium sativum) and basil (Ocimum basilicum) with hydro-priming. J. Plant Growth Regul. 2018, 37, 323–334. [Google Scholar] [CrossRef]
- Paparella, S.; Araújo, S.S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed priming: State of the art and new perspectives. Plant Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Finch-Savage, W.E.; Bassel, G.W. Seed vigour and crop establishment: Extending performance beyond adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef] [Green Version]
- Durrant, M.J.; Mash, S.J. Sugar-beet seed treatments and early sowing. Seed Sci. Technol. 1990, 18, 839–850. [Google Scholar]
Cultivar | Priming Time (h) | GDD E50-Bolting (°Cd) | GDD E50-Flowering (°Cd) | ΔGDD Bolting-Flowering (°Cd) |
---|---|---|---|---|
SB | 0 | 1085.75 | 1924.67 | 838.95 |
8 | 1085.19 ns | 1843.09 ns | 757.90 ns | |
16 | 1082.06 ns | 1951.62 ns | 869.56 ns | |
24 | 1083.26 ns | 1824.65 ns | 741.39 ns | |
FG | 0 | 1077.93 | 1745.15 | 667.22 |
8 | 1076.58 ns | 1782.42 ns | 725.74 ns | |
16 | 1086.97 ns | 1608.95 | 521.98 | |
24 | 1077.45 ns | 1751.86 ns | 674.41 ns | |
DB | 0 | 1049.78 | 1747.08 | 697.30 |
8 | 997.81 * | 1537.02 * | 539.20 * | |
16 | 988.97 ** | 1634.90 ns | 645.93 ns | |
24 | 994.39 * | 1527.76 ** | 533.38 * | |
BB | 0 | 1085.72 | 1674.09 | 555.06 |
8 | 1056.19 * | 1559.13 *** | 502.94 | |
16 | 1045.63 ** | 1703.42 ns | 657.79 ** | |
24 | 1015.66 *** | 1521.82 *** | 506.16 |
Cultivar | Priming Time (h) | Vegetative Production | Seed Production | ||||
---|---|---|---|---|---|---|---|
Emergence | Bolting | Flowering | Emergence | Bolting | Flowering | ||
SB | 8 | + | − | 0 | + | + | 0 |
16 | + | − | 0 | + | + | 0 | |
24 | + | − | − | + | + | + | |
FG | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | + | 0 | − | + | 0 | + | |
24 | 0 | 0 | 0 | 0 | 0 | 0 | |
DB | 8 | 0 | − | − | 0 | + | + |
16 | 0 | − | 0 | 0 | + | 0 | |
24 | + | − | − | + | + | + | |
BB | 8 | + | − | − | + | + | + |
16 | + | − | 0 | + | + | 0 | |
24 | + | − | − | + | + | + |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salimi, Z.; Boelt, B. From Emergence to Flowering: Four Beet (Beta vulgaris ssp.) Cultivars’ Phenological Response to Seed Priming. Agronomy 2019, 9, 863. https://doi.org/10.3390/agronomy9120863
Salimi Z, Boelt B. From Emergence to Flowering: Four Beet (Beta vulgaris ssp.) Cultivars’ Phenological Response to Seed Priming. Agronomy. 2019; 9(12):863. https://doi.org/10.3390/agronomy9120863
Chicago/Turabian StyleSalimi, Zahra, and Birte Boelt. 2019. "From Emergence to Flowering: Four Beet (Beta vulgaris ssp.) Cultivars’ Phenological Response to Seed Priming" Agronomy 9, no. 12: 863. https://doi.org/10.3390/agronomy9120863
APA StyleSalimi, Z., & Boelt, B. (2019). From Emergence to Flowering: Four Beet (Beta vulgaris ssp.) Cultivars’ Phenological Response to Seed Priming. Agronomy, 9(12), 863. https://doi.org/10.3390/agronomy9120863