DNA-Based Assessment of Genetic Diversity in Grassland Plant Species: Challenges, Approaches, and Applications
Abstract
:1. Introduction
2. DNA Fragment Size Analysis
3. Hybridization Array Methods
3.1. SNP Arrays
3.2. Diversity Arrays (DArT)
4. Assessing Genetic Diversity with Sequencing-Based Methods
4.1. Plastid Genome Skimming
4.2. Whole Genome Re-Sequencing
4.3. Reduced Representation Libraries
4.4. Sequence Capture
4.5. Amplicon Sequencing
5. Outlook for Genetic Diversity Assessments in Grassland Plant Species
Author Contributions
Funding
Conflicts of Interest
References
- Reynolds, S.G. Chapter 1 Introduction. In Grasslands of the World; Suttie, J.M., Reynolds, S.G., Batello, C., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands-More Important for Ecosystem Services than You Might Think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Huber, S.; Huber, B.; Stahl, S.; Schmid, C.; Reisch, C. Species Diversity of Remnant Calcareous Grasslands in South Eastern Germany Depends on Litter Cover and Landscape Structure. Acta Oecol. 2017, 83, 48–55. [Google Scholar] [CrossRef]
- Tälle, M.; Deák, B.; Poschlod, P.; Valkó, O.; Westerberg, L.; Milberg, P. Grazing vs. Mowing: A Meta-Analysis of Biodiversity Benefits for Grassland Management. Agric. Ecosyst. Environ. 2016, 222, 200–212. [Google Scholar] [CrossRef]
- Carbutt, C.; Henwood, W.D.; Gilfedder, L.A. Global Plight of Native Temperate Grasslands: Going, Going, Gone? Biodivers. Conserv. 2017, 26, 2911–2932. [Google Scholar] [CrossRef]
- Wesche, K.; Krause, B.; Culmsee, H.; Leuschner, C. Fifty Years of Change in Central European Grassland Vegetation: Large Losses in Species Richness and Animal-Pollinated Plants. Biol. Conserv. 2012, 150, 76–85. [Google Scholar] [CrossRef]
- Feßel, C.; Meier, I.C.; Leuschner, C. Relationship between Species Diversity, Biomass and Light Transmittance in Temperate Semi-Natural Grasslands: Is Productivity Enhanced by Complementary Light Capture? J. Veg. Sci. 2016, 27, 144–155. [Google Scholar] [CrossRef]
- Mariotte, P.; Buttler, A.; Kohler, F.; Gilgen, A.K.; Spiegelberger, T. How Do Subordinate and Dominant Species in Semi-Natural Mountain Grasslands Relate to Productivity and Land-Use Change? Basic Appl. Ecol. 2013, 14, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Mimura, M.; Yahara, T.; Faith, D.P.; Vázquez-Domínguez, E.; Colautti, R.I.; Araki, H.; Javadi, F.; Núñez-Farfán, J.; Mori, A.S.; Zhou, S.; et al. Understanding and Monitoring the Consequences of Human Impacts on Intraspecific Variation. Evol. Appl. 2017, 10, 121–139. [Google Scholar] [CrossRef]
- Barrett, B.A.; Faville, M.J.; Nichols, S.N.; Simpson, W.R.; Bryan, G.T.; Conner, A.J. Breaking through the Feed Barrier: Options for Improving Forage Genetics. Anim. Prod. Sci. 2015, 55, 883–892. [Google Scholar] [CrossRef] [Green Version]
- Litrico, I.; Violle, C. Diversity in Plant Breeding: A New Conceptual Framework. Trends Plant Sci. 2015, 20, 604–613. [Google Scholar] [CrossRef] [Green Version]
- Boller, B.; Peter-Schmid, M.K.I.; Tresch, E.; Tanner, P.; Schubiger, F.X. Ecotypes of Italian Ryegrass from Swiss Permanent Grassland Outperform Current Recommended Cultivars. Euphytica 2009, 170, 53–65. [Google Scholar] [CrossRef]
- Schröder, R.; Prasse, R. Do Cultivated Varieties of Native Plants Have the Ability to Outperform Their Wild Relatives? PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Malyshev, A.V.; Arfin Khan, M.A.S.; Beierkuhnlein, C.; Steinbauer, M.J.; Henry, H.A.L.; Jentsch, A.; Dengler, J.; Willner, E.; Kreyling, J. Plant Responses to Climatic Extremes: Within-Species Variation Equals among-Species Variation. Glob. Chang. Biol. 2016, 22, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Prieto, I.; Violle, C.; Barre, P.; Durand, J.-L.; Ghesquiere, M.; Litrico, I. Complementary Effects of Species and Genetic Diversity on Productivity and Stability of Sown Grasslands. Nat. Plants 2015, 1, 15033. [Google Scholar] [CrossRef] [PubMed]
- Meilhac, J.; Durand, J.-L.; Beguier, V.; Litrico, I. Increasing the Benefits of Species Diversity in Multispecies Temporary Grasslands by Increasing Within-Species Diversity. Ann. Bot. 2019, 123, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Mascher, M.; Schreiber, M.; Scholz, U.; Graner, A.; Reif, J.C.; Stein, N. Genebank Genomics Bridges the Gap between the Conservation of Crop Diversity and Plant Breeding. Nat. Genet. 2019, 51, 1076–1081. [Google Scholar] [CrossRef]
- Völler, E.; Bossdorf, O.; Prati, D.; Auge, H. Evolutionary Responses to Land Use in Eight Common Grassland Plants. J. Ecol. 2017, 105, 1290–1297. [Google Scholar] [CrossRef] [Green Version]
- Jamali, S.H.; Cockram, J.; Hickey, L.T. Insights into Deployment of DNA Markers in Plant Variety Protection and Registration. Theor. Appl. Genet. 2019, 132, 1911–1929. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar]
- Williams, J.G.K.; Kubelik, A.R.; Livak, K.J.; Rafalski, J.A.; Tingey, S.V. DNA Polymorphisms Amplified by Arbitrary Primers Are Useful as Genetic Markers. Nucleic Acids Res. 1990, 18, 6531–6535. [Google Scholar] [CrossRef] [Green Version]
- Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; Lee, T.V.D.; Hornes, M.; Friters, A.; Pot, J.; Paleman, J.; Kuiper, M.; et al. AFLP: A New Technique for DNA Fingerprinting. Nucleic Acids Res. 1995, 23, 4407–4414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Quiros, C.F. Sequence-Related Amplified Polymorphism (SRAP), a New Marker System Based on a Simple PCR Reaction: Its Application to Mapping and Gene Tagging in Brassica. Theor. Appl. Genet. 2001, 103, 455–461. [Google Scholar] [CrossRef]
- Kalendar, R.; Antonius, K.; Smýkal, P.; Schulman, A.H. IPBS: A Universal Method for DNA Fingerprinting and Retrotransposon Isolation. Theor. Appl. Genet. 2010, 121, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Morgante, M.; Olivieri, A.M. PCR-Amplified Microsatellites as Markers in Plant Genetics. Plant J. 1993, 3, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Zietkiewicz, E.; Rafalski, A.; Labuda, D. Genome Fingerprinting by Simple Sequence Repeat (SSR)-Anchored Polymerase Chain Reaction Amplification. Genomics 1994, 20, 176–183. [Google Scholar] [CrossRef]
- Last, L.; Lüscher, G.; Widmer, F.; Boller, B.; Kölliker, R. Indicators for Genetic and Phenotypic Diversity of Dactylis glomerata in Swiss Permanent Grassland. Ecol. Indic. 2014, 38, 181–191. [Google Scholar] [CrossRef]
- Last, L.; Widmer, F.; Fjellstad, W.; Stoyanova, S.; Kölliker, R. Genetic Diversity of Natural Orchardgrass (Dactylis glomerata L.) Populations in Three Regions in Europe. BMC Genet. 2013, 14, 102. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.G.; Lu, X.F.; Zhang, X.Q.; Huang, L.K.; Cheng, L. Genetic Variation and Comparison of Orchardgrass (Dactylis glomerata L.) Cultivars and Wild Accessions as Revealed by SSR Markers. Genet. Mol. Res. 2012, 11, 425–433. [Google Scholar] [CrossRef]
- Peng, Y.A.N.; Zhang, X.; Deng, Y.; Ma, X. Evaluation of Genetic Diversity in Wild Orchardgrass (Dactylis glomerata L.) Based on AFLP Markers. Hereditas 2008, 145, 174–181. [Google Scholar] [CrossRef]
- Costa, R.; Pereira, G.; Garrido, I.; Tavares-De-Sousa, M.M.; Espinosa, F. Comparison of RAPD, ISSR, and AFLP Molecular Markers to Reveal and Classify Orchardgrass (Dactylis glomerata L.) Germplasm Variations. PLoS ONE 2016, 11, e0152972. [Google Scholar] [CrossRef] [Green Version]
- Kölliker, R.; Stadelmann, F.J.; Reidy, B.; Nösberger, J. Genetic Variability of Forage Grass Cultivars: A Comparison of Festuca pratensis Huds., Lolium perenne L., and Dactylis glomerata L. Euphytica 1999, 106, 261–270. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, M.; Zhang, X.; Chen, S.; Nie, G.; Peng, Y.; Huang, L.; Ma, X. AFLP-Based Genetic Diversity of Wild Orchardgrass Germplasm Collections from Central Asia and Western China, and the Relation to Environmental Factors. PLoS ONE 2018, 13, e0195273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, B.; Zhang, X.; Lan, Y.; Yang, W.-Y. Evaluation of Genetic Diversity and Relationships in Orchardgrass (Dactylis glomerata L.) Germplasm Based on SRAP Markers. Can. J. Plant Sci. 2008, 88, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Ghariani, S.; Elazreg, H.; Chtourou-Ghorbel, N.; Chakroun, M.; Trifi-Farah, N. Genetic Diversity Analysis in Tunisian Perennial Ryegrass Germplasm as Estimated by RAPD, ISSR, and Morpho-Agronomical Markers. Genet. Mol. Res. 2015, 14, 18523–18533. [Google Scholar] [CrossRef]
- Van Treuren, R.; Bas, N.; Goossens, P.J.; Jansen, J.; Van Soest, L.J.M. Genetic Diversity in Perennial Ryegrass and White Clover among Old Dutch Grasslands as Compared to Cultivars and Nature Reserves. Mol. Ecol. 2005, 14, 39–52. [Google Scholar] [CrossRef]
- Vieira, E.A.; Castro, C.M.; de Oliveira, A.C.; de Carvalho, F.I.F.; Zimmer, P.D.; Martins, L.F. Genetic Structure of Annual Ryegrass (Lolium multiflorum) Populations Estimated by RAPD. Sci. Agric. 2004, 61, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Statkevičiūtė, G.; Aleliūnas, A.; Kemešytė, V.; Pašakinskienė, I.; Brazauskas, G. AFLP Analysis of Genetic Diversity in an Association Mapping Panel of Lolium perenne L. In Quantitative Traits Breeding for Multifunctional Grasslands and Turf; Sokolović, D., Huyghe, C., Radović, J., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 285–289. [Google Scholar] [CrossRef]
- Cresswell, A.; Sackville Hamilton, N.R.; Roy, A.K.; Viegas, B.M.F. Use of Amplified Fragment Length Polymorphism Markers to Assess Genetic Diversity of Lolium Species from Portugal. Mol. Ecol. 2001, 10, 229–241. [Google Scholar] [CrossRef]
- Jonavičienė, K.; Statkevičiūtė, G.; Kemešytė, V. Genetic and Phenotypic Diversity for Drought Tolerance in Perennial Ryegrass (Lolium perenne L.). Zemdirb. -Agric. 2014, 101, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Diekmann, K.; Hodkinson, T.R.; Barth, S. New Chloroplast Microsatellite Markers Suitable for Assessing Genetic Diversity of Lolium perenne and Other Related Grass Species. Ann. Bot. 2012, 110, 1327–1339. [Google Scholar] [CrossRef] [Green Version]
- Peter-Schmid, M.K.I.; Boller, B.; Kölliker, R. Habitat and Management Affect Genetic Structure of Festuca pratensis but Not Lolium multiflorum Ecotype Populations. Plant Breed. 2008, 127, 510–517. [Google Scholar] [CrossRef]
- Roldán-Ruiz, I.; Calsyn, E.; Gilliland, T.J.; Coll, R.; van Eijk, M.J.T.; De Loose, M. Estimating Genetic Conformity between Related Ryegrass (Lolium) Varieties. 2. AFLP Characterization. Mol. Breed. 2000, 6, 593–602. [Google Scholar] [CrossRef]
- Barth, S.; McGrath, S.K.; Arojju, S.K.; Hodkinson, T.R. An Irish Perennial Ryegrass Genetic Resource Collection Clearly Divides into Two Major Gene Pools. Plant Genet. Resour. 2017, 15, 269–278. [Google Scholar] [CrossRef]
- Liu, S.; Feuerstein, U.; Luesink, W.; Schulze, S.; Asp, T.; Studer, B.; Becker, H.C.; Dehmer, K.J. DArT, SNP, and SSR Analyses of Genetic Diversity in Lolium perenne L. Using Bulk Sampling. BMC Genet. 2018, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalski, S.G.; Durka, W.; Jentsch, A.; Kreyling, J.; Pompe, S.; Schweiger, O.; Willner, E.; Beierkuhnlein, C. Evidence for Genetic Differentiation and Divergent Selection in an Autotetraploid Forage Grass (Arrhenatherum elatius). Theor. Appl. Genet. 2010, 120, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Fjellheim, S.; Rognli, O.A. Molecular Diversity of Local Norwegian Meadow Fescue (Festuca pratensis Huds.) Populations and Nordic Cultivars-Consequences for Management and Utilisation. Theor. Appl. Genet. 2005, 111, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Fedorenko, O.M.; Gritskikh, M.V.; Malysheva, I.E.; Nikolaevskaya, T.S. Genetic Diversity of Insular Natural Populations of Festuca pratensis Huds.: RAPD Analysis. Russ. J. Genet. 2009, 45, 1134–1138. [Google Scholar] [CrossRef]
- Duncan, D.S.; Krohn, A.L.; Jackson, R.D.; Casler, M.D. Conservation Implications of the Introduction History of Meadow Fescue (Festuca pratensis Huds.) to the Driftless Area of the Upper Mississippi Valley, USA. Plant Ecol. Divers. 2015, 8, 91–99. [Google Scholar] [CrossRef]
- Hand, M.L.; Cogan, N.O.I.; Forster, J.W. Molecular Characterisation and Interpretation of Genetic Diversity within Globally Distributed Germplasm Collections of Tall Fescue (Festuca arundinacea Schreb.) and Meadow Fescue (F. pratensis Huds.). Theor. Appl. Genet. 2012, 124, 1127–1137. [Google Scholar] [CrossRef]
- Kölliker, R.; Stadelmann, F.J.; Reidy, B.; Nösberger, J. Fertilization and Defoliation Frequency Affect Genetic Diversity of Festuca pratensis Huds. in Permanent Grasslands. Mol. Ecol. 1998, 7, 1557–1567. [Google Scholar] [CrossRef]
- Cuyeu, R.; Rosso, B.; Pagano, E.; Soto, G.; Fox, R.; Ayub, N.D. Genetic Diversity in a World Germplasm Collection of Tall Fescue. Genet. Mol. Biol. 2013, 36, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Xie, Y.; Bi, Y.; Liu, J.; Amombo, E.; Hu, T.; Fu, J. Comparative Study of Diversity Based on Heat Tolerant-Related Morpho-Physiological Traits and Molecular Markers in Tall Fescue Accessions. Sci. Rep. 2015, 5, 18213. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.W.; Sleper, D.A.; Krause, G.F. Genetic Diversity of Tall Fescue Germplasm Based on RFLPs. Crop Sci. 1994, 34, 246–252. [Google Scholar] [CrossRef]
- Tehrani, M.S.; Mardi, M.; Sahebi, J.; Catalán, P.; Díaz-Pérez, A. Genetic Diversity and Structure among Iranian Tall Fescue Populations Based on Genomic-SSR and EST-SSR Marker Analysis. Plant Syst. Evol. 2009, 282, 57–70. [Google Scholar] [CrossRef]
- Mian, M.A.R.; Hopkins, A.A.; Zwonitzer, J.C. Determination of Genetic Diversity in Tall Fescue with AFLP Markers. Crop Sci. 2002, 42, 944–950. [Google Scholar] [CrossRef]
- Fard, J.R.; Zamani, Z.; Moghaddam, M.R.F.; Kafi, M. Evaluation of Genetic Diversity among Some Genotypes of Kentucky Bluegrass by RAPD Molecular Markers. Hortic. Environ. Biotechnol. 2012, 53, 298–303. [Google Scholar] [CrossRef]
- Curley, J.; Jung, G. RAPD-Based Genetic Relationships in Kentucky Bluegrass: Comparison of Cultivars, Interspecific Hybrids, and Plant Introductions. Crop Sci. 2004, 44, 1299–1306. [Google Scholar] [CrossRef]
- Tanhuanpää, P.; Manninen, O. High SSR Diversity but Little Differentiation between Accessions of Nordic Timothy (Phleum pratense L.). Hereditas 2012, 149, 114–127. [Google Scholar] [CrossRef] [Green Version]
- Abraham, E.M.; Ganopoulos, I.; Giagourta, P.; Osathanunkul, M.; Bosmali, I.; Tsaftaris, A.; Papaioannou, A.; Madesis, P. Genetic Diversity of Lotus Corniculatus in Relation to Habitat Type, Species Composition and Species Diversity. Biochem. Syst. Ecol. 2015, 63, 59–67. [Google Scholar] [CrossRef]
- Kempf, K.; Mora-Ortiz, M.; Smith, L.M.J.; Kölliker, R.; Skøt, L. Characterization of Novel SSR Markers in Diverse Sainfoin (Onobrychis viciifolia) Germplasm. BMC Genet. 2016, 17. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, D.; Boller, B.; Widmer, F.; Kölliker, R. Optimization of Bulked AFLP Analysis and Its Application for Exploring Diversity of Natural and Cultivated Populations of Red Clover. Genome 2005, 48, 474–486. [Google Scholar] [CrossRef]
- Hargreaves, S.; Maxted, N.; Hirano, R.; Abberton, M.; Skøt, L.; Ford-Lloyd, B.V. Islands as Refugia of Trifolium repens Genetic Diversity. Conserv. Genet. 2010, 11, 1317–1326. [Google Scholar] [CrossRef]
- Collins, R.P.; Helgadottir, A.; Frankow-Lindberg, B.E.; Skot, L.; Jones, C.; Skot, K.P. Temporal Changes in Population Genetic Diversity and Structure in Red and White Clover Grown in Three Contrasting Environments in Northern Europe. Ann. Bot. 2012, 110, 1341–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annicchiarico, P.; Carelli, M. Origin of Ladino White Clover as Inferred from Patterns of Molecular and Morphophysiological Diversity. Crop Sci. 2014, 54, 2696. [Google Scholar] [CrossRef]
- Grauda, D.; Avotiņš, K.; Fokina, O.; Kolodinska-Brantestam, A.; Rashal, I. Genetic Diversity of White Clover (Trifolium repens L.) from the Urban Area of Rīga Baltā Āboliņa. Proc. Latv. Acad. Sci. Sect. B. Nat. Exactappl. Sci. 2015, 69, 132–134. [Google Scholar] [CrossRef] [Green Version]
- George, J.; Dobrowolski, M.P.; van Zijll de Jong, E.; Cogan, N.O.; Smith, K.F.; Forster, J.W. Assessment of Genetic Diversity in Cultivars of White Clover (Trifolium repens L.) Detected by SSR Polymorphisms. Genome 2006, 49, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Crossa, J. Methodologies for Estimating the Sample Size Required for Genetic Conservation of Outbreeding Crops. Theor. Appl. Genet. 1989, 77, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Darbyshire, S.J. Realignment of Festuca Subgenus Schedonorus with the Genus Lolium (Poaceae). Novon 1993, 3, 239. [Google Scholar] [CrossRef]
- Bolaric, S.; Barth, S.; Melchinger, A.E.; Posselt, U.K. Genetic Diversity in European Perennial Ryegrass Cultivars Investigated with RAPD Markers. Plant Breed. 2005, 124, 161–166. [Google Scholar] [CrossRef]
- UPOV. Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability for Ryegrass; International Union for the Protection of New Varieties of Plants: Geneva, Switzerland, 2006. [Google Scholar]
- Leipold, M.; Tausch, S.; Hirtreiter, M.; Poschlod, P.; Reisch, C. Sampling for Conservation Genetics: How Many Loci and Individuals Are Needed to Determine the Genetic Diversity of Plant Populations Using AFLP? Conserv. Genet. Resour. 2018, 1–10. [Google Scholar] [CrossRef]
- Nybom, H.; Weising, K.; Rotter, B. DNA Fingerprinting in Botany: Past, Present, Future. Investig. Genet. 2014, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Saha, M.C.; Cooper, J.D.; Mian, M.A.R.; Chekhovskiy, K.; May, G.D. Tall Fescue Genomic SSR Markers: Development and Transferability across Multiple Grass Species. Theor. Appl. Genet. 2006, 113, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Voss-Fels, K.; Snowdon, R.J. Understanding and Utilizing Crop Genome Diversity via High-Resolution Genotyping. Plant Biotechnol. J. 2016, 14, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Jaccoud, D.; Peng, K.; Feinstein, D.; Kilian, A. Diversity Arrays: A Solid State Technology for Sequence Information Independent Genotyping. Nucleic Acids Res. 2001, 29, e25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilian, A.; Wenzl, P.; Huttner, E.; Carling, J.; Xia, L.; Blois, H.; Caig, V.; Heller-Uszynska, K.; Jaccoud, D.; Hopper, C.; et al. Diversity Arrays Technology: A Generic Genome Profiling Technology on Open Platforms. In Data Production and Analysis in Population Genomics: Methods and Protocols; Pompanon, F., Bonin, A., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 67–89. [Google Scholar] [CrossRef]
- Smith, S.M.; Maughan, P.J. SNP Genotyping Using KASPar Assays. In Plant Genotyping: Methods and Protocols; Batley, J., Ed.; Springer: New York, NY, USA, 2015; pp. 243–256. [Google Scholar] [CrossRef]
- Thomson, M.J. High-Throughput SNP Genotyping to Accelerate Crop Improvement. Plant Breed. Biotechnol. 2014, 2, 195–212. [Google Scholar] [CrossRef]
- Gupta, P.K.; Rustgi, S.; Mir, R.R. Array-Based High-Throughput DNA Markers for Crop Improvement. Heredity 2008, 101, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Blackmore, T.; Thomas, I.; McMahon, R.; Powell, W.; Hegarty, M. Genetic-Geographic Correlation Revealed across a Broad European Ecotypic Sample of Perennial Ryegrass (Lolium perenne) Using Array-Based SNP Genotyping. Theor. Appl. Genet. 2015, 128, 1917–1932. [Google Scholar] [CrossRef] [Green Version]
- Blackmore, T.; Thorogood, D.; Skøt, L.; McMahon, R.; Powell, W.; Hegarty, M. Germplasm Dynamics: The Role of Ecotypic Diversity in Shaping the Patterns of Genetic Variation in Lolium perenne. Sci. Rep. 2016, 6, 22603. [Google Scholar] [CrossRef]
- Li, X.; Han, Y.; Wei, Y.; Acharya, A.; Farmer, A.D.; Ho, J.; Monteros, M.J.; Brummer, E.C. Development of an Alfalfa SNP Array and Its Use to Evaluate Patterns of Population Structure and Linkage Disequilibrium. PLoS ONE 2014, 9, e84329. [Google Scholar] [CrossRef] [Green Version]
- Heslot, N.; Rutkoski, J.; Poland, J.; Jannink, J.-L.; Sorrells, M.E. Impact of Marker Ascertainment Bias on Genomic Selection Accuracy and Estimates of Genetic Diversity. PLoS ONE 2013, 8, e74612. [Google Scholar] [CrossRef] [Green Version]
- Balfourier, F.; Bouchet, S.; Robert, S.; DeOliveira, R.; Rimbert, H.; Kitt, J.; Choulet, F.; Paux, E. Worldwide Phylogeography and History of Wheat Genetic Diversity. Sci. Adv. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Kopecký, D.; Bartoš, J.; Lukaszewski, A.J.; Baird, J.H.; Černoch, V.; Kölliker, R.; Rognli, O.; Blois, H.; Caig, V.; Lübberstedt, T.; et al. Development and Mapping of DArT Markers within the Festuca-Lolium Complex. BMC Genom. 2009, 10, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baird, J.H.; Kopecký, D.; Lukaszewski, A.J.; Green, R.L.; Bartoš, J.; Doležel, J. Genetic Diversity of Turf-Type Tall Fescue Using Diversity Arrays Technology. Crop Sci. 2012, 52, 408. [Google Scholar] [CrossRef]
- Bartoš, J.; Sandve, S.R.; Kölliker, R.; Kopecký, D.; Christelová, P.; Stočes, Š.; Østrem, L.; Larsen, A.; Kilian, A.; Rognli, O.A.; et al. Genetic Mapping of DArT Markers in the Festuca-Lolium Complex and Their Use in Freezing Tolerance Association Analysis. Theor. Appl. Genet. 2011, 122, 1133–1147. [Google Scholar] [CrossRef] [PubMed]
- Kopecký, D.; Bartoš, J.; Christelová, P.; Černoch, V.; Kilian, A.; Doležel, J. Genomic Constitution of Festuca × Lolium Hybrids Revealed by the DArTFest Array. Theor. Appl. Genet. 2011, 122, 355–363. [Google Scholar] [CrossRef]
- Akbari, M.; Wenzl, P.; Caig, V.; Carling, J.; Xia, L.; Yang, S.; Uszynski, G.; Mohler, V.; Lehmensiek, A.; Kuchel, H.; et al. Diversity Arrays Technology (DArT) for High-Throughput Profiling of the Hexaploid Wheat Genome. Theor. Appl. Genet. 2006, 113, 1409–1420. [Google Scholar] [CrossRef]
- Mace, E.S.; Xia, L.; Jordan, D.R.; Halloran, K.; Parh, D.K.; Huttner, E.; Wenzl, P.; Kilian, A. DArT Markers: Diversity Analyses and Mapping in Sorghum Bicolor. BMC Genom. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.Y.; Marchand, S.; Tinker, N.A.; Belzile, F. Population Structure and Linkage Disequilibrium in Barley Assessed by DArT Markers. Theor. Appl. Genet. 2009, 119, 43–52. [Google Scholar] [CrossRef]
- Wenzl, P.; Carling, J.; Kudrna, D.; Jaccoud, D.; Huttner, E.; Kleinhofs, A.; Kilian, A. Diversity Arrays Technology (DArT) for Whole-Genome Profiling of Barley. Proc. Natl. Acad. Sci. USA 2004, 101, 9915–9920. [Google Scholar] [CrossRef] [Green Version]
- Shendure, J.; Balasubramanian, S.; Church, G.M.; Gilbert, W.; Rogers, J.; Schloss, J.A.; Waterston, R.H. DNA Sequencing at 40: Past, Present and Future. Nature 2017, 550, 345–353. [Google Scholar] [CrossRef]
- Wetterstrand, K.A. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). Available online: https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data (accessed on 8 October 2019).
- Verwimp, C.; Ruttink, T.; Muylle, H.; Van Glabeke, S.; Cnops, G.; Quataert, P.; Honnay, O.; Roldán-Ruiz, I. Temporal Changes in Genetic Diversity and Forage Yield of Perennial Ryegrass in Monoculture and in Combination with Red Clover in Swards. PLoS ONE 2018, 13, e0206571. [Google Scholar] [CrossRef]
- Fischer, M.C.; Rellstab, C.; Leuzinger, M.; Roumet, M.; Gugerli, F.; Shimizu, K.K.; Holderegger, R.; Widmer, A. Estimating Genomic Diversity and Population Differentiation—An Empirical Comparison of Microsatellite and SNP Variation in Arabidopsis halleri. BMC Genom. 2017, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bélanger, S.; Esteves, P.; Clermont, I.; Jean, M.; Belzile, F.; Belzile, F. Genotyping-by-Sequencing on Pooled Samples and Its Use in Measuring Segregation Bias during the Course of Androgenesis in Barley. Plant Genome 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Bélanger, S.; Clermont, I.; Esteves, P.; Belzile, F. Extent and Overlap of Segregation Distortion Regions in 12 Barley Crosses Determined via a Pool-GBS Approach. Theor. Appl. Genet. 2016, 129, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Sancho, R.; Cantalapiedra, C.P.; López-Alvarez, D.; Gordon, S.P.; Vogel, J.P.; Catalán, P.; Contreras-Moreira, B. Comparative Plastome Genomics and Phylogenomics of Brachypodium: Flowering Time Signatures, Introgression and Recombination in Recently Diverged Ecotypes. New Phytol. 2018, 218, 1631–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyler, L.; Lee, S.J.; Young, N.D.; DeIulio, G.A.; Benavente, E.; Reagon, M.; Sysopha, J.; Baldini, R.M.; Troìa, A.; Hazen, S.P.; et al. Population Structure in the Model Grass Brachypodium distachyon Is Highly Correlated with Flowering Differences across Broad Geographic Areas. Plant Genome 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Gordon, S.P.; Contreras-Moreira, B.; Woods, D.P.; Des Marais, D.L.; Burgess, D.; Shu, S.; Stritt, C.; Roulin, A.C.; Schackwitz, W.; Tyler, L.; et al. Extensive Gene Content Variation in the Brachypodium distachyon Pan-Genome Correlates with Population Structure. Nat. Commun. 2017, 8, 2184. [Google Scholar] [CrossRef]
- De Sousa, F.; Bertrand, Y.J.K.; Nylinder, S.; Oxelman, B.; Eriksson, J.S.; Pfeil, B.E. Phylogenetic Properties of 50 Nuclear Loci in Medicago (Leguminosae) Generated Using Multiplexed Sequence Capture and Next-Generation Sequencing. PLoS ONE 2014, 9, e109704. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.; Crisovan, E.; Barry, K.; Daum, C.; Jenkins, J.; Kunde-Ramamoorthy, G.; Nandety, A.; Ngan, C.Y.; Vaillancourt, B.; Wei, C.L.; et al. Diversity and Population Structure of Northern Switchgrass as Revealed through Exome Capture Sequencing. Plant J. 2015, 84, 800–815. [Google Scholar] [CrossRef]
- Suyama, Y.; Matsuki, Y. MIG-Seq: An Effective PCR-Based Method for Genome-Wide Single-Nucleotide Polymorphism Genotyping Using the next-Generation Sequencing Platform. Sci. Rep. 2015, 5, 16963. [Google Scholar] [CrossRef] [Green Version]
- Tonti-Filippini, J.; Nevill, P.G.; Dixon, K.; Small, I. What Can We Do with 1000 Plastid Genomes? Plant J. 2017, 90, 808–818. [Google Scholar] [CrossRef] [Green Version]
- Orton, L.M.; Burke, S.V.; Duvall, M.R. Plastome Phylogenomics and Characterization of Rare Genomic Changes as Taxonomic Markers in Plastome Groups 1 and 2 Poeae (Pooideae; Poaceae). PeerJ 2019, 7, e6959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gryta, H.; Van de Paer, C.; Manzi, S.; Holota, H.; Roy, M.; Besnard, G. Genome Skimming and Plastid Microsatellite Profiling of Alder Trees (Alnus Spp., Betulaceae): Phylogenetic and Phylogeographical Prospects. Tree Genet. Genomes 2017, 13, 118. [Google Scholar] [CrossRef]
- Fuentes-Pardo, A.P.; Ruzzante, D.E. Whole-Genome Sequencing Approaches for Conservation Biology: Advantages, Limitations and Practical Recommendations. Mol. Ecol. 2017, 26, 5369–5406. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.C.; Rellstab, C.; Tedder, A.; Zoller, S.; Gugerli, F.; Shimizu, K.K.; Holderegger, R.; Widmer, A. Population Genomic Footprints of Selection and Associations with Climate in Natural Populations of Arabidopsis halleri from the Alps. Mol. Ecol. 2013, 22, 5594–5607. [Google Scholar] [CrossRef] [Green Version]
- Rellstab, C.; Zoller, S.; Tedder, A.; Gugerli, F.; Fischer, M.C. Validation of SNP Allele Frequencies Determined by Pooled Next-Generation Sequencing in Natural Populations of a Non-Model Plant Species. PLoS ONE 2013, 8, e80422. [Google Scholar] [CrossRef]
- Golicz, A.A.; Batley, J.; Edwards, D. Towards Plant Pangenomics. Plant Biotechnol. J. 2016, 14, 1099–1105. [Google Scholar] [CrossRef]
- Montenegro, J.D.; Golicz, A.A.; Bayer, P.E.; Hurgobin, B.; Lee, H.T.; Chan, C.K.K.; Visendi, P.; Lai, K.; Doležel, J.; Batley, J.; et al. The Pangenome of Hexaploid Bread Wheat. Plant J. 2017, 90, 1007–1013. [Google Scholar] [CrossRef] [Green Version]
- De Vega, J.J.; Ayling, S.; Hegarty, M.; Kudrna, D.; Goicoechea, J.L.; Ergon, Å.; Rognli, O.A.; Jones, C.; Swain, M.; Geurts, R.; et al. Red Clover (Trifolium pratense L.) Draft Genome Provides a Platform for Trait Improvement. Sci. Rep. 2015, 5, 17394. [Google Scholar] [CrossRef]
- Ištvánek, J.; Jaroš, M.; Křenek, A.; Řepková, J. Genome Assembly and Annotation for Red Clover (Trifolium pratense; Fabaceae). Am. J. Bot. 2014, 101, 327–337. [Google Scholar] [CrossRef]
- Byrne, S.L.; Nagy, I.; Pfeifer, M.; Armstead, I.; Swain, S.; Studer, B.; Mayer, K.; Campbell, J.D.; Czaban, A.; Hentrup, S.; et al. A Synteny-Based Draft Genome Sequence of the Forage Grass Lolium perenne. Plant J. 2015, 84, 816–826. [Google Scholar] [CrossRef]
- Knorst, V.; Yates, S.; Byrne, S.; Asp, T.; Widmer, F.; Studer, B.; Kölliker, R. First Assembly of the Gene-Space of Lolium multiflorum and Comparison to Other Poaceae Genomes. Grassl. Sci. 2019, 65, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Alaux, M.; Rogers, J.; Letellier, T.; Flores, R.; Alfama, F.; Pommier, C.; Mohellibi, N.; Durand, S.; Kimmel, E.; Michotey, C.; et al. Linking the International Wheat Genome Sequencing Consortium Bread Wheat Reference Genome Sequence to Wheat Genetic and Phenomic Data. Genome Biol. 2018, 19, 111. [Google Scholar] [CrossRef] [PubMed]
- Baird, N.A.; Etter, P.D.; Atwood, T.S.; Currey, M.C.; Shiver, A.L.; Lewis, Z.A.; Selker, E.U.; Cresko, W.A.; Johnson, E.A. Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLoS ONE 2008, 3, e3376. [Google Scholar] [CrossRef] [PubMed]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Andrews, K.R.; Good, J.M.; Miller, M.R.; Luikart, G.; Hohenlohe, P.A. Harnessing the Power of RADseq for Ecological and Evolutionary Genomics. Nat. Rev. Genet. 2016, 17, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Byrne, S.; Czaban, A.; Studer, B.; Panitz, F.; Bendixen, C.; Asp, T. Genome Wide Allele Frequency Fingerprints (GWAFFs) of Populations via Genotyping by Sequencing. PLoS ONE 2013, 8, e57438. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, B.H.; Byrne, S.; Fé, D.; Czaban, A.; Asp, T.; Pedersen, M.G.; Lenk, I.; Roulund, N.; Didion, T.; Jensen, C.S.; et al. Estimating Genomic Heritabilities at the Level of Family-Pool Samples of Perennial Ryegrass Using Genotyping-by-Sequencing. Theor. Appl. Genet. 2016, 129, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Lowry, D.B.; Hoban, S.; Kelley, J.L.; Lotterhos, K.E.; Reed, L.K.; Antolin, M.F.; Storfer, A. Breaking RAD: An Evaluation of the Utility of Restriction Site-Associated DNA Sequencing for Genome Scans of Adaptation. Mol. Ecol. Resour. 2017, 17, 142–152. [Google Scholar] [CrossRef]
- Cariou, M.; Duret, L.; Charlat, S. How and How Much Does RAD-Seq Bias Genetic Diversity Estimates? BMC Evol. Biol. 2016, 16, 240. [Google Scholar] [CrossRef] [Green Version]
- Arnold, B.; Corbett-Detig, R.B.; Hartl, D.; Bomblies, K. RADseq Underestimates Diversity and Introduces Genealogical Biases Due to Nonrandom Haplotype Sampling. Mol. Ecol. 2013, 22, 3179–3190. [Google Scholar] [CrossRef]
- Nazzicari, N.; Biscarini, F.; Cozzi, P.; Brummer, E.C.; Annicchiarico, P. Marker Imputation Efficiency for Genotyping-by-Sequencing Data in Rice (Oryza sativa) and Alfalfa (Medicago sativa). Mol. Breed. 2016, 36, 69. [Google Scholar] [CrossRef]
- Gasc, C.; Peyretaillade, E.; Peyret, P. Sequence Capture by Hybridization to Explore Modern and Ancient Genomic Diversity in Model and Nonmodel Organisms. Nucleic Acids Res. 2016, 44, 4504–4518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faircloth, B.C. Identifying conserved genomic elements and designing universal bait sets to enrich them. Methods Ecol. Evol. 2017, 8, 1103–1112. [Google Scholar] [CrossRef] [Green Version]
- Kadlec, M.; Bellstedt, D.U.; Le Maitre, N.C.; Pirie, M.D. Targeted NGS for Species Level Phylogenomics: “Made to Measure” or “One Size Fits All”? PeerJ 2017, 5, e3569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, M.G.; Smith, B.T.; Glenn, T.C.; Faircloth, B.C.; Brumfield, R.T. Sequence Capture versus Restriction Site Associated DNA Sequencing for Shallow Systematics. Syst. Biol. 2016, 65, 910–924. [Google Scholar] [CrossRef] [Green Version]
- Hoffberg, S.L.; Kieran, T.J.; Catchen, J.M.; Devault, A.; Faircloth, B.C.; Mauricio, R.; Glenn, T.C. RADcap: Sequence Capture of Dual-Digest RADseq Libraries with Identifiable Duplicates and Reduced Missing Data. Mol. Ecol. Resour. 2016, 16, 1264–1278. [Google Scholar] [CrossRef]
- Ali, O.A.; O’Rourke, S.M.; Amish, S.J.; Meek, M.H.; Luikart, G.; Jeffres, C.; Miller, M.R. Rad Capture (Rapture): Flexible and Efficient Sequence-Based Genotyping. Genetics 2016, 202, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Zarza, E.; Faircloth, B.C.; Tsai, W.L.E.; Bryson, R.W.; Klicka, J.; McCormack, J.E. Hidden Histories of Gene Flow in Highland Birds Revealed with Genomic Markers. Mol. Ecol. 2016, 25, 5144–5157. [Google Scholar] [CrossRef]
- Peñalba, J.V.; Smith, L.L.; Tonione, M.A.; Sass, C.; Hykin, S.M.; Skipwith, P.L.; Mcguire, J.A.; Bowie, R.C.K.; Moritz, C. Sequence Capture Using PCR-Generated Probes: A Cost-Effective Method of Targeted High-Throughput Sequencing for Nonmodel Organisms. Mol. Ecol. Resour. 2014, 14, 1000–1010. [Google Scholar] [CrossRef]
- Loera-Sánchez, M.A.; Studer, B.; Kölliker, R. Towards a High-Throughput Method to Measure Genetic Diversity in Grassland. In Grassland Science in Europe, Vol. 24—Improving Sown Grasslands through Breeding and Management; Huguenin-Elie, O., Studer, B., Kölliker, R., Reheul, D., Probo, M., Barre, P., Feuerstein, U., Roldán-Ruiz, I., Mariotte, P., Hopkins, A., Eds.; European Grassland Federation: Zurich, Switzerland, 2019; pp. 12–19. [Google Scholar] [CrossRef]
- Campbell, N.R.; Harmon, S.; Narum, S.R. Genotyping-in-Thousands by Sequencing (GT-Seq): A Cost Effective SNP Genotyping Method Based on Custom Amplicon Sequencing. Mol. Ecol. Resour. 2014, 15, 855–867. [Google Scholar] [CrossRef]
- Fritsch, L.; Soeur, R.; Hansen, C.; Fischer, R.; Schillberg, S.; Schröper, F. Next-Generation Sequencing of Amplicons Is a Rapid and Reliable Method for the Detection of Polymorphisms Relevant for Barley Breeding. Mol. Breed. 2016, 36, 83. [Google Scholar] [CrossRef]
- Sato, M.; Hosoya, S.; Yoshikawa, S.; Ohki, S.; Kobayashi, Y.; Itou, T.; Kikuchi, K. A Highly Flexible and Repeatable Genotyping Method for Aquaculture Studies Based on Target Amplicon Sequencing Using Next-Generation Sequencing Technology. Sci. Rep. 2019, 9, 6904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kölliker, R.; Boller, B.; Widmer, F. Marker Assisted Polycross Breeding to Increase Diversity and Yield in Perennial Ryegrass (Lolium perenne L.). Euphytica 2005, 146, 55–65. [Google Scholar] [CrossRef]
- Barot, S.; Allard, V.; Cantarel, A.; Enjalbert, J.; Gauffreteau, A.; Goldringer, I.; Lata, J.C.; Le Roux, X.; Niboyet, A.; Porcher, E. Designing Mixtures of Varieties for Multifunctional Agriculture with the Help of Ecology. A Review. Agron. Sustain. Dev. 2017, 37, 13. [Google Scholar] [CrossRef] [Green Version]
- Roldán-Ruiz, I.; Dendauw, J.; Van Bockstaele, E.; Depicker, A.; De Loose, M. AFLP Markers Reveal High Polymorphic Rates in Ryegrasses (Lolium spp.). Mol. Breed. 2000, 6, 125–134. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Nazzicari, N.; Ananta, A.; Carelli, M.; Wei, Y.; Brummer, E.C. Assessment of Cultivar Distinctness in Alfalfa: A Comparison of Genotyping-by-Sequencing, Simple-Sequence Repeat Marker, and Morphophysiological Observations. Plant Genome 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Dengler, J.; Janišová, M.; Török, P.; Wellstein, C. Biodiversity of Palaearctic Grasslands: A Synthesis. Agric. Ecosyst. Environ. 2014, 182, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bartolome, J.W.; Allen-Diaz, B.H.; Barry, S.; Ford, L.D.; Hammond, M.; Hopkinson, P.; Ratcliff, F.; Spiegal, S.; White, M.D. Grazing for Biodiversity in Californian Mediterranean Grasslands. Rangelands 2014, 36, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Graf, R.; Müller, M.; Korner, P.; Jenny, M.; Jenni, L. 20% Loss of Unimproved Farmland in 22 Years in the Engadin, Swiss Alps. Agric. Ecosyst. Environ. 2014, 185, 48–58. [Google Scholar] [CrossRef]
- Henry, R.J.; Nevo, E. Exploring Natural Selection to Guide Breeding for Agriculture. Plant Biotechnol. J. 2014, 12, 655–662. [Google Scholar] [CrossRef]
- Josephs, E.B.; Stinchcombe, J.R.; Wright, S.I. What Can Genome-Wide Association Studies Tell Us about the Evolutionary Forces Maintaining Genetic Variation for Quantitative Traits? New Phytol. 2017, 214, 21–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Type and Number of Populations Analysed | Plants Per Population | Marker System a | Ref. |
---|---|---|---|---|
Orchardgrass (Dactylis glomerata L.) | Ecotypes (20) | 32 | SSR (29) | [27] |
Ecotypes (59) | 32 | SSR (29) | [28] | |
Ecotypes and cultivars (6) | 20 | SSR (15) | [29] | |
Ecotypes (3) | 2–20 | AFLP (9) | [30] | |
Subspecies (3) | 2–49 | RAPD (26), ISSR (22), AFLP (4) | [31] | |
Cultivars (3) | 28 | RAPD (12) | [32] | |
Ecotypes (14) | 15 | AFLP (6) | [33] | |
Ecotypes and cultivars (60) | 25 | SRAP (21) | [34] | |
Perennial and Italian ryegrasses (Lolium perenne L. and L. multiflorum Lam.) | Cultivars (3) | 28 | RAPD (12) | [32] |
Ecotypes and cultivars (8) | 10 | ISSR (10) | [35] | |
Ecotypes and cultivars (24) | 36 | AFLP (2) | [36] | |
Ecotypes (4) | 84–99 | RAPD (6) | [37] | |
Ecotypes and cultivars (3) | 38–90 | AFLP (3) | [38] | |
Species and hybrids (16) | 8 | AFLP (3) | [39] | |
Ecotypes and cultivars (104) | 1 | AFLP (3) | [40] | |
Ecotypes and cultivars (60) | 1–15 | SSR (9) | [41] | |
Ecotypes and cultivars (32) | 23 | SSR (34) | [42] | |
Breeding lines (12) | 52–60 | AFLP (56) | [43] | |
Ecotypes (40) | ~24 | SSR (8) | [44] | |
Gene bank accessions (297) | 24 | SSR (48) | [45] | |
Tall oat-grass (Arrhenaterum elatius L.) | Gene bank accessions (46) | 11 | AFLP (4) | [46] |
Meadow fescue (Festuca pratensis Huds., syn. Lolium pratense and Schenodurus pratensis) | Cultivars (3) | 28 | RAPD (12) | [32] |
Ecotypes and cultivars (32) | 23 | SSR (34) | [42] | |
Ecotypes and cultivars (43) | 14–20 | AFLP (3) | [47] | |
Ecotypes (3) | 20 | RAPD (5) | [48] | |
Ecotypes (71) | ~33 | SSR (24) | [49] | |
Gene bank accessions (189) | 1 | SSR (34) | [50] | |
Ecotypes and cultivars (9) | 36 | RAPD (13) | [51] | |
Tall fescue (Festuca arundinacea Schreb. ., syn. Lolium arundinaceum and Schenodurus arundinaceus) | Gene bank accessions (161) | 30 leaves | SSR (15) | [52] |
Ecotypes and cultivars (100) | 1 | SSR (90) | [53] | |
Cultivars (16) | 20 | RFLP | [54] | |
Ecotypes (9) | 2–12 | SSR (11) | [55] | |
Gene bank accessions (851) | 1 | SSR (28) | [50] | |
Gene bank accessions and cultivars (18) | 16 | AFLP (6) | [56] | |
Kentucky bluegrass (Poa pratensis L.) | Ecotypes, accessions and cultivars (16) | 1 | RAPD (17) | [57] |
Cultivars, ecotypes and breeding lines (123) | 3 | RAPD (12) | [58] | |
Timothy (Phleum pratense L.) | Gene bank accessions (96) | 15–20 | SSR (13) | [59] |
Bird’s-foot trefoil (Lotus corniculatus L.) | Ecotypes (8) | 20 | ISSR (7) | [60] |
Sainfoin (Onobrychis viciifolia Scop.) | Cultivars and landraces (32) | 1 | SSR (400) | [61] |
Red and white clover (Trifolium pratense L. and T. repens L.) | Ecotypes and cultivars (23) | 36 | AFLP (2) | [36] |
Ecotypes, landraces and cultivars (120) | 40 | AFLP (12) | [62] | |
Landraces and cultivars (29) | 12–32 | AFLP (2) | [63] | |
Cultivars and breeding lines (19) | 31–96 | AFLP (4) | [64] | |
Ecotypes and landraces (7) | 25 | SSR (32) | [65] | |
Ecotypes and cultivars (11) | 23–37 | iPBS (2) | [66] | |
Cultivars (16) | 8–22 | SSR (15) | [67] |
Species | Method | No. of Polymorphisms | Type of Study | Main Findings Related to Genetic Diversity | Ref. |
---|---|---|---|---|---|
Fescues and ryegrasses (Festuca spp. and Lolium spp.) | SNP array | 2185 SNPs | Array development and genetic diversity analysis | The array had 99% call rate and could detect population structure in European ecotypes of perennial ryegrass. | [81] |
DArT | 7680 probes | Array development and genetic diversity analysis | There were 3884 polymorphic probes on 40 genotypes of 5 species of fescues and ryegrasses. Ecotypes from the same country were generally more closely related. | [86] | |
DArT | 7680 probes | Genetic diversity analysis | There were 190 polymorphic probes on 93 tall fescue accessions. Turf-type accessions had lower genetic diversity than forage-type tall fescue. | [87] | |
Pooled GBS | 22,324 SNPs | Genetic diversity analysis | Pooled GBS was validated on pools of 40 perennial ryegrass plants. The allele frequencies of mixed-cultivar swards change over time. | [96] | |
DArT | 1384 probes | Genetic diversity analysis | Pools of 30 plants from 297 accessions of perennial ryegrass were characterized with DArT, SNPs and SSR. DArT-based pairwise genetic distances had the highest reproducibility and consistency. | [45] | |
Arabidopsis halleri L. | Whole genome re-sequencing | 2 million SNPs | Genomic diversity analysis | SNPs provide an unbiased estimation of genetic diversity of 180 A. halleri plants. A few thousand random SNPs are enough to assess genetic differentiation. | [97] |
Barley (Hordeum vulgare L.) | DArT | 2304 probes | Genetic diversity analysis | 942 polymorphic probes were found in 170 barley cultivars used in Canada. In general, two-row and six-row barleys were genetically differentiated. | [92] |
DArT | 1920 probes | Whole-genome profiling | The DNA from 33 cultivars and two wild accessions was analysed. The DNA from the two wild accessions and two Southeast Asian landraces were underrepresented on the array, and they were genetically differentiated from the rest of the cultivars, which clustered according to expected relationships. | [93] | |
Pooled GBS | 1984 SNPs | Segregation bias analysis | Pooled GBS was validated by comparing the allele frequencies from individual plants and pools of such plants. Pooled GBS could track changes of allele frequencies and segregation bias during androgenesis. | [98] | |
Pooled GBS | 674–1744 SNPs | Segregation bias analysis | Pooled GBS allowed an unprecedented analysis of segregation bias on 12 segregating barley populations. | [99] | |
Brachypodium spp. | Plastid genome skimming | 57 plastomes (not polymorphisms) | Comparative genomics and phylogenomics | The plastomes of Brachypodium spp. showed structural variations. Within Brachypodium distachyon (L.) Beauv., two main lineages with differing flowering time traits were detected. | [100] |
GBS | 50,000 SNPs | Genetic diversity analysis | 84 accessions of B. distachyon were genetically differentiated according to flowering time. Seven B. hybridum samples proved to be a mosaic of B. distachyon and B. stacei. | [101] | |
Whole genome re-sequencing | ~4 million SNPs | Genetic diversity and pan-genome analysis | 54 lines of B. distachyon were resequenced at a median coverage of 94×. The resulting pangenome was 58% larger (430 Mb vs. 272 Mb) and contained 40% more genes. Core genes were related to essential cell functions, while non-core genes were related to environmental adaptations. | [102] | |
Medicago spp. | SNP array | 9277 | Genetic diversity and population structure analysis | Principal component analysis of 280 alfalfa (Medicago sativa L.) genotypes revealed grouping according to species and ploidy level. Tetraploids had higher heterozygosity levels. | [83] |
Sequence capture | 50 genes | Phylogenetic analysis | The sequences of 50 genes were recovered from samples of four Medicago spp. The alignment of such genes revealed known phylogenetic relationships between the Medicago spp. and an outgroup. | [103] | |
Northern switchgrass (Panicum virginatum L.) | Sequence capture | 1,590,653 SNPs | Genetic diversity and population structure analysis | 537 individuals from 45 upland and 21 lowland populations were genotyped. Population structure analysis revealed seven groups that match geographical origin and up- or lowland distribution. | [104] |
Orchid (Cypripedium macranthos var. rebunense) | Amplicon sequencing | ~1000 SNPs | Genetic diversity analysis | Eight samples from two populations of a Japanese orchid were genotyped with 16 MIG-seq primers. A principal component analysis of 209 SNPs was able to differentiate the two populations. Remarkably, the MIG-seq primers were also functional in a wide spectrum of organisms, including a pine tree, bamboo, mushroom, a copepod, a snail, a sea cucumber, and a lizard. | [105] |
Sorghum (Sorghum bicolor [L.] Moench.) | DArT | 12,000 probes | Genetic diversity analysis | 90 accessions of sorghum were genotyped with DArT. Cluster analysis revealed 13 groups of genotypes that match their race and origin. | [91] |
Wheat (Triticum aestivum L.) | SNP array | 280,226 SNPs | Genetic diversity and population structure analysis | 4506 wheat landraces and cultivars were genotyped with the SNP array. 11 high-confidence groups were detected based on the genetic structure of the samples. | [85] |
DArT | 5137 probes | Genetic diversity analysis and genetic mapping | 62 wheat cultivars, plus a double haploid population were genotyped with DArT. The DArT markers can capture genetic differentiation among cultivars. | [90] | |
GBS DArT | 38,412 SNPs 1544 probes | Genetic diversity analysis | 365 soft winter wheat breeding lines were genotyped with GBS and DArT. The genetic diversity estimates of the two methods differed, with DArT overestimating genetic diversity, likely due to ascertainment bias. | [84] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loera-Sánchez, M.; Studer, B.; Kölliker, R. DNA-Based Assessment of Genetic Diversity in Grassland Plant Species: Challenges, Approaches, and Applications. Agronomy 2019, 9, 881. https://doi.org/10.3390/agronomy9120881
Loera-Sánchez M, Studer B, Kölliker R. DNA-Based Assessment of Genetic Diversity in Grassland Plant Species: Challenges, Approaches, and Applications. Agronomy. 2019; 9(12):881. https://doi.org/10.3390/agronomy9120881
Chicago/Turabian StyleLoera-Sánchez, Miguel, Bruno Studer, and Roland Kölliker. 2019. "DNA-Based Assessment of Genetic Diversity in Grassland Plant Species: Challenges, Approaches, and Applications" Agronomy 9, no. 12: 881. https://doi.org/10.3390/agronomy9120881
APA StyleLoera-Sánchez, M., Studer, B., & Kölliker, R. (2019). DNA-Based Assessment of Genetic Diversity in Grassland Plant Species: Challenges, Approaches, and Applications. Agronomy, 9(12), 881. https://doi.org/10.3390/agronomy9120881