Effect of Irrigation Regimes and Soil Texture on the Potassium Utilization Efficiency of Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Experimental Pot Setup
2.2. Experimental Dsign and Irrigation Regimes
2.3. Data Collection
2.3.1. Soil Water Content and Crack Intensity
2.3.2. Irrigation and Water Percolation Quantities Determination
2.3.3. Determination of Potassium Concentration in Plant Tissues
2.3.4. Determination of the Amount of Potassium Removed with Harvest and KUE
2.4. Statistical Analysis
3. Results and Discussion
3.1. Water Regime and Soil Texture Combination Effects
3.2. Frequency and Quantity of Irrigation Input
3.3. Water Percolation After Each Irrigation
3.4. Dry Weight of Plant Partitionings and Total Biomass
3.5. Potassium Concentration in Plant Partitionings
3.6. Potassium Accumulation of Plant Parts and Total Biomass
3.7. KUE
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xiong, J.; Ding, C.Q.; Wei, G.B.; Ding, Y.F.; Wang, S.H. Characteristic of dry-matter accumulation and nitrogen-uptake of super-high-yielding early rice in China. Agron. J. 2013, 105, 1142–1150. [Google Scholar] [CrossRef]
- Datta, A.; Ullah, H.; Ferdous, Z. Water management in rice. In Rice Production Worldwide; Chauhan, B.S., Jabran, K., Mahajan, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 255–277. [Google Scholar] [CrossRef]
- Cheng, J. Study on Foundation of Physi-Ecology and Technique of Water-Saving Irrigation for Rive. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2007. [Google Scholar]
- Cabangon, R.J.; Tuong, T.P.; Castillo, E.G.; Bao, L.X.; Lu, G.; Wang, G.; Cui, Y.; Bouman, B.A.; Li, Y.; Chen, C. Effect of irrigation method and n-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy Water Environ. 2004, 2, 195–206. [Google Scholar] [CrossRef]
- Linquist, B.A.; Anders, M.M.; Adviento-Borbe, M.A.A.; Chaney, R.L.; Nalley, L.L.; Da Rosa, E.F.; Kessel, C. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Chang. Biol. 2015, 21, 407–417. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crop. Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- Staff, S.S. Soil Taxonomy, 2nd ed.; Agriculture Handbook 436; USDA-NRCS: Washington, DC, USA, 1999; p. 869. [Google Scholar] [CrossRef]
- Taki, O.; Godwin, R.; Leeds-Harrison, P. The creation of longitudinal cracks in shrinking soils to enhance seedling emergence. Part i. The effect of soil structure. Soil Use Manag. 2006, 22, 1–10. [Google Scholar] [CrossRef]
- Dinka, T.M.; Lascano, R.J. Review paper: Challenges and limitations in studying the shrink-swell and crack dynamics of vertisol soils. Open J. Soil Sci. 2012, 2, 82. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S.; Kumar, D. Current status, challenges, and opportunities in rice production. In Rice Production Worldwide; Springer: Berlin, Germany, 2017; pp. 1–32. [Google Scholar] [CrossRef]
- Bouman, B.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Islam, M.; Parul, S.; Pathan, A.; Islam, M.; Quasem, M. Influence of cracking on rice seasons and irrigation in Bangladesh. J. Biol. Sci. 2004. [Google Scholar] [CrossRef]
- Tan, X.Z.; Shao, D.G.; Liu, H.H.; Yang, F.S.; Xiao, C.; Yang, H.D. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ. 2013, 11, 381–395. [Google Scholar] [CrossRef]
- Stewart, R.D.; Abou Najm, M.R.; Rupp, D.E.; Lane, J.W.; Uribe, H.C.; Arumí, J.L.; Selker, J.S. Hillslope run off thresholds with shrink-swell clay soils. Hydrol. Process. 2015, 29, 557–571. [Google Scholar] [CrossRef]
- Greve, A.; Andersen, M.; Acworth, R. Investigations of soil cracking and preferential flow in a weighing lysimeter filled with cracking clay soil. J. Hydrol. 2010, 393, 105–113. [Google Scholar] [CrossRef]
- Arnold, J.; Potter, K.; King, K.; Allen, P. Estimation of soil cracking and the effect on surface runoff in a Texas Blackland prairie watershed. Hydrol. Process. 2005, 19, 589–603. [Google Scholar] [CrossRef]
- Belder, P.; Spiertz, J.; Bouman, B.; Lu, G.; Tuong, T. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crop. Res. 2005, 93, 169–185. [Google Scholar] [CrossRef]
- Bunnag, S.; Pongthai, P. Selection of rice (Oryza sativa l.) cultivars tolerant to drought stress at the vegetative stage under field conditions. Am. J. Plant Sci. 2013, 4, 1701. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.; Mohanty, M.; Painuli, D.; Misra, A.; Hati, K.; Mandal, K.; Ghosh, P.; Chaudhary, R.; Acharya, C. Influence of tillage practices and nutrient management on crack parameters in a vertisol of central India. Soil Tillage Res. 2003, 71, 133–142. [Google Scholar] [CrossRef]
- Sander, T.; Gerke, H.H. Preferential flow patterns in paddy fields using a dye tracer. Vadose Zone J. 2007, 6, 105–115. [Google Scholar] [CrossRef]
- Islam, A.; Saha, P.K.; Biswas, J.C.; Saleque, M.A. Potassium fertilization in intensive wetland rice system: Yield, potassium use efficiency, and soil potassium status. Int. J. Agric. Pap. 2016, 1, 7–21. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; Wang, W.; Ye, Z.; Luo, A. Potassium internal use efficiency relative to growth vigor, potassium distribution, and carbohydrate allocation in rice genotypes. J. Plant Nutr. 2004, 27, 837–852. [Google Scholar] [CrossRef]
- Adiningsih, J.S.; Santoso, D.; Sudjadi, M. The status of n, p, k and s of lowland rice soils in java. In Sulfur Fertilizer Policy for Lowland and Upland Rice Cropping Systems in Indonesia; ACIAR: Melbourne, Australia, 1990; pp. 68–76. [Google Scholar]
- Oberthur, T.; Dobermann, A.; Neue, H. Spatial modeling of soil fertility. A case study in nueva ecija province, Philippines. In Proceedings of the International Rice Research Conference on Fragile Lives in Fragile Ecosystems, Los Banos, CA, USA, 13–17 February 1995. [Google Scholar]
- Zhang, Q.; Yang, Z.; Zhang, H.; Yi, J. Recovery efficiency and loss of 15n-labelled urea in a rice-soil system in the upper reaches of the yellow river basin. Agric. Ecosyst. Environ. 2012, 158, 118–126. [Google Scholar] [CrossRef]
- Ma, X.; Wu, S.H.; Li, Y.; Zhang, X.Y.; Gao, Q.Z.; Wu, Y. Rice re-cultivation in southern china: An option for enhanced climate change resilience in rice production. J. Geogr. Sci. 2013, 23, 67–84. [Google Scholar] [CrossRef]
- Lin, Y.; Huabin, Z.; Jianxia, L. Current situation and prospect of rice water-saving irrigation technology in China. Chin. J. Ecol. 2014, 33, 1381–1387. [Google Scholar]
- Xie, J.; Luo, J.; Ma, M. Potassium-supplying potential of different soils and the current potassium balance status in the farmland ecosystems in China. In Proceedings of the International Symposium on Balanced Fertilization, Soil and Fertilizer Institute of the Chinese Academy of Agricultural Sciences; China Agriculture Press: Beijing, China, 1990; pp. 97–105. [Google Scholar]
- Cabangon, R.; Castillo, E.; Tuong, T. Chlorophyll meter-based nitrogen management of rice grown under alternate wetting and drying irrigation. Field Crop. Res. 2011, 121, 136–146. [Google Scholar] [CrossRef]
- Hillel, D. Introduction to Soil Physics; Academic Press: Cambridge, MA, USA, 2013; ISBN 9780080918693. [Google Scholar]
- Gupta, P.K. Soil, Plant, Water and Fertilizer Analysis; Agrobios (India): Jodhpur, New Delhi, India, 2000; p. 438. [Google Scholar]
- Klute, A. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods; Book Series 5; Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Schofield, R.; Taylor, A.W. The measurement of soil ph. Soil Sci. Soc. Am. J. 1955, 19, 164–167. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. Methods of Soil Analysis, Part 3-Chemical Methods; SSSA Book Series: 5; American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis: Advanced Course; UW-Madison Libraries Parallel Press: Madison, WI, USA, 2005; ISBN 1893311473. [Google Scholar]
- Searle, P.L. The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. Analyst 1984, 109, 549–568. [Google Scholar] [CrossRef]
- Henriksen, A.; Selmer-Olsen, A. Automatic methods for determining nitrate and nitrite in water and soil extracts. Analyst 1970, 95, 514–518. [Google Scholar] [CrossRef]
- Sims, J.R.; Jackson, G.D. Rapid analysis of soil nitrate with chromotropic acid. Soil Sci. Soc. Am. J. 1971, 35, 603–606. [Google Scholar] [CrossRef]
- Olsen, S.; Sommers, L. Methods of Soil Analysis—Part 2, 2nd ed.; ASA/SSSA: Madison, WI, USA, 1982. [Google Scholar]
- Helmke, P.A.; Sparks, D. Lithium, sodium, potassium, rubidium, and cesium. In Methods of Soil Analysis Part 3—Chemical Methods; ASA/SSSA: Madison, WI, USA, 1996; pp. 551–574. [Google Scholar]
- Sharma, P.K.; Verma, T.S.; Bhagat, R.M. Soil structural improvements with the addition of lantana camara biomass in rice-wheat cropping. Soil Use Manag. 1995, 11, 199–203. [Google Scholar] [CrossRef]
- Tandon, H. Methods of Analysis of Soils, Plants, Waters and Fertilizers; Fertilizers Development and Consultation Organization: New Delhi, India, 1993; pp. 58–60. ISBN 6345190462. [Google Scholar]
- Mosier, A.; Syers, J.K. Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer Use on Food Production and the Environment; Island Press: Washington, DC, USA, 2004; p. 65. ISBN 1559637080. [Google Scholar]
- Sacco, D.; Cremon, C.; Zavattaro, L.; Grignani, C. Seasonal variation of soil physical properties under different water managements in irrigated rice. Soil Tillage Res. 2012, 118, 22–31. [Google Scholar] [CrossRef]
- Hillel, D. Environmental Soil Physics; Academic, Press: San Diego, CA, USA, 1998; ISBN 9780080544151. [Google Scholar]
- Elias, E.; Salih, A.; Alaily, F. Cracking patterns in the vertisols of the sudan gezira at the end of dry season. Int. Agrophys. 2001, 15, 151–156. [Google Scholar]
- El Baroudy, A.; Ibrahim, M.; Mahmoud, M. Effects of deficit irrigation and transplanting methods of irrigated rice on soil physical properties and rice yield. Soil Use Manag. 2014, 30, 88–98. [Google Scholar] [CrossRef]
- Flowers, M.; Lal, R. Axle load and tillage effects on the shrinkage characteristics of a mollic ochraqualf in northwest ohio. Soil Tillage Res. 1999, 50, 251–258. [Google Scholar] [CrossRef]
- Lennartz, B.; Horn, R.; Duttmann, R.; Gerke, H.; Tippkötter, R.; Eickhorst, T.; Janssen, I.; Janssen, M.; Rüth, B.; Sander, T. Ecological safe management of terraced rice paddy landscapes. Soil Tillage Res. 2009, 102, 179–192. [Google Scholar] [CrossRef]
- Hamoud, Y.A.; Guo, X.; Wang, Z.; Chen, S.; Rasoul, G. Effects of irrigation water regime, soil clay content and their combination on growth, yield, and water use efficiency of rice grown in south china. Int. J. Agric. Biol. Eng. 2018, 11, 144–155. [Google Scholar] [CrossRef]
- Borrell, A.; Garside, A.; Fukai, S. Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crop. Res. 1997, 52, 231–248. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Beebout, S.S.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crop. Res. 2016, 193, 54–69. [Google Scholar] [CrossRef]
- Sharma, P.; Bhushan, L.; Ladha, J.; Naresh, R.; Gupta, R.; Balasubramanian, B.; Bouman, B. Crop-water relations in rice-wheat cropping under different tillage systems and water-management practices in a marginally sodic, medium-textured soil. In Water-Wise Rice Production; International Rice Research Institute: Los Baños, Philippines, 2002; pp. 223–235. [Google Scholar]
- Lu, J.; Ookawa, T.; Hirasawa, T. The effects of irrigation regimes on the water use, dry matter production and physiological responses of paddy rice. Plant Soil 2000, 223, 209–218. [Google Scholar] [CrossRef]
- Kirby, J.; Ringrose-Voase, A. Drying of some philippine and indonesian puddled rice soils following surface drainage: Numerical analysis using a swelling soil flow model. Soil Tillage Res. 2000, 57, 13–30. [Google Scholar] [CrossRef]
- Carmeis Filho, A.C.D.A.; Crusciol, C.A.C.; Nascente, A.S.; Mauad, M.; Garcia, R.A. Influence of potassium levels on root growth and nutrient uptake of upland rice cultivars. Revista Caatinga 2017, 30, 32–44. [Google Scholar] [CrossRef]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crop. Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Dou, F.; Soriano, J.; Tabien, R.E.; Chen, K. Soil texture and cultivar effects on rice (oryza sativa, l.) grain yield, yield components and water productivity in three water regimes. PLoS ONE 2016. [Google Scholar] [CrossRef]
- Tsubo, M.; Fukai, S.; Basnayake, J.; Tuong, T.; Bouman, B.; Harnpichitvitaya, D. Effects of soil clay content on water balance and productivity in rainfed lowland rice [oryza sativa] ecosystem in northeast Thailand. Plant Prod. Sci. 2007, 10, 232–241. [Google Scholar] [CrossRef]
- Rao, P.R.; Subrhamanyam, D.; Sailaja, B.; Singh, R.P.; Ravichandran, V.; Rao, G.V.S.; Swain, P.; Sharma, S.G.; Saha, S.; Nadaradjan, S.; et al. Influence of boron on spikelet fertility under varied soil conditions in rice genotypes. J. Plant Nutr. 2013, 36, 390–400. [Google Scholar] [CrossRef]
- Centritto, M.; Lauteri, M.; Monteverdi, M.C.; Serraj, R. Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage. J. Exp. Bot. 2009, 60, 2325–2339. [Google Scholar] [CrossRef] [Green Version]
- James, J.; Mangold, J.; Sheley, R.; Svejcar, T. Root plasticity of native and invasive great basin species in response to soil nitrogen heterogeneity. Plant Ecol. 2009, 202, 211–220. [Google Scholar] [CrossRef]
- Cairns, J.E.; Audebert, A.; Townend, J.; Price, A.H.; Mullins, C.E. Effect of soil mechanical impedance on root growth of two rice varieties under field drought stress. Plant Soil 2004, 267, 309–318. [Google Scholar] [CrossRef]
- Valizadeh, F.F.; Reyhani, T.A.; Najafi, N.; Oustan, S. Effects of combined application of cd and zn on the growth characteristics of rice plant and zinc, cadmium, iron and manganese concentration in soil under flooded vs. Nonflooded conditions. J. Soil Water. 2012, 43, 195–205. [Google Scholar]
- Chen, J.X.; Xuan, J.X.; Du, C.L.; Xie, J.C. Effect of potassium nutrition of rice on rhizosphere redox status. Plant Soil 1997, 188, 131–137. [Google Scholar] [CrossRef]
- Morais Guimarães, C.; Stone, L.F.; Pereira de Oliveira, J.; Nakano Rangel, P.H.; Alves Pereira Rodrigues, C. Sistema radicular do arroz de terras altas sob deficiência hídrica. Pesquisa Agropecuária Tropical 2011, 41. [Google Scholar] [CrossRef]
- Gattward, J.N.; Almeida, A.A.F.; Souza, J.O.; Gomes, F.P.; Kronzucker, H.J. Sodium-potassium synergism in theobroma cacao: Stimulation of photosynthesis, water-use efficiency and mineral nutrition. Physiologia Plantarum 2012, 146, 350–362. [Google Scholar] [CrossRef]
- Gao, S.-K.; Yu, S.-E.; Shao, G.-C.; She, D.-L.; Wang, M.; Guo, R.; Cao, R.-Z.; Yan, S.-F.; Ding, J.-H. Effects of controlled irrigation and drainage on nitrogen and phosphorus concentrations in paddy water. J. Chem. 2016. [Google Scholar] [CrossRef]
- Hodge, A.; Robinson, D.; Fitter, A. Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci. 2000, 5, 304–308. [Google Scholar] [CrossRef]
- Jing, J.; Zhang, F.; Rengel, Z.; Shen, J. Localized fertilization with p plus n elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake. Field Crop. Res. 2012, 133, 176–185. [Google Scholar] [CrossRef]
- O’Toole, J.; Baldia, E. Water deficits and mineral uptake in rice. Crop Sci. 1982, 22, 1144–1150. [Google Scholar] [CrossRef]
- Alhaj Hamoud, Y.; Guo, X.; Wang, Z.; Shaghaleh, H.; Chen, S.; Hassan, A.; Bakour, A. Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern china. Agric. Water Manag. 2019, 213, 934–946. [Google Scholar] [CrossRef]
- Dobermann, A.; Cassman, K.G.; Mamaril, C.P.; Sheehy, J.E. Management of phosphorus, potassium, and sulfur in intensive, irrigated lowland rice. Field Crop. Res. 1998, 56, 113–138. [Google Scholar] [CrossRef]
- Cai, J.; Chen, L.; Qu, H.; Lian, J.; Liu, W.; Hu, Y.; Xu, G. Alteration of nutrient allocation and transporter genes expression in rice under n, p, k, and mg deficiencies. Acta Physiol. Plant. 2012, 34, 939–946. [Google Scholar] [CrossRef]
- Sinha, A.; Biswas, S. Distribution of different forms of potassium in surface and subsurface horizons of some well established soils of west bengal under the order inceptisol. 2003. Available online: http://agris.fao.org/openagris/search.do?recordID=IN2004000163 (accessed on 4 January 2019).
- Siavoshi, M.; Laware, S.L. Effect of organic fertilizer on growth and yield components in rice (oryza sativa l.). J. Agric. Sci. 2011, 3, 217. [Google Scholar] [CrossRef]
- Buresh, R.; Haefele, S. Changes in Paddy Soils under Transition to Water-Saving and Diversified Cropping Systems; World Congress of Soil Science: Brisbane, Australia, 2010. [Google Scholar]
Soil Type | Sand % | Silt % | Clay % | BD g cm−3 | θs % | pH value | TN g kg−1 | N mg kg−1 | P mg kg−1 | K mg kg−1 | OM % |
---|---|---|---|---|---|---|---|---|---|---|---|
S (40%) | 20.8 | 38.9 | 40.2 | 1.29 | 51.3 | 6.2 | 1.1 | 34.8 | 16.2 | 88.7 | 1.9 |
S (50%) | 11.3 | 39.1 | 49.5 | 1.21 | 54.3 | 6.8 | 0.8 | 21.6 | 12.9 | 71.2 | 1.2 |
S (60%) | 3.5 | 36.5 | 59.9 | 1.12 | 57.7 | 6.9 | 0.7 | 17.3 | 10.4 | 56.4 | 1.0 |
Irrigation Regime | Soil Texture | Water Limitation | Irrigation Quantity at Different Growth Stages | |||||
---|---|---|---|---|---|---|---|---|
R | T | BH | F | MR | YR | |||
R (F, S100%) | S (40%), S (50%), S (60%) | Upper (mm) | 30 | 30 | 30 | 30 | 30 | Natural drying |
Lower (S, %) | 100 | 100 | 100 | 100 | 100 | Natural drying | ||
R (F, S90%) | S (40%), S (50%), S (60%) | Upper (mm) | 30 | 30 | 30 | 30 | 30 | Natural drying |
Lower (S, %) | 90 | 90 | 90 | 100 | 90 | Natural drying | ||
R (F, S70%) | S (40%), S (50%), S (60%) | Upper (mm) | 30 | 30 | 30 | 30 | 30 | Natural drying |
Lower (S, %) | 70 | 70 | 70 | 100 | 70 | Natural drying |
Soil Type | S (40%) | S (50%) | S (60%) |
---|---|---|---|
SWC% | 100 90 70 | 100 90 70 | 100 90 70 |
Equation | V = −2.0 × SWC + 205 | V = −2.6 × SWC + 263 | V = −3.2 × SWC + 332 |
R2 | 0.98 | 0.95 | 0.93 |
Factor | K Concentration (% Dry Weight) | |||||||
---|---|---|---|---|---|---|---|---|
Water Regime (R) | Grains | Leaves | Stems | Roots | ||||
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
R (F, S100%) | 0.38 A | 0.38 A | 0.89 A | 0.89 A | 0.73 A | 0.71 A | 1.00 A | 1.00 A |
R (F, S90%) | 0.31 B | 0.33 B | 0.79 B | 0.76 B | 0.66 B | 0.65 B | 0.91 B | 0.90 B |
R (F, S70%) | 0.25 C | 0.26 C | 0.51 C | 0.50 C | 0.41 C | 0.41 C | 0.57 C | 0.55 C |
Soil texture (S) | ||||||||
S (40%) | 0.24 c | 0.25 c | 0.58 c | 0.57 c | 0.47 c | 0.47 c | 0.65 c | 0.64 c |
S (50%) | 0.32 b | 0.32 b | 0.73 b | 0.73 b | 0.59 b | 0.59 b | 0.82 b | 0.80 b |
S (60%) | 0.38 a | 0.39 a | 0.89 a | 0.88 a | 0.75 a | 0.74 a | 1.00 a | 1.00 a |
ANOVA | ||||||||
R | *** | *** | *** | *** | ||||
S | *** | *** | *** | *** | ||||
Y | ns | ns | ns | ns | ||||
R × S | ns | ns | ns | ns | ||||
R × Y | ns | ns | ns | ns | ||||
S × Y | ns | ns | ns | ns | ||||
R × S × Y | ns | ns | ns | ns |
Factor | Potassium Accumulation (mg plant−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Water Regime (R) | Soil Type (S) | Grains | Leaves | Stems | Roots | Total Biomass | |||||
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | ||
R (F,S100%) | S (40%) | 32.7 | 38.4 | 49.4 | 51.5 | 28.1 | 29.4 | 20.5 | 23.9 | 130.6 | 143.2 |
S (50%) | 51.8 | 62.1 | 74.8 | 79.9 | 42.7 | 46.6 | 32.9 | 39.8 | 202.2 | 228.4 | |
S (60%) | 72.5 | 102 | 116 | 126 | 67.7 | 78.5 | 61.4 | 76.1 | 317.4 | 383 | |
R (F, S90%) | S (40%) | 21.4 | 25.4 | 37.7 | 39.5 | 21.5 | 23.6 | 15.4 | 17.9 | 96.0 | 106.4 |
S (50%) | 36.3 | 46.8 | 59.9 | 63.5 | 35.2 | 38.1 | 27.3 | 32.3 | 158.7 | 180.6 | |
S (60%) | 50.4 | 71.4 | 86.7 | 93.2 | 51.9 | 58.2 | 40.6 | 49.5 | 229.5 | 272.3 | |
R (F, S70%) | S (40%) | 10.8 | 13.5 | 17.2 | 17.2 | 10.0 | 10.6 | 4.7 | 4.9 | 42.6 | 45.9 |
S (50%) | 14.9 | 21.0 | 24.6 | 24.7 | 14.7 | 15.1 | 9.3 | 10.1 | 63.4 | 70.8 | |
S (60%) | 21.1 | 32.6 | 36.1 | 36.5 | 20.9 | 21.4 | 13.2 | 14.7 | 91.3 | 105.2 | |
ANOVA | |||||||||||
R | *** | *** | *** | *** | *** | ||||||
S | *** | *** | *** | *** | *** | ||||||
Y | ns | ns | ns | ns | ns | ||||||
R × S | ** | *** | *** | *** | ** | ||||||
R × Y | ns | ns | ns | ns | ns | ||||||
S × Y | ns | ns | ns | ns | ns | ||||||
R ×S ×Y | ns | ns | ns | ns | ns |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhaj Hamoud, Y.; Wang, Z.; Guo, X.; Shaghaleh, H.; Sheteiwy, M.; Chen, S.; Qiu, R.; Elbashier, M.M.A. Effect of Irrigation Regimes and Soil Texture on the Potassium Utilization Efficiency of Rice. Agronomy 2019, 9, 100. https://doi.org/10.3390/agronomy9020100
Alhaj Hamoud Y, Wang Z, Guo X, Shaghaleh H, Sheteiwy M, Chen S, Qiu R, Elbashier MMA. Effect of Irrigation Regimes and Soil Texture on the Potassium Utilization Efficiency of Rice. Agronomy. 2019; 9(2):100. https://doi.org/10.3390/agronomy9020100
Chicago/Turabian StyleAlhaj Hamoud, Yousef, Zhenchang Wang, Xiangping Guo, Hiba Shaghaleh, Mohamed Sheteiwy, Sheng Chen, Rangjian Qiu, and Mohammed M. A. Elbashier. 2019. "Effect of Irrigation Regimes and Soil Texture on the Potassium Utilization Efficiency of Rice" Agronomy 9, no. 2: 100. https://doi.org/10.3390/agronomy9020100
APA StyleAlhaj Hamoud, Y., Wang, Z., Guo, X., Shaghaleh, H., Sheteiwy, M., Chen, S., Qiu, R., & Elbashier, M. M. A. (2019). Effect of Irrigation Regimes and Soil Texture on the Potassium Utilization Efficiency of Rice. Agronomy, 9(2), 100. https://doi.org/10.3390/agronomy9020100